1
|
Gastineau R, Mianowicz K, Dąbek P, Otis C, Stoyanova V, Krawcewicz A, Abramowski T. Genomic investigation of benthic invertebrates from the Clarion-Clipperton fields of polymetallic nodules. Zookeys 2025; 1231:11-44. [PMID: 40109892 PMCID: PMC11915014 DOI: 10.3897/zookeys.1231.135347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/21/2025] [Indexed: 03/22/2025] Open
Abstract
The abyssal plains of the Clarion-Clipperton Zone (CCZ) are famous for their fields of polymetallic nodules, which are inhabited by benthic invertebrates. Ten specimens from the Interoceanmetal Joint Organisation (IOM) licence area in the CCZ were collected in 2014 and submitted to a short-read genome skimming sequencing. In total, mitochondrial genomes and nuclear ribosomal genes were retrieved for nine different organisms belonging to Ophiuroidea, Holothuroidea, Polychaeta, Bryozoa, Porifera, and Brachiopoda (assigned to these phyla immediately upon retrieval from the seafloor). As many of these samples were partial and physically deteriorated following their seven-year storage in IOM's collections, their morphology-based taxonomic identification could rarely be performed at the lowest possible level (species or genus) prior to preparing the samples for molecular or genomic investigations. Therefore, it was not possible to apply the reverse identification scheme recommended for such investigations. However, several of these specimens represent poorly studied groups for which few molecular references are available as of now. In two cases, the presence of introns in the mitochondrial genome questions the practicability of using the cox1 gene for further routine molecular barcoding of these organisms. These results might be useful in future DNA primers design, molecular barcoding, and phylogeny or population genetic studies when more samples are obtained.
Collapse
Affiliation(s)
- Romain Gastineau
- Institute of Marine and Environmental Sciences, University of Szczecin, ul. Mickiewicza 16a, Szczecin, 70-383, Poland University of Szczecin Szczecin Poland
| | - Kamila Mianowicz
- Interoceanmetal Joint Organization, ul. Cyryla i Metodego 9-9A, Szczecin, 71-541, Poland Interoceanmetal Joint Organization Szczecin Poland
| | - Przemysław Dąbek
- Institute of Marine and Environmental Sciences, University of Szczecin, ul. Mickiewicza 16a, Szczecin, 70-383, Poland University of Szczecin Szczecin Poland
| | - Christian Otis
- Plateforme d'Analyse Génomique, Institut de biologie intégrative et des systèmes, Université Laval, Québec, QC, Canada Université Laval Québec Canada
| | - Valcana Stoyanova
- Interoceanmetal Joint Organization, ul. Cyryla i Metodego 9-9A, Szczecin, 71-541, Poland Interoceanmetal Joint Organization Szczecin Poland
| | - Artur Krawcewicz
- Interoceanmetal Joint Organization, ul. Cyryla i Metodego 9-9A, Szczecin, 71-541, Poland Interoceanmetal Joint Organization Szczecin Poland
| | - Tomasz Abramowski
- Maritime University of Szczecin, ul. Wały Chrobrego 1-2, Szczecin, 70-500, Poland Maritime University of Szczecin Szczecin Poland
| |
Collapse
|
2
|
Seid CA, Hiley AS, McCowin MF, Carvajal JI, Cha H, Ahyong ST, Ashford OS, Breedy O, Eernisse DJ, Goffredi SK, Hendrickx ME, Kocot KM, Mah CL, Miller AK, Mongiardino Koch N, Mooi R, O'Hara TD, Pleijel F, Stiller J, Tilic E, Valentich-Scott P, Warén A, Wicksten MK, Wilson NG, Cordes EE, Levin LA, Cortés J, Rouse GW. A faunal inventory of methane seeps on the Pacific margin of Costa Rica. Zookeys 2025; 1222:1-250. [PMID: 39877055 PMCID: PMC11770332 DOI: 10.3897/zookeys.1222.134385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/07/2024] [Indexed: 01/31/2025] Open
Abstract
The methane seeps on the Pacific margin of Costa Rica support extensive animal diversity and offer insights into deep-sea biogeography. During five expeditions between 2009 and 2019, we conducted intensive faunal sampling via 63 submersible dives to 11 localities at depths of 300-3600 m. Based on these expeditions and published literature, we compiled voucher specimens, images, and 274 newly published DNA sequences to present a taxonomic inventory of macrofaunal and megafaunal diversity with a focus on invertebrates. In total 488 morphospecies were identified, representing the highest number of distinct morphospecies published from a single seep or vent region to date. Of these, 131 are described species, at least 58 are undescribed species, and the remainder include some degree of taxonomic uncertainty, likely representing additional undescribed species. Of the described species, 38 are known only from the Costa Rica seeps and their vicinity. Fifteen range extensions are also reported for species known from Mexico, the Galápagos seamounts, Chile, and the western Pacific; as well as 16 new depth records and three new seep records for species known to occur at vents or organic falls. No single evolutionary narrative explains the patterns of biodiversity at these seeps, as even morphologically indistinguishable species can show different biogeographic affinities, biogeographic ranges, or depth ranges. The value of careful molecular taxonomy and comprehensive specimen-based regional inventories is emphasized for biodiversity research and monitoring.
