1
|
Macheriotou L, Rigaux A, Derycke S, Vanreusel A. Phylogenetic clustering and rarity imply risk of local species extinction in prospective deep-sea mining areas of the Clarion-Clipperton Fracture Zone. Proc Biol Sci 2020; 287:20192666. [PMID: 32228410 PMCID: PMC7209057 DOI: 10.1098/rspb.2019.2666] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
An understanding of the forces controlling community structure in the deep sea is essential at a time when its pristineness is threatened by polymetallic nodule mining. Because abiotically defined communities are more sensitive to environmental change, we applied occurrence- and phylogeny-based metrics to determine the importance of biotic versus abiotic structuring processes in nematodes, the most abundant invertebrate taxon of the Clarion–Clipperton Fracture Zone (CCFZ), an area targeted for mining. We investigated the prevalence of rarity and the explanatory power of environmental parameters with respect to phylogenetic diversity (PD). We found evidence for aggregation and phylogenetic clustering in nematode amplicon sequence variants (ASVs) and the dominant genus Acantholaimus, indicating the influence of environmental filtering, sympatric speciation, affinity for overlapping habitats and facilitation for community structure. PD was associated with abiotic variables such as total organic carbon, chloroplastic pigments equivalents and/or mud content, explaining up to 57% of the observed variability and providing further support of the prominence of environmental structuring forces. Rarity was high throughout, ranging from 64 to 75% unique ASVs. Communities defined by environmental filtering with a prevalence of rarity in the CCFZ suggest taxa of these nodule-bearing abyssal plains will be especially vulnerable to the risk of extinction brought about by the efforts to extract them.
Collapse
Affiliation(s)
- Lara Macheriotou
- Marine Biology Research Group, Department of Biology, Ghent University, Krijgslaan 281, Building S8, 9000 Ghent, Belgium
| | - Annelien Rigaux
- Marine Biology Research Group, Department of Biology, Ghent University, Krijgslaan 281, Building S8, 9000 Ghent, Belgium
| | - Sofie Derycke
- Marine Biology Research Group, Department of Biology, Ghent University, Krijgslaan 281, Building S8, 9000 Ghent, Belgium.,Aquatic Environment and Quality, Institute for Agricultural and Fisheries Research (ILVO), Ankerstraat 1, 8400 Oostende, Belgium
| | - Ann Vanreusel
- Marine Biology Research Group, Department of Biology, Ghent University, Krijgslaan 281, Building S8, 9000 Ghent, Belgium
| |
Collapse
|
2
|
Smythe AB, Holovachov O, Kocot KM. Improved phylogenomic sampling of free-living nematodes enhances resolution of higher-level nematode phylogeny. BMC Evol Biol 2019; 19:121. [PMID: 31195978 PMCID: PMC6567515 DOI: 10.1186/s12862-019-1444-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/27/2019] [Indexed: 11/18/2022] Open
Abstract
Background Nematodes are among the most diverse and abundant metazoans on Earth, but research on them has been biased toward parasitic taxa and model organisms. Free-living nematodes, particularly from the clades Enoplia and Dorylaimia, have been underrepresented in genome-scale phylogenetic analyses to date, leading to poor resolution of deep relationships within the phylum. Results We supplemented publicly available data by sequencing transcriptomes of nine free-living nematodes and two important outgroups and conducted a phylum-wide phylogenomic analysis including a total of 108 nematodes. Analysis of a dataset generated using a conservative orthology inference strategy resulted in a matrix with a high proportion of missing data and moderate to weak support for branching within and placement of Enoplia. A less conservative orthology inference approach recovered more genes and resulted in higher support for the deepest splits within Nematoda, recovering Enoplia as the sister taxon to the rest of Nematoda. Relationships within major clades were similar to those found in previously published studies based on 18S rDNA. Conclusions Expanded transcriptome sequencing of free-living nematodes has contributed to better resolution among deep nematode lineages, though the dataset is still strongly biased toward parasites. Inclusion of more free-living nematodes in future phylogenomic analyses will allow a clearer understanding of many interesting aspects of nematode evolution, such as morphological and molecular adaptations to parasitism and whether nematodes originated in a marine or terrestrial environment. Electronic supplementary material The online version of this article (10.1186/s12862-019-1444-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ashleigh B Smythe
- Department of Biology, Virginia Military Institute, 301B Maury-Brooke Hall, Lexington, VA, 24450, USA
| | - Oleksandr Holovachov
- Department of Zoology, Swedish Museum of Natural History, Box 50007, SE-104 05, Stockholm, Sweden
| | - Kevin M Kocot
- Department of Biological Sciences and Alabama Museum of Natural History, The University of Alabama, Campus Box 870344, Tuscaloosa, AL, 35487, USA.
