1
|
Mackintosh A, Vila R, Martin SH, Setter D, Lohse K. Do chromosome rearrangements fix by genetic drift or natural selection? Insights from Brenthis butterflies. Mol Ecol 2024; 33:e17146. [PMID: 37807966 PMCID: PMC11628658 DOI: 10.1111/mec.17146] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023]
Abstract
Large-scale chromosome rearrangements, such as fissions and fusions, are a common feature of eukaryote evolution. They can have considerable influence on the evolution of populations, yet it remains unclear exactly how rearrangements become established and eventually fix. Rearrangements could fix by genetic drift if they are weakly deleterious or neutral, or they may instead be favoured by positive natural selection. Here, we compare genome assemblies of three closely related Brenthis butterfly species and characterize a complex history of fission and fusion rearrangements. An inferred demographic history of these species suggests that rearrangements became fixed in populations with large long-term effective size (N e), consistent with rearrangements being selectively neutral or only very weakly underdominant. Using a recently developed analytic framework for characterizing hard selective sweeps, we find that chromosome fusions are not enriched for evidence of past sweeps compared to other regions of the genome. Nonetheless, we do infer a strong and recent selective sweep around one chromosome fusion in the B. daphne genome. Our results suggest that rearrangements in these species likely have weak absolute fitness effects and fix by genetic drift. However, one putative selective sweep raises the possibility that natural selection may sometimes play a role in the fixation of chromosome fusions.
Collapse
Affiliation(s)
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
| | - Simon H. Martin
- Institute of Ecology and EvolutionUniversity of EdinburghEdinburghUK
| | - Derek Setter
- Institute of Ecology and EvolutionUniversity of EdinburghEdinburghUK
| | - Konrad Lohse
- Institute of Ecology and EvolutionUniversity of EdinburghEdinburghUK
| |
Collapse
|
2
|
Helsen J, Reza MH, Carvalho R, Sherlock G, Dey G. Spindle architecture constrains karyotype evolution. Nat Cell Biol 2024; 26:1496-1503. [PMID: 39117795 PMCID: PMC11392806 DOI: 10.1038/s41556-024-01485-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
The eukaryotic cell division machinery must rapidly and reproducibly duplicate and partition the cell's chromosomes in a carefully coordinated process. However, chromosome numbers vary dramatically between genomes, even on short evolutionary timescales. We sought to understand how the mitotic machinery senses and responds to karyotypic changes by using a series of budding yeast strains in which the native chromosomes have been successively fused. Using a combination of cell biological profiling, genetic engineering and experimental evolution, we show that chromosome fusions are well tolerated up until a critical point. Cells with fewer than five centromeres lack the necessary number of kinetochore-microtubule attachments needed to counter outward forces in the metaphase spindle, triggering the spindle assembly checkpoint and prolonging metaphase. Our findings demonstrate that spindle architecture is a constraining factor for karyotype evolution.
Collapse
Affiliation(s)
- Jana Helsen
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Md Hashim Reza
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ricardo Carvalho
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Gavin Sherlock
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Gautam Dey
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
3
|
Helsen J, Reza H, Carvalho R, Sherlock G, Dey G. Spindle architecture constrains karyotype in budding yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.25.563899. [PMID: 37961714 PMCID: PMC10634821 DOI: 10.1101/2023.10.25.563899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The eukaryotic cell division machinery must rapidly and reproducibly duplicate and partition the cell's chromosomes in a carefully coordinated process. However, chromosome number varies dramatically between genomes, even on short evolutionary timescales. We sought to understand how the mitotic machinery senses and responds to karyotypic changes by using a series of budding yeast strains in which the native chromosomes have been successively fused. Using a combination of cell biological profiling, genetic engineering, and experimental evolution, we show that chromosome fusions are well tolerated up until a critical