Collapse
Affiliation(s)
- Charlotte A. Seid
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USAUniversity of California San DiegoLa JollaUnited States of America
| | - Avery S. Hiley
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USAUniversity of California San DiegoLa JollaUnited States of America
| | - Marina F. McCowin
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USAUniversity of California San DiegoLa JollaUnited States of America
| | - José I. Carvajal
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USAUniversity of California San DiegoLa JollaUnited States of America
| | - Harim Cha
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USAUniversity of California San DiegoLa JollaUnited States of America
| | - Shane T. Ahyong
- Australian Museum, Sydney, New South Wales, AustraliaAustralian MuseumSydneyAustralia
- University of New South Wales, Kensington, New South Wales, AustraliaUniversity of New South WalesKensingtonAustralia
| | - Oliver S. Ashford
- Ocean Program, World Resources Institute, London, UKOcean Program, World Resources InstituteLondonUnited Kingdom
| | - Odalisca Breedy
- Universidad de Costa Rica, San José, Costa RicaUniversity of Costa RicaSan JoséCosta Rica
| | - Douglas J. Eernisse
- California State University Fullerton, Fullerton, California, USACalifornia State University FullertonFullertonUnited States of America
| | - Shana K. Goffredi
- Occidental College, Los Angeles, California, USAOccidental CollegeLos AngelesUnited States of America
| | - Michel E. Hendrickx
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mazatlán, Sinaloa, MexicoUniversidad Nacional Autónoma de MéxicoMazatlánMexico
| | - Kevin M. Kocot
- University of Alabama, Tuscaloosa, Alabama, USAUniversity of AlabamaTuscaloosaUnited States of America
| | - Christopher L. Mah
- Smithsonian National Museum of Natural History, Washington, DC, USASmithsonian National Museum of Natural HistoryWashingtonUnited States of America
| | - Allison K. Miller
- University of Otago, Dunedin, New ZealandUniversity of OtagoDunedinNew Zealand
| | - Nicolás Mongiardino Koch
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USAUniversity of California San DiegoLa JollaUnited States of America
| | - Rich Mooi
- California Academy of Sciences, San Francisco, California, USACalifornia Academy of SciencesSan FranciscoUnited States of America
| | - Timothy D. O'Hara
- Museums Victoria, Melbourne, Victoria, AustraliaMuseums VictoriaMelbourneAustralia
| | - Fredrik Pleijel
- University of Gothenburg, Gothenburg, SwedenUniversity of GothenburgGothenburgSweden
| | - Josefin Stiller
- University of Copenhagen, Copenhagen, DenmarkUniversity of CopenhagenCopenhagenDenmark
| | - Ekin Tilic
- Senckenberg Research Institute and Natural History Museum, Frankfurt, GermanySenckenberg Research Institute and Natural History MuseumFrankfurtGermany
| | - Paul Valentich-Scott
- Santa Barbara Museum of Natural History, Santa Barbara, California, USASanta Barbara Museum of Natural HistorySanta BarbaraUnited States of America
| | - Anders Warén
- Swedish Museum of Natural History, Stockholm, SwedenSwedish Museum of Natural HistoryStockholmSweden
| | - Mary K. Wicksten
- Texas A&M University, College Station, Texas, USATexas A&M UniversityTexasUnited States of America
| | - Nerida G. Wilson
- Collections & Research, Western Australian Museum, Welshpool, Western Australia, AustraliaWestern Australian MuseumWelshpoolAustralia
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, AustraliaUniversity of Western AustraliaPerthAustralia
| | - Erik E. Cordes
- Temple University, Philadelphia, Pennsylvania, USATemple UniversityPhiladelphiaUnited States of America
| | - Lisa A. Levin
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USAUniversity of California San DiegoLa JollaUnited States of America
| | - Jorge Cortés
- Universidad de Costa Rica, San José, Costa RicaUniversity of Costa RicaSan JoséCosta Rica
| | - Greg W. Rouse
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USAUniversity of California San DiegoLa JollaUnited States of America
| |
Collapse
|
3
|
Wiklund H, Rabone M, Glover AG, Bribiesca-Contreras G, Drennan R, Stewart ECD, Boolukos CM, King LD, Sherlock E, Smith CR, Dahlgren TG, Neal L. Checklist of newly-vouchered annelid taxa from the Clarion-Clipperton Zone, central Pacific Ocean, based on morphology and genetic delimitation. Biodivers Data J 2023; 11:e86921. [PMID: 38327336 PMCID: PMC10848496 DOI: 10.3897/bdj.11.e86921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/02/2023] [Indexed: 02/09/2024] Open
Abstract
Background We present a checklist of annelids from recent United Kingdom Seabed Resources (UKSR) expeditions (Abyssal Baseline - ABYSSLINE project) to the eastern abyssal Pacific Clarion-Clipperton Zone (CCZ) polymetallic nodule fields, based on DNA species delimitation, including imagery of voucher specimens, Darwin Core (DwC) data and links to vouchered specimen material and new GenBank sequence records. This paper includes genetic and imagery data for 129 species of annelids from 339 records and is restricted to material that is, in general, in too poor a condition to describe formally at this time, but likely contains many species new to science. We make these data available both to aid future taxonomic studies in the CCZ that will be able to link back to these genetic data and specimens and to better underpin ongoing ecological studies of potential deep-sea mining impacts using the principles of FAIR (Findable, Accessible, Interoperable, Reusuable) data and specimens that will be available for all. New information We include genetic, imagery and all associated metadata in Darwin Core format for 129 species of annelids from the Clarion-Clipperton Zone, eastern abyssal Pacific, with 339 records.
Collapse
Affiliation(s)
- Helena Wiklund
- Gothenburg Global Biodiversity Centre, Gothenburg, SwedenGothenburg Global Biodiversity CentreGothenburgSweden
- Natural History Museum, London, United KingdomNatural History MuseumLondonUnited Kingdom
- University of Gothenburg, Gothenburg, SwedenUniversity of GothenburgGothenburgSweden
| | - Muriel Rabone
- Natural History Museum, London, United KingdomNatural History MuseumLondonUnited Kingdom
| | - Adrian G Glover
- Natural History Museum, London, United KingdomNatural History MuseumLondonUnited Kingdom
| | | | - Regan Drennan
- Natural History Museum, London, United KingdomNatural History MuseumLondonUnited Kingdom
- University of Southampton, Southampton, United KingdomUniversity of SouthamptonSouthamptonUnited Kingdom
| | - Eva C D Stewart
- Natural History Museum, London, United KingdomNatural History MuseumLondonUnited Kingdom
- University of Southampton, Southampton, United KingdomUniversity of SouthamptonSouthamptonUnited Kingdom
| | - Corie M Boolukos
- Natural History Museum, London, United KingdomNatural History MuseumLondonUnited Kingdom
| | - Lucas D King
- Natural History Museum, London, United KingdomNatural History MuseumLondonUnited Kingdom
| | - Emma Sherlock
- Natural History Museum, London, United KingdomNatural History MuseumLondonUnited Kingdom
| | - Craig R Smith
- University of Hawaii, Honolulu, United States of AmericaUniversity of HawaiiHonoluluUnited States of America
| | - Thomas G Dahlgren
- Gothenburg Global Biodiversity Centre, Gothenburg, SwedenGothenburg Global Biodiversity CentreGothenburgSweden
- University of Gothenburg, Gothenburg, SwedenUniversity of GothenburgGothenburgSweden