| |
Collapse
|
3
|
Macheriotou L, Guilini K, Bezerra TN, Tytgat B, Nguyen DT, Phuong Nguyen TX, Noppe F, Armenteros M, Boufahja F, Rigaux A, Vanreusel A, Derycke S. Metabarcoding free-living marine nematodes using curated 18S and CO1 reference sequence databases for species-level taxonomic assignments. Ecol Evol 2019; 9:1211-1226. [PMID: 30805154 PMCID: PMC6374678 DOI: 10.1002/ece3.4814] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/24/2018] [Accepted: 11/25/2018] [Indexed: 11/30/2022] Open
Abstract
High-throughput sequencing has the potential to describe biological communities with high efficiency yet comprehensive assessment of diversity with species-level resolution remains one of the most challenging aspects of metabarcoding studies. We investigated the utility of curated ribosomal and mitochondrial nematode reference sequence databases for determining phylum-specific species-level clustering thresholds. We compiled 438 ribosomal and 290 mitochondrial sequences which identified 99% and 94% as the species delineation clustering threshold, respectively. These thresholds were evaluated in HTS data from mock communities containing 39 nematode species as well as environmental samples from Vietnam. We compared the taxonomic description of the mocks generated by two read-merging and two clustering algorithms and the cluster-free Dada2 pipeline. Taxonomic assignment with the RDP classifier was assessed under different training sets. Our results showed that 36/39 mock nematode species were identified across the molecular markers (18S: 32, JB2: 19, JB3: 21) in UClust_ref OTUs at their respective clustering thresholds, outperforming UParse_denovo and the commonly used 97% similarity. Dada2 generated the most realistic number of ASVs (18S: 83, JB2: 75, JB3: 82), collectively identifying 30/39 mock species. The ribosomal marker outperformed the mitochondrial markers in terms of species and genus-level detections for both OTUs and ASVs. The number of taxonomic assignments of OTUs/ASVs was highest when the smallest reference database containing only nematode sequences was used and when sequences were truncated to the respective amplicon length. Overall, OTUs generated more species-level detections, which were, however, associated with higher error rates compared to ASVs. Genus-level assignments using ASVs exhibited higher accuracy and lower error rates compared to species-level assignments, suggesting that this is the most reliable pipeline for rapid assessment of alpha diversity from environmental samples.
Collapse
Affiliation(s)
- Lara Macheriotou
- Marine Biology Research Group, Department of BiologyGhent UniversityGhentBelgium
| | - Katja Guilini
- Marine Biology Research Group, Department of BiologyGhent UniversityGhentBelgium
| | - Tania Nara Bezerra
- Marine Biology Research Group, Department of BiologyGhent UniversityGhentBelgium
| | - Bjorn Tytgat
- Marine Biology Research Group, Department of BiologyGhent UniversityGhentBelgium
| | - Dinh Tu Nguyen
- Department of Nematology, Institute of Ecology and Biological ResourcesVietnam Academy of Science and TechnologyHanoiVietnam
| | - Thi Xuan Phuong Nguyen
- Department of Nematology, Institute of Ecology and Biological ResourcesVietnam Academy of Science and TechnologyHanoiVietnam
| | - Febe Noppe
- Marine Biology Research Group, Department of BiologyGhent UniversityGhentBelgium
| | | | - Fehmi Boufahja
- Laboratory of Biomonitoring of the Environment (LBE), Faculty of Sciences of BizerteUniversity of CarthageCarthageTunisia
| | - Annelien Rigaux
- Marine Biology Research Group, Department of BiologyGhent UniversityGhentBelgium
| | - Ann Vanreusel
- Marine Biology Research Group, Department of BiologyGhent UniversityGhentBelgium
| | - Sofie Derycke
- Marine Biology Research Group, Department of BiologyGhent UniversityGhentBelgium
- Aquatic Environment and Quality, Institute for Agricultural and Fisheries Research (ILVO)OostendeBelgium
- OD Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences (RBINS)BrusselBelgium
| |
Collapse
|
4
|
Mariac C, Vigouroux Y, Duponchelle F, García-Dávila C, Nunez J, Desmarais E, Renno J. Metabarcoding by capture using a single COI probe (MCSP) to identify and quantify fish species in ichthyoplankton swarms. PLoS One 2018; 13:e0202976. [PMID: 30208069 PMCID: PMC6135497 DOI: 10.1371/journal.pone.0202976] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 08/13/2018] [Indexed: 12/04/2022] Open
Abstract
The ability to determine the composition and relative frequencies of fish species in large ichthyoplankton swarms could have extremely important ecological applications However, this task is currently hampered by methodological limitations. We proposed a new method for Amazonian species based on hybridization capture of the COI gene DNA from a distant species (Danio rerio), absent from our study area (the Amazon basin). The COI sequence of this species is approximately equidistant from all COI of Amazonian species available. By using this sequence as probe we successfully facilitated the simultaneous identification of fish larvae belonging to the order Siluriformes and to the Characiformes represented in our ichthyoplankton samples. Species relative frequencies, estimated by the number of reads, showed almost perfect correlations with true frequencies estimated by a Sanger approach, allowing the development of a quantitative approach. We also proposed a further improvement to a previous protocol, which enables lowering the sequencing effort by 40 times. This new Metabarcoding by Capture using a Single Probe (MCSP) methodology could have important implications for ecology, fisheries management and conservation in fish biodiversity hotspots worldwide. Our approach could easily be extended to other plant and animal taxa.