- NORCE Norwegian Research Centre, Bergen, NorwayNORCE Norwegian Research CentreBergenNorway
| | - Lenka Neal
- Natural History Museum, London, United KingdomNatural History MuseumLondonUnited Kingdom
| |
Collapse
|
4
|
Bribiesca-Contreras G, Dahlgren TG, Amon DJ, Cairns S, Drennan R, Durden JM, Eléaume MP, Hosie AM, Kremenetskaia A, McQuaid K, O’Hara TD, Rabone M, Simon-Lledó E, Smith CR, Watling L, Wiklund H, Glover AG. Benthic megafauna of the western Clarion-Clipperton Zone, Pacific Ocean. Zookeys 2022; 1113:1-110. [PMID: 36762231 PMCID: PMC9848802 DOI: 10.3897/zookeys.1113.82172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/05/2022] [Indexed: 11/12/2022] Open
Abstract
There is a growing interest in the exploitation of deep-sea mineral deposits, particularly on the abyssal seafloor of the central Pacific Clarion-Clipperton Zone (CCZ), which is rich in polymetallic nodules. In order to effectively manage potential exploitation activities, a thorough understanding of the biodiversity, community structure, species ranges, connectivity, and ecosystem functions across a range of scales is needed. The benthic megafauna plays an important role in the functioning of deep-sea ecosystems and represents an important component of the biodiversity. While megafaunal surveys using video and still images have provided insight into CCZ biodiversity, the collection of faunal samples is needed to confirm species identifications to accurately estimate species richness and species ranges, but faunal collections are very rarely carried out. Using a Remotely Operated Vehicle, 55 specimens of benthic megafauna were collected from seamounts and abyssal plains in three Areas of Particular Environmental Interest (APEI 1, APEI 4, and APEI 7) at 3100-5100 m depth in the western CCZ. Using both morphological and molecular evidence, 48 different morphotypes belonging to five phyla were found, only nine referrable to known species, and 39 species potentially new to science. This work highlights the need for detailed taxonomic studies incorporating genetic data, not only within the CCZ, but in other bathyal, abyssal, and hadal regions, as representative genetic reference libraries that could facilitate the generation of species inventories.
Collapse
Affiliation(s)
- Guadalupe Bribiesca-Contreras
- Life Sciences Department, Natural History Museum, London, UK Life Sciences Department, Natural History MuseumLondonUnited Kingdom
| | - Thomas G. Dahlgren
- Department of Marine Sciences, University of Gothenburg, Gothenburg, SwedenUniversity of GothenburgGothenburgSweden,Norwegian Research Centre, NORCE, Bergen, NorwayNorwegian Research Centre, NORCEBergenNorway
| | - Diva J. Amon
- SpeSeas, D’Abadie, Trinidad and TobagoSpeSeasD’AbadieTrinidad and Tobago
| | - Stephen Cairns
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., USANational Museum of Natural History, Smithsonian InstitutionWashingtonUnited States of America
| | - Regan Drennan
- National Oceanography Centre, Southampton, UKLife Sciences Department, Natural History MuseumLondonUnited Kingdom
| | - Jennifer M. Durden
- UMR ISYEB, Départment Origines et Évolution, Muséum national d’Histoire Naturelle, Paris, FranceNational Oceanography CentreSouthamptonUnited Kingdom
| | - Marc P. Eléaume
- Collections & Research, Western Australia Museum, Perth, AustraliaDépartment Origines et Évolution, Muséum national d’Histoire NaturelleParisFrance
| | - Andrew M. Hosie
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, RussiaCollections & Research, Western Australia MuseumPerthAustralia
| | - Antonina Kremenetskaia
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UKShirshov Institute of Oceanology, Russian Academy of SciencesMoscowRussia
| | - Kirsty McQuaid
- Museums Victoria, Melbourne, AustraliaUniversity of PlymouthPlymouthUnited Kingdom
| | - Timothy D. O’Hara
- Department of Oceanography, University of Hawai’i at Mānoa, Honolulu, USAMuseums VictoriaMelbourneAustralia
| | - Muriel Rabone
- National Oceanography Centre, Southampton, UKLife Sciences Department, Natural History MuseumLondonUnited Kingdom
| | - Erik Simon-Lledó
- UMR ISYEB, Départment Origines et Évolution, Muséum national d’Histoire Naturelle, Paris, FranceNational Oceanography CentreSouthamptonUnited Kingdom
| | - Craig R. Smith
- School of Life Sciences, University of Hawai’i at Mānoa, Honolulu, USAUniversity of Hawai’i at MānoaHonoluluUnited States of America
| | - Les Watling
- School of Life Sciences, University of Hawai’i at Mānoa, Honolulu, USAUniversity of Hawai’i at MānoaHonoluluUnited States of America
| | - Helena Wiklund
- Department of Marine Sciences, University of Gothenburg, Gothenburg, SwedenUniversity of GothenburgGothenburgSweden
| | - Adrian G. Glover
- National Oceanography Centre, Southampton, UKLife Sciences Department, Natural History MuseumLondonUnited Kingdom
| |
Collapse
|
5
|
Wiklund H, Neal L, Glover AG, Drennan R, Muriel Rabone, Dahlgren TG. Abyssal fauna of polymetallic nodule exploration areas, eastern Clarion-Clipperton Zone, central Pacific Ocean: Annelida: Capitellidae, Opheliidae, Scalibregmatidae, and Travisiidae. Zookeys 2019; 883:1-82. [PMID: 31719773 PMCID: PMC6828828 DOI: 10.3897/zookeys.883.36193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/02/2019] [Indexed: 11/12/2022] Open
Abstract
We present DNA taxonomy of abyssal polychaete worms from the eastern Clarion-Clipperton Zone (CCZ), central Pacific Ocean, using material collected as part of the Abyssal Baseline (ABYSSLINE) environmental survey cruises ‘AB01’ and ‘AB02’ to the UK Seabed Resources Ltd (UKSRL) polymetallic nodule exploration contract area ‘UK-1’, the Ocean Mineral Singapore exploration contract area ‘OMS-1’ and an Area of Particular Environmental Interest, ‘APEI-6’. This is the fourth paper in a series to provide regional taxonomic data with previous papers reporting on Cnidaria, Echinodermata and Mollusca. Taxonomic data are presented for 23 species from 85 records within four polychaete families: Capitellidae, Opheliidae, Scalibregmatidae and Travisiidae, identified by a combination of morphological and genetic data, including molecular phylogenetic analyses. Two taxa (genetically separated from one another) morphologically matched the same known cosmopolitan species, Ophelinaabranchiata that has a type locality in a different ocean basin and depth from where no genetic data was available. These two species were assigned the open nomenclature ‘cf.’ as a precautionary approach in taxon assignments to avoid over-estimating species ranges. Twelve (12) taxa are here described as new species, Ammotrypanellakeenanisp. nov., Ammotrypanellakerstenisp. nov., Ophelinacurlisp. nov., Ophelinaganaesp. nov., Ophelinajuhazisp. nov., Ophelinamartinezarbizuisp. nov., Ophelinameyeraesp. nov., Ophelinanunnallyisp. nov., Oligobregmabrasieraesp. nov., Oligobregmatanisp. nov., Oligobregmawhaleyisp. nov. and Travisiaziegleraesp. nov. For the remaining nine taxa, we have determined them to be potentially new species, for which we make the raw data, imagery and vouchers available for future taxonomic study. The CCZ is a region undergoing intense exploration for potential deep-sea mineral extraction from polymetallic nodules. We present these data to facilitate future taxonomic and environmental impact study by making both data and voucher materials available through curated and accessible biological collections.