Collapse
Affiliation(s)
- C. Mariac
- Institut de Recherche pour le Développement, Université de Montpellier, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes (UMR DIADE), Montpellier, France
- Laboratoire Mixte International—Evolution et Domestication de l’Ichtyofaune Amazonienne (LMI—EDIA), IIAP—UAGRM—IRD, UMR BOREA, Paris, France
- * E-mail:
| | - Y. Vigouroux
- Institut de Recherche pour le Développement, Université de Montpellier, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes (UMR DIADE), Montpellier, France
- Laboratoire Mixte International—Evolution et Domestication de l’Ichtyofaune Amazonienne (LMI—EDIA), IIAP—UAGRM—IRD, UMR BOREA, Paris, France
| | - F. Duponchelle
- Laboratoire Mixte International—Evolution et Domestication de l’Ichtyofaune Amazonienne (LMI—EDIA), IIAP—UAGRM—IRD, UMR BOREA, Paris, France
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Biologie des Organismes et Ecosystèmes Aquatiques (UMR BOREA), MNHN—CNRS-7208—UPMC—UCBN—IRD-207, Montpellier, France
| | - C García-Dávila
- Laboratoire Mixte International—Evolution et Domestication de l’Ichtyofaune Amazonienne (LMI—EDIA), IIAP—UAGRM—IRD, UMR BOREA, Paris, France
- Instituto de Investigaciones de la Amazonía Peruana (IIAP), Laboratorio de Biología y Genética Molecular (LBGM), Iquitos, Perú
| | - J. Nunez
- Laboratoire Mixte International—Evolution et Domestication de l’Ichtyofaune Amazonienne (LMI—EDIA), IIAP—UAGRM—IRD, UMR BOREA, Paris, France
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Biologie des Organismes et Ecosystèmes Aquatiques (UMR BOREA), MNHN—CNRS-7208—UPMC—UCBN—IRD-207, Montpellier, France
| | - E. Desmarais
- Institut des Sciences de l’Évolution (UMR ISEM), Université Montpellier—CNRS—IRD—EPHE, Place Eugène Bataillon—France
| | - J.F. Renno
- Laboratoire Mixte International—Evolution et Domestication de l’Ichtyofaune Amazonienne (LMI—EDIA), IIAP—UAGRM—IRD, UMR BOREA, Paris, France
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Biologie des Organismes et Ecosystèmes Aquatiques (UMR BOREA), MNHN—CNRS-7208—UPMC—UCBN—IRD-207, Montpellier, France
| |
Collapse
|
5
|
Faria LCD, Di Domenico M, Andrade SCS, Santos MCD, Fonseca G, Zanol J, Amaral ACZ. The use of metabarcoding for meiofauna ecological patterns assessment. MARINE ENVIRONMENTAL RESEARCH 2018; 140:160-168. [PMID: 29933903 DOI: 10.1016/j.marenvres.2018.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/03/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Marine meiofauna comprises up to 22 phyla. Its morphological identification requires time and taxonomists' expertise, and molecular tools can make this task faster. We aim to disentangle meiofaunal diversity patterns at Araçá Bay by applying a model selection approach and estimating the effectiveness of metabarcoding (18S rDNA) and morphological methods for estimating the response of meiofauna diversity in small-scale interactions with environmental variables. A rarefaction curve indicated that ten samples were sufficient for estimating the total number of meiofauna OTUs in a tidal flat. In both approaches, richness was predicted by mean sand percentage, sediment sorting, and bacteria concentration. Nematode genera composition differed significantly between approaches, the result of taxonomic mismatch in the genetic database. The similarity between the model selected for diversity descriptors, the richness of nematode genera and meiofauna composition emphasized the utility of predictive models for metabarcoding estimates to detect small-scale interactions of these organisms.