Collapse
Affiliation(s)
- Helena Wiklund
- Life Sciences Department, Natural History Museum, London SW7 5BD, UK University of Gothenburg Gothenburg Sweden.,Department of Marine Sciences, University of Gothenburg, Box 463, 40530 Gothenburg, Sweden Gothenburg Global Biodiversity Centre Gothenburg Sweden.,Gothenburg Global Biodiversity Centre, Box 463, 40530 Gothenburg, Sweden NORCE Norwegian Research Centre Bergen Norway
| | - Lenka Neal
- Life Sciences Department, Natural History Museum, London SW7 5BD, UK University of Gothenburg Gothenburg Sweden
| | - Adrian G Glover
- Life Sciences Department, Natural History Museum, London SW7 5BD, UK University of Gothenburg Gothenburg Sweden
| | - Regan Drennan
- Life Sciences Department, Natural History Museum, London SW7 5BD, UK University of Gothenburg Gothenburg Sweden
| | - Muriel Rabone
- Life Sciences Department, Natural History Museum, London SW7 5BD, UK University of Gothenburg Gothenburg Sweden
| | - Thomas G Dahlgren
- NORCE Norwegian Research Centre, Bergen, Norway Natural History Museum London United Kingdom.,Department of Marine Sciences, University of Gothenburg, Box 463, 40530 Gothenburg, Sweden Gothenburg Global Biodiversity Centre Gothenburg Sweden.,Gothenburg Global Biodiversity Centre, Box 463, 40530 Gothenburg, Sweden NORCE Norwegian Research Centre Bergen Norway
| |
Collapse
|
6
|
Christodoulou M, O'Hara TD, Hugall AF, Arbizu PM. Dark Ophiuroid Biodiversity in a Prospective Abyssal Mine Field. Curr Biol 2019; 29:3909-3912.e3. [PMID: 31630951 DOI: 10.1016/j.cub.2019.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/04/2019] [Accepted: 09/05/2019] [Indexed: 01/30/2023]
Abstract
The seafloor contains valuable mineral resources, including polymetallic (or manganese) nodules that form on offshore abyssal plains. The largest and most commercially attractive deposits are located in the Clarion Clipperton Fracture Zone (CCZ), in the eastern Pacific Ocean (EP) between Hawaii and Mexico, where testing of a mineral collection system is set to start soon [1]. The requirement to establish pre-mining environmental management plans has prompted numerous recent biodiversity and DNA barcoding surveys across these remote regions. Here we map DNA sequences from sampled ophiuroids (brittle stars, including post-larvae) of the CCZ and Peru Basin onto a substantial tree of life to show unprecedented levels of abyssal ophiuroid phylogenetic diversity including at least three ancient (>70 Ma), previously unknown clades. While substantial dark (unobserved) biodiversity has been reported from various microbial meta-barcoding projects [2, 3], our data show that we have considerably under-estimated the biodiversity of even the most conspicuous mega-faunal invertebrates [4] of the EP abyssal plain.
Collapse
Affiliation(s)
- Magdalini Christodoulou
- German Centre for Marine Biodiversity Research, Senckenberg am Meer, Südstrand 44, 26382 Wilhelmshaven, Germany
| | - Timothy D O'Hara
- Museums Victoria, Sciences Department, 11 Nicholson Street, Carlton 3054, VIC, Australia.
| | - Andrew F Hugall
- Museums Victoria, Sciences Department, 11 Nicholson Street, Carlton 3054, VIC, Australia
| | - Pedro Martinez Arbizu
- German Centre for Marine Biodiversity Research, Senckenberg am Meer, Südstrand 44, 26382 Wilhelmshaven, Germany
| |
Collapse
|
7
|
Kersten O, Vetter EW, Jungbluth MJ, Smith CR, Goetze E. Larval assemblages over the abyssal plain in the Pacific are highly diverse and spatially patchy. PeerJ 2019; 7:e7691. [PMID: 31579593 PMCID: PMC6766376 DOI: 10.7717/peerj.7691] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/19/2019] [Indexed: 11/20/2022] Open
Abstract
Abyssal plains are among the most biodiverse yet least explored marine ecosystems on our planet, and they are increasingly threatened by human impacts, including future deep seafloor mining. Recovery of abyssal populations from the impacts of polymetallic nodule mining will be partially determined by the availability and dispersal of pelagic larvae leading to benthic recolonization of disturbed areas of the seafloor. Here we use a tree-of-life (TOL) metabarcoding approach to investigate the species richness, diversity, and spatial variability of the larval assemblage at mesoscales across the abyssal seafloor in two mining-claim areas in the eastern Clarion Clipperton Fracture Zone (CCZ; abyssal Pacific). Our approach revealed a previously unknown taxonomic richness within the meroplankton assemblage, detecting larvae from 12 phyla, 23 Classes, 46 Orders, and 65 Families, including a number of taxa not previously reported at abyssal depths or within the Pacific Ocean. A novel suite of parasitic copepods and worms were sampled, from families that are known to associate with other benthic invertebrates or demersal fishes as hosts. Larval assemblages were patchily distributed at the mesoscale, with little similarity in OTUs detected among deployments even within the same 30 × 30 km study area. Our results provide baseline observations on larval diversity prior to polymetallic nodule mining in this region, and emphasize our overwhelming lack of knowledge regarding larvae of the benthic boundary layer in abyssal plain ecosystems.