Collapse
Affiliation(s)
- Laiza Cabral de Faria
- Centro de Estudos do Mar, Universidade Federal do Paraná, Av. Beira-Mar, s/n, Pontal do Sul, PO Box 61, Pontal do Paraná, PR, Zip Code 83255-976, Brazil
| | - Maikon Di Domenico
- Centro de Estudos do Mar, Universidade Federal do Paraná, Av. Beira-Mar, s/n, Pontal do Sul, PO Box 61, Pontal do Paraná, PR, Zip Code 83255-976, Brazil.
| | - Sónia C S Andrade
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, Cidade Universitária, Rua do Matão 277, Zip Code 05508-090, São Paulo, SP, Brazil
| | - Monique Cristina Dos Santos
- Departamento de Zoologia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373 CCS, Bloco A, Sala A0-108, Cidade Universitária, Rio de Janeiro, RJ, 21941-599, Brazil
| | - Gustavo Fonseca
- Instituto do Mar. Universidade Federal de São Paulo, Rua Carvalho de Mendonça 144, Santos, SP, 11070-100, Brazil
| | - Joana Zanol
- Departamento de Zoologia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373 CCS, Bloco A, Sala A0-108, Cidade Universitária, Rio de Janeiro, RJ, 21941-599, Brazil; Campus Duque de Caxias, Universidade Federal do Rio de Janeiro, Estr. de Xerém, 27, Duque de Caxias, RJ, Brazil
| | - A Cecilia Z Amaral
- Departamento de Biologia Animal, Universidade Estadual de Campinas Cidade Universitária, Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| |
Collapse
|
6
|
Leasi F, Sevigny JL, Laflamme EM, Artois T, Curini-Galletti M, de Jesus Navarrete A, Di Domenico M, Goetz F, Hall JA, Hochberg R, Jörger KM, Jondelius U, Todaro MA, Wirshing HH, Norenburg JL, Thomas WK. Biodiversity estimates and ecological interpretations of meiofaunal communities are biased by the taxonomic approach. Commun Biol 2018; 1:112. [PMID: 30271992 PMCID: PMC6123632 DOI: 10.1038/s42003-018-0119-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/24/2018] [Indexed: 01/05/2023] Open
Abstract
Accurate assessments of biodiversity are crucial to advising ecosystem-monitoring programs and understanding ecosystem function. Nevertheless, a standard operating procedure to assess biodiversity accurately and consistently has not been established. This is especially true for meiofauna, a diverse community (>20 phyla) of small benthic invertebrates that have fundamental ecological roles. Recent studies show that metabarcoding is a cost-effective and time-effective method to estimate meiofauna biodiversity, in contrast to morphological-based taxonomy. Here, we compare biodiversity assessments of a diverse meiofaunal community derived by applying multiple taxonomic methods based on comparative morphology, molecular phylogenetic analysis, DNA barcoding of individual specimens, and metabarcoding of environmental DNA. We show that biodiversity estimates are strongly biased across taxonomic methods and phyla. Such biases affect understanding of community structures and ecological interpretations. This study supports the urgency of improving aspects of environmental high-throughput sequencing and the value of taxonomists in correctly understanding biodiversity estimates.
Collapse
Affiliation(s)
- Francesca Leasi
- Department of Biology, Geology and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Avenue, Chattanooga, TN, 37403, USA.
- Hubbard Center for Genome Studies, Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 35 Colovos Road, Durham, NH, 03824, USA.
| | - Joseph L Sevigny
- Hubbard Center for Genome Studies, Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 35 Colovos Road, Durham, NH, 03824, USA
| | - Eric M Laflamme
- Department of Mathematics, Plymouth State University, MSC29, 17 High Street, Plymouth, NH, 03264, USA
| | - Tom Artois
- Centre for Environmental Sciences, Hasselt University, Campus Diepenbeek, Agoralaan Gebouw D, 3590, Diepenbeek, Belgium
| | - Marco Curini-Galletti
- Dipartimento di Medicina Veterinaria, University of Sassari, via Muroni 25, 07100, Sassari, Italy
| | - Alberto de Jesus Navarrete
- Departmento de Sistemática y Ecología Acuática, El Colegio de la Frontera Sur, Unidad Chetumal, Av. Centenario Km. 5.5 Chetumal Quintana Roo, 77014, Chetumal, Mexico
| | - Maikon Di Domenico
- Centro de Estudos do Mar, Universidade Federal do Paraná, Av. Beira-Mar, s/n, Pontal do Sul, PO Box 61, 83255-976, Pontal do Paraná, PR, Brazil
| | - Freya Goetz
- Department of Invertebrate Zoology, Smithsonian National Museum of Natural History, 10th St. & Constitution Ave NW, Washington, DC, 20560, USA
| | - Jeffrey A Hall
- Hubbard Center for Genome Studies, Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 35 Colovos Road, Durham, NH, 03824, USA
| | - Rick Hochberg
- Department of Biological Science, University of Massachusetts Lowell, Olsen Hall 414, 198 Riverside St., Lowell, MA, 01854, USA
| | - Katharina M Jörger
- Department of Biology, Ludwig-Maximilians-University of Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Munich, Germany
| | - Ulf Jondelius
- Swedish Museum of Natural History, POB 5007, SE-104 05, Stockholm, Sweden
| | - M Antonio Todaro
- Department of Life Sciences, University of Modena & Reggio Emilia, Via G. Campi 213/d, 41125, Modena, Italy
| | - Herman H Wirshing
- Department of Invertebrate Zoology, Smithsonian National Museum of Natural History, 10th St. & Constitution Ave NW, Washington, DC, 20560, USA
| | - Jon L Norenburg
- Department of Invertebrate Zoology, Smithsonian National Museum of Natural History, 10th St. & Constitution Ave NW, Washington, DC, 20560, USA
| | - W Kelley Thomas
- Hubbard Center for Genome Studies, Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 35 Colovos Road, Durham, NH, 03824, USA
| |
Collapse
|
7
|
Holovachov O, Haenel Q, Bourlat SJ, Jondelius U. Taxonomy assignment approach determines the efficiency of identification of OTUs in marine nematodes. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170315. [PMID: 28878981 PMCID: PMC5579096 DOI: 10.1098/rsos.170315] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
Precision and reliability of barcode-based biodiversity assessment can be affected at several steps during acquisition and analysis of data. Identification of operational taxonomic units (OTUs) is one of the crucial steps in the process and can be accomplished using several different approaches, namely, alignment-based, probabilistic, tree-based and phylogeny-based. The number of identified sequences in the reference databases affects the precision of identification. This paper compares the identification of marine nematode OTUs using alignment-based, tree-based and phylogeny-based approaches. Because the nematode reference dataset is limited in its taxonomic scope, OTUs can only be assigned to higher taxonomic categories, families. The phylogeny-based approach using the evolutionary placement algorithm provided the largest number of positively assigned OTUs and was least affected by erroneous sequences and limitations of reference data, compared to alignment-based and tree-based approaches.
Collapse
Affiliation(s)
| | - Quiterie Haenel
- Zoological Institute, University of Basel, Basel, Switzerland
| | - Sarah J. Bourlat
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Jondelius
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| |
Collapse
|
8
|
Holovachov O. Metabarcoding of marine nematodes - evaluation of similarity scores used in alignment-based taxonomy assignment approach. Biodivers Data J 2016:e10647. [PMID: 27932928 PMCID: PMC5136674 DOI: 10.3897/bdj.4.e10647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/11/2016] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The diversity of organisms is being commonly accessed using metabarcoding of environmental samples. Reliable identification of barcodes is one of the critical steps in the process and several taxonomy assignment methods were proposed to accomplish this task, including alignment-based approach that uses Basic Local Alignment Search Tool (BLAST) algorithm. This publication evaluates the variability of 5' end of 18S rRNA barcoding region as expressed by similarity scores (alignment score and identity score) produced by BLAST, and its impact on barcode identification to family-level taxonomic categories. NEW INFORMATION In alignment-based taxonomy assignment approach, reliable identification of anonymous OTUs to supraspecific taxa depends on the correct application of similarity thresholds. Since various taxa show different level of genetic variation, practical application of alignment-based approach requires the determination and use of taxon-specific similarity thresholds.
Collapse
|