Collapse
Affiliation(s)
- Oliver Kersten
- Hawaii Pacific University, Kaneohe, HI, United States of America
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Eric W. Vetter
- Hawaii Pacific University, Kaneohe, HI, United States of America
| | - Michelle J. Jungbluth
- Hawaii Pacific University, Kaneohe, HI, United States of America
- Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Craig R. Smith
- Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Erica Goetze
- Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI, United States of America
| |
Collapse
|
8
|
Simon‐Lledó E, Bett BJ, Huvenne VAI, Schoening T, Benoist NMA, Jones DOB. Ecology of a polymetallic nodule occurrence gradient: Implications for deep-sea mining. LIMNOLOGY AND OCEANOGRAPHY 2019; 64:1883-1894. [PMID: 31598009 PMCID: PMC6774340 DOI: 10.1002/lno.11157] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/04/2019] [Accepted: 02/05/2019] [Indexed: 05/04/2023]
Abstract
Abyssal polymetallic nodule fields constitute an unusual deep-sea habitat. The mix of soft sediment and the hard substratum provided by nodules increases the complexity of these environments. Hard substrata typically support a very distinct fauna to that of seabed sediments, and its presence can play a major role in the structuring of benthic assemblages. We assessed the influence of seafloor nodule cover on the megabenthos of a marine conservation area (area of particular environmental interest 6) in the Clarion Clipperton Zone (3950-4250 m water depth) using extensive photographic surveys from an autonomous underwater vehicle. Variations in nodule cover (1-20%) appeared to exert statistically significant differences in faunal standing stocks, some biological diversity attributes, faunal composition, functional group composition, and the distribution of individual species. The standing stock of both the metazoan fauna and the giant protists (xenophyophores) doubled with a very modest initial increase in nodule cover (from 1% to 3%). Perhaps contrary to expectation, we detected little if any substantive variation in biological diversity along the nodule cover gradient. Faunal composition varied continuously along the nodule cover gradient. We discuss these results in the context of potential seabed-mining operations and the associated sustainable management and conservation plans. We note in particular that successful conservation actions will likely require the preservation of areas comprising the full range of nodule cover and not just the low cover areas that are least attractive to mining.
Collapse
Affiliation(s)
- Erik Simon‐Lledó
- National Oceanography CentreUniversity of SouthamptonSouthamptonUK
- Ocean and Earth Science, National Oceanography CentreUniversity of SouthamptonSouthamptonUK
| | - Brian J. Bett
- National Oceanography CentreUniversity of SouthamptonSouthamptonUK
| | | | - Timm Schoening
- Marine Geosystems Working Group, GEOMAR Helmholtz Centre for Ocean ResearchKielGermany
| | - Noelie M. A. Benoist
- National Oceanography CentreUniversity of SouthamptonSouthamptonUK
- Ocean and Earth Science, National Oceanography CentreUniversity of SouthamptonSouthamptonUK
| | | |
Collapse
|
9
|
Simon-Lledó E, Bett BJ, Huvenne VA, Schoening T, Benoist NM, Jeffreys RM, Durden JM, Jones DO. Megafaunal variation in the abyssal landscape of the Clarion Clipperton Zone. PROGRESS IN OCEANOGRAPHY 2019; 170:119-133. [PMID: 30662100 PMCID: PMC6325340 DOI: 10.1016/j.pocean.2018.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/24/2018] [Accepted: 11/15/2018] [Indexed: 05/14/2023]
Abstract
The potential for imminent polymetallic nodule mining in the Clarion Clipperton Fracture Zone (CCZ) has attracted considerable scientific and public attention. This concern stems from both the extremely large seafloor areas that may be impacted by mining, and the very limited knowledge of the fauna and ecology of this region. The environmental factors regulating seafloor ecology are still very poorly understood. In this study, we focus on megafaunal ecology in the proposed conservation zone 'Area of Particular Environmental Interest 6' (study area centred 17°16'N, 122°55'W). We employ bathymetric data to objectively define three landscape types in the area (a level bottom Flat, an elevated Ridge, a depressed Trough; water depth 3950-4250 m) that are characteristic of the wider CCZ. We use direct seabed sampling to characterise the sedimentary environment in each landscape, detecting no statistically significant differences in particle size distributions or organic matter content. Additional seafloor characteristics and data on both the metazoan and xenophyophore components of the megafauna were derived by extensive photographic survey from an autonomous underwater vehicle. Image data revealed that there were statistically significant differences in seafloor cover by nodules and in the occurrence of other hard substrata habitat between landscapes. Statistically significant differences in megafauna standing stock, functional structuring, diversity, and faunal composition were detected between landscapes. The Flat and Ridge areas exhibited a significantly higher standing stock and a distinct assemblage composition compared to the Trough. Geomorphological variations, presumably regulating local bottom water flows and the occurrence of nodule and xenophyophore test substrata, between study areas may be the mechanism driving these assemblage differences. We also used these data to assess the influence of sampling unit size on the estimation of ecological parameters. We discuss these results in the contexts of regional benthic ecology and the appropriate management of potential mining activities in the CCZ and elsewhere in the deep ocean.
Collapse
Affiliation(s)
- Erik Simon-Lledó
- National Oceanography Centre, University of Southampton, Waterfront Campus, European Way, SO14 3ZH Southampton, UK
- Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, UK
| | - Brian J. Bett
- National Oceanography Centre, University of Southampton, Waterfront Campus, European Way, SO14 3ZH Southampton, UK
| | - Veerle A.I. Huvenne
- National Oceanography Centre, University of Southampton, Waterfront Campus, European Way, SO14 3ZH Southampton, UK
| | - Timm Schoening
- GEOMAR Helmholtz Centre for Ocean Research, D-24148 Kiel, Germany
| | - Noelie M.A. Benoist
- National Oceanography Centre, University of Southampton, Waterfront Campus, European Way, SO14 3ZH Southampton, UK
- Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, UK
| | - Rachel M. Jeffreys
- School of Environmental Science, University of Liverpool, L69 3GP Liverpool, UK
| | - Jennifer M. Durden
- National Oceanography Centre, University of Southampton, Waterfront Campus, European Way, SO14 3ZH Southampton, UK
| | - Daniel O.B. Jones
- National Oceanography Centre, University of Southampton, Waterfront Campus, European Way, SO14 3ZH Southampton, UK
| |
Collapse
|
10
|
Glover AG, Wiklund H, Chen C, Dahlgren TG. Managing a sustainable deep-sea 'blue economy' requires knowledge of what actually lives there. eLife 2018; 7:41319. [PMID: 30479272 PMCID: PMC6257809 DOI: 10.7554/elife.41319] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/13/2018] [Indexed: 11/29/2022] Open
Abstract
Ensuring that the wealth of resources contained in our oceans are managed and developed in a sustainable manner is a priority for the emerging 'blue economy'. However, modern ecosystem-based management approaches do not translate well to regions where we know almost nothing about the individual species found in the ecosystem. Here, we propose a new taxon-focused approach to deep-sea conservation that includes regulatory oversight to set targets for the delivery of taxonomic data. For example, a five-year plan to deliver taxonomic and genomic knowledge on a thousand species in regions of the ocean earmarked for industrial activity is an achievable target. High-throughput, integrative taxonomy can, therefore, provide the data that is needed to monitor various ecosystem services (such as the natural history, connectivity, value and function of species) and to help break the regulatory deadlock of high-seas conservation.
Collapse
Affiliation(s)
- Adrian G Glover
- Life Sciences Department, Natural History Museum, London, United Kingdom
| | - Helena Wiklund
- Life Sciences Department, Natural History Museum, London, United Kingdom
| | - Chong Chen
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Thomas G Dahlgren
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden.,Gothenburg Global Diversity Centre, Gothenburg, Sweden.,NORCE, Bergen, Norway
| |
Collapse
|
11
|
Wiklund H, Taylor JD, Dahlgren TG, Todt C, Ikebe C, Rabone M, Glover AG. Abyssal fauna of the UK-1 polymetallic nodule exploration area, Clarion-Clipperton Zone, central Pacific Ocean: Mollusca. Zookeys 2017:1-46. [PMID: 29118626 PMCID: PMC5674146 DOI: 10.3897/zookeys.707.13042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/08/2017] [Indexed: 11/12/2022] Open
Abstract
We present the first DNA taxonomy publication on abyssal Mollusca from the Clarion-Clipperton Zone (CCZ), central Pacific ocean, using material collected as part of the Abyssal Baseline (ABYSSLINE) environmental survey cruise 'AB01' to the UK Seabed Resources Ltd (UKSRL) polymetallic-nodule exploration area 'UK-1' in the eastern CCZ. This is the third paper in a series to provide regional taxonomic data for a region that is undergoing intense deep-sea mineral exploration for high-grade polymetallic nodules. Taxonomic data are presented for 21 species from 42 records identified by a combination of morphological and genetic data, including molecular phylogenetic analyses. These included 3 heterodont bivalves, 5 protobranch bivalves, 4 pteriomorph bivalves, 1 caudofoveate, 1 monoplacophoran, 1 polyplacophoran, 4 scaphopods and 2 solenogastres. Gastropoda were recovered but will be the subject of a future study. Seven taxa matched published morphological descriptions for species with deep Pacific type localities, and our sequences provide the first genetic data for these taxa. One taxon morphologically matched a known cosmopolitan species but with a type locality in a different ocean basin and was assigned the open nomenclature 'cf' as a precautionary approach in taxon assignments to avoid over-estimating species ranges. One taxon is here described as a new species, Ledella knudseni sp. n. For the remaining 12 taxa, we have determined them to be potentially new species, for which we make the raw data, imagery and vouchers available for future taxonomic study. The Clarion-Clipperton Zone is a region undergoing intense exploration for potential deep-sea mineral extraction. We present these data to facilitate future taxonomic and environmental impact study by making both data and voucher materials available through curated and accessible biological collections.
Collapse
Affiliation(s)
- Helena Wiklund
- Life Sciences Department, Natural History Museum, London SW7 5BD, UK
| | - John D Taylor
- Life Sciences Department, Natural History Museum, London SW7 5BD, UK
| | - Thomas G Dahlgren
- Uni Research, Bergen, Norway.,Department of Marine Sciences, University of Gothenburg, Box 463, 40530 Gothenburg, Sweden
| | - Christiane Todt
- University Museum of Bergen, University of Bergen, Allégt. 41, 5007 Bergen, Norway.,Rådgivande Biologer AS, Bredsgården, Bryggen 5003 Bergen, Norway
| | - Chiho Ikebe
- Life Sciences Department, Natural History Museum, London SW7 5BD, UK
| | - Muriel Rabone
- Life Sciences Department, Natural History Museum, London SW7 5BD, UK
| | - Adrian G Glover
- Life Sciences Department, Natural History Museum, London SW7 5BD, UK
| |
Collapse
|
12
|
Lim SC, Wiklund H, Glover AG, Dahlgren TG, Tan KS. A new genus and species of abyssal sponge commonly encrusting polymetallic nodules in the Clarion-Clipperton Zone, East Pacific Ocean. SYST BIODIVERS 2017. [DOI: 10.1080/14772000.2017.1358218] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Swee-Cheng Lim
- Keppel-NUS Corporate Laboratory, Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227
| | - Helena Wiklund
- Life Sciences Department, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Adrian G. Glover
- Life Sciences Department, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Thomas G. Dahlgren
- Uni Research, Thormølensgate 49B, Bergen, Norway
- Gothenburg Global Biodiversity Centre, Department of Marine Sciences, University of Gothenburg, Box 463, 40530 Gothenburg, Sweden
| | - Koh-Siang Tan
- Keppel-NUS Corporate Laboratory, Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227
| |
Collapse
|
13
|
Lindh MV, Maillot BM, Shulse CN, Gooday AJ, Amon DJ, Smith CR, Church MJ. From the Surface to the Deep-Sea: Bacterial Distributions across Polymetallic Nodule Fields in the Clarion-Clipperton Zone of the Pacific Ocean. Front Microbiol 2017; 8:1696. [PMID: 28943866 PMCID: PMC5596108 DOI: 10.3389/fmicb.2017.01696] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 08/23/2017] [Indexed: 11/13/2022] Open
Abstract
Marine bacteria regulate fluxes of matter and energy essential for pelagic and benthic organisms and may also be involved in the formation and maintenance of commercially valuable abyssal polymetallic nodules. Future mining of these nodule fields is predicted to have substantial effects on biodiversity and physicochemical conditions in mined areas. Yet, the identity and distributions of bacterial populations in deep-sea sediments and associated polymetallic nodules has received relatively little attention. We examined bacterial communities using high-throughput sequencing of bacterial 16S rRNA gene fragments from samples collected in the water column, sediment, and polymetallic nodules in the Pacific Ocean (bottom depth ≥4,000 m) in the eastern Clarion-Clipperton Zone. Operational taxonomic units (OTUs; defined at 99% 16S rRNA gene identity) affiliated with JTB255 (Gammaproteobacteria) and Rhodospirillaceae (Alphaproteobacteria) had higher relative abundances in the nodule and sediment habitats compared to the water column. Rhodobiaceae family and Vibrio OTUs had higher relative abundance in nodule samples, but were less abundant in sediment and water column samples. Bacterial communities in sediments and associated with nodules were generally similar; however, 5,861 and 6,827 OTUs found in the water column were retrieved from sediment and nodule habitats, respectively. Cyanobacterial OTUs clustering among Prochlorococcus and Synechococcus were detected in both sediments and nodules, with greater representation among nodule samples. Such results suggest that vertical export of typically abundant photic-zone microbes may be an important process in delivery of water column microorganisms to abyssal habitats, potentially influencing the structure and function of communities in polymetallic nodule fields.
Collapse
Affiliation(s)
- Markus V Lindh
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at MānoaHonolulu, HI, United States
| | - Brianne M Maillot
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at MānoaHonolulu, HI, United States
| | - Christine N Shulse
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at MānoaHonolulu, HI, United States
| | - Andrew J Gooday
- National Oceanography Centre, University of Southampton Waterfront CampusSouthampton, United Kingdom
| | - Diva J Amon
- Department of Oceanography, University of Hawai'i at MānoaHonolulu, HI, United States
| | - Craig R Smith
- Department of Oceanography, University of Hawai'i at MānoaHonolulu, HI, United States
| | - Matthew J Church
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at MānoaHonolulu, HI, United States.,Department of Oceanography, University of Hawai'i at MānoaHonolulu, HI, United States
| |
Collapse
|
14
|
Amon DJ, Ziegler AF, Drazen JC, Grischenko AV, Leitner AB, Lindsay DJ, Voight JR, Wicksten MK, Young CM, Smith CR. Megafauna of the UKSRL exploration contract area and eastern Clarion-Clipperton Zone in the Pacific Ocean: Annelida, Arthropoda, Bryozoa, Chordata, Ctenophora, Mollusca. Biodivers Data J 2017:e14598. [PMID: 28874906 PMCID: PMC5565845 DOI: 10.3897/bdj.5.e14598] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/06/2017] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND There is growing interest in mining polymetallic nodules from the abyssal Clarion-Clipperton Zone (CCZ) in the tropical Pacific Ocean. Despite having been the focus of environmental studies for decades, the benthic megafauna of the CCZ remain poorly known. To predict and manage the environmental impacts of mining in the CCZ, baseline knowledge of the megafauna is essential. The ABYSSLINE Project has conducted benthic biological baseline surveys in the UK Seabed Resources Ltd polymetallic-nodule exploration contract area (UK-1). Prior to ABYSSLINE research cruises in 2013 and 2015, no biological studies had been done in this area of the eastern CCZ. NEW INFORMATION Using a Remotely Operated Vehicle and Autonomous Underwater Vehicle (as well as several other pieces of equipment), the megafauna within the UK Seabed Resources Ltd exploration contract area (UK-1) and at a site ~250 km east of the UK-1 area were surveyed, allowing us to make the first estimates of megafaunal morphospecies richness from the imagery collected. Here, we present an atlas of the abyssal annelid, arthropod, bryozoan, chordate, ctenophore and molluscan megafauna observed and collected during the ABYSSLINE cruises to the UK-1 polymetallic-nodule exploration contract area in the CCZ. There appear to be at least 55 distinct morphospecies (8 Annelida, 12 Arthropoda, 4 Bryozoa, 22 Chordata, 5 Ctenophora, and 4 Mollusca) identified mostly by morphology but also using molecular barcoding for a limited number of animals that were collected. This atlas will aid the synthesis of megafaunal presence/absence data collected by contractors, scientists and other stakeholders undertaking work in the CCZ, ultimately helping to decipher the biogeography of the megafauna in this threatened habitat.
Collapse
Affiliation(s)
- Diva J Amon
- University of Hawaii, Honolulu, United States of America
| | | | | | | | | | - Dhugal J Lindsay
- Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | | | - Mary K Wicksten
- Texas A&M University, College Station, United States of America
| | - Craig M Young
- Oregon Institute of Marine Biology, University of Oregon, Charleston, United States of America
| | - Craig R Smith
- University of Hawaii, Honolulu, United States of America
| |
Collapse
|
15
|
Amon DJ, Ziegler AF, Kremenetskaia A, Mah CL, Mooi R, O'Hara T, Pawson DL, Roux M, Smith CR. Megafauna of the UKSRL exploration contract area and eastern Clarion-Clipperton Zone in the Pacific Ocean: Echinodermata. Biodivers Data J 2017:e11794. [PMID: 28765722 PMCID: PMC5515089 DOI: 10.3897/bdj.5.e11794] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/26/2017] [Indexed: 11/23/2022] Open
Abstract
Background There is growing interest in mining polymetallic nodules from the abyssal Clarion-Clipperton Zone (CCZ) in the tropical Pacific Ocean. Despite being the focus of environmental studies for decades, the benthic megafauna of the CCZ remain poorly known. In order to predict and manage the environmental impacts of mining in the CCZ, baseline knowledge of the megafauna is essential. The ABYSSLINE Project has conducted benthic biological baseline surveys in the UK Seabed Resources Ltd polymetallic-nodule exploration contract area (UK-1). Prior to these research cruises in 2013 and 2015, no biological studies had been done in this area of the eastern CCZ. New information Using a Remotely Operated Vehicle and Autonomous Underwater Vehicle, the megafauna within the UKSRL exploration contract area (UK-1) and at a site ~250 km east of the UK-1 area were surveyed, allowing us to make the first estimates of megafaunal morphospecies richness from the imagery collected. Here, we present an atlas of the abyssal echinoderm megafauna observed and collected during the ABYSSLINE cruises to the UK-1 polymetallic-nodule exploration contract area in the CCZ. There appear to be at least 62 distinct morphospecies (13 Asteroidea, 5 Crinoidea, 9 Echinoidea, 29 Holothuroidea and 6 Ophiuroidea) identified mostly by imagery but also using molecular barcoding for a limited number of animals that were collected. This atlas will aid the synthesis of megafaunal presence/absence data collected by contractors, scientists and other stakeholders undertaking work in the CCZ, ultimately helping to decipher the biogeography of the megafauna in this threatened habitat.
Collapse
Affiliation(s)
- Diva J Amon
- University of Hawaii at Manoa, Honolulu, United States of America
| | - Amanda F Ziegler
- University of Hawaii at Manoa, Honolulu, United States of America
| | | | - Christopher L Mah
- Smithsonian Institution National Museum of Natural History, Washington, United States of America
| | - Rich Mooi
- California Academy of Sciences, San Francisco, United States of America
| | | | - David L Pawson
- Smithsonian Institution National Museum of Natural History, Washington, United States of America
| | - Michel Roux
- Museum National d'Histoire Naturelle, Paris, France
| | - Craig R Smith
- University of Hawaii at Manoa, Honolulu, United States of America
| |
Collapse
|
16
|
Amon DJ, Ziegler AF, Dahlgren TG, Glover AG, Goineau A, Gooday AJ, Wiklund H, Smith CR. Insights into the abundance and diversity of abyssal megafauna in a polymetallic-nodule region in the eastern Clarion-Clipperton Zone. Sci Rep 2016; 6:30492. [PMID: 27470484 PMCID: PMC4965819 DOI: 10.1038/srep30492] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 07/06/2016] [Indexed: 11/19/2022] Open
Abstract
There is growing interest in mining polymetallic nodules in the abyssal Clarion-Clipperton Zone (CCZ) in the Pacific. Nonetheless, benthic communities in this region remain poorly known. The ABYSSLINE Project is conducting benthic biological baseline surveys for the UK Seabed Resources Ltd. exploration contract area (UK-1) in the CCZ. Using a Remotely Operated Vehicle, we surveyed megafauna at four sites within a 900 km(2) stratum in the UK-1 contract area, and at a site ~250 km east of the UK-1 area, allowing us to make the first estimates of abundance and diversity. We distinguished 170 morphotypes within the UK-1 contract area but species-richness estimators suggest this could be as high as 229. Megafaunal abundance averaged 1.48 ind. m(-2). Seven of 12 collected metazoan species were new to science, and four belonged to new genera. Approximately half of the morphotypes occurred only on polymetallic nodules. There were weak, but statistically significant, positive correlations between megafaunal and nodule abundance. Eastern-CCZ megafaunal diversity is high relative to two abyssal datasets from other regions, however comparisons with CCZ and DISCOL datasets are problematic given the lack of standardised methods and taxonomy. We postulate that CCZ megafaunal diversity is driven in part by habitat heterogeneity.
Collapse
Affiliation(s)
- Diva J. Amon
- Department of Oceanography, University of Hawai’i at Mānoa, 1000 Pope Road, Honolulu, HI 96822 USA
| | - Amanda F. Ziegler
- Department of Oceanography, University of Hawai’i at Mānoa, 1000 Pope Road, Honolulu, HI 96822 USA
| | - Thomas G. Dahlgren
- Uni Research, Thormøhlensgate 55, 5008 Bergen, Norway
- Department of Marine Sciences, University of Gothenburg, Box 463, 40530 Gothenburg, Sweden
| | - Adrian G. Glover
- Life Sciences Department, Natural History Museum, Cromwell Rd, London SW7 5BD, UK
| | - Aurélie Goineau
- National Oceanography Centre, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, UK
| | - Andrew J. Gooday
- National Oceanography Centre, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, UK
| | - Helena Wiklund
- Life Sciences Department, Natural History Museum, Cromwell Rd, London SW7 5BD, UK
| | - Craig R. Smith
- Department of Oceanography, University of Hawai’i at Mānoa, 1000 Pope Road, Honolulu, HI 96822 USA
| |
Collapse
|
17
|
Dahlgren TG, Wiklund H, Rabone M, Amon DJ, Ikebe C, Watling L, Smith CR, Glover AG. Abyssal fauna of the UK-1 polymetallic nodule exploration area, Clarion-Clipperton Zone, central Pacific Ocean: Cnidaria. Biodivers Data J 2016:e9277. [PMID: 27660533 PMCID: PMC5018120 DOI: 10.3897/bdj.4.e9277] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/24/2016] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND We present data from a DNA taxonomy register of the abyssal Cnidaria collected as part of the Abyssal Baseline (ABYSSLINE) environmental survey cruise 'AB01' to the UK Seabed Resources Ltd (UKSRL) polymetallic-nodule exploration area 'UK-1' in the eastern Clarion-Clipperton Zone (CCZ), central Pacific Ocean abyssal plain. This is the second paper in a series to provide regional taxonomic data for a region that is undergoing intense deep-sea mineral exploration for high-grade polymetallic nodules. Data were collected from the UK-1 exploration area following the methods described in Glover et al. (2015b). NEW INFORMATION Morphological and genetic data are presented for 10 species and 18 records identified by a combination of morphological and genetic data, including molecular phylogenetic analyses. These included 2 primnoid octocorals, 2 isidid octocorals, 1 anemone, 4 hydroids (including 2 pelagic siphonophores accidentally caught) and a scyphozoan jellyfish (in the benthic stage of the life cycle). Two taxa matched previously published genetic sequences (pelagic siphonophores), two taxa matched published morphological descriptions (abyssal primnoids described from the same locality in 2015) and the remaining 6 taxa are potentially new species, for which we make the raw data, imagery and vouchers available for future taxonomic study. We have used a precautionary approach in taxon assignments to avoid over-estimating species ranges. The Clarion-Clipperton Zone is a region undergoing intense exploration for potential deep-sea mineral extraction. We present these data to facilitate future taxonomic and environmental impact study by making both data and voucher materials available through curated and accessible biological collections. For some of the specimens we also provide image data collected at the seabed by ROV, wich may facilitate more accurate taxon designation in coming ROV or AUV surveys.
Collapse
Affiliation(s)
- Thomas G Dahlgren
- Uni Research, Bergen, Norway; Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Diva J Amon
- University of Hawaii at Manoa, Honolulu, United States of America
| | - Chiho Ikebe
- Natural History Museum, London, United Kingdom
| | - Les Watling
- University of Hawaii at Manoa, Honolulu, United States of America
| | - Craig R Smith
- University of Hawaii at Manoa, Honolulu, United States of America
| | | |
Collapse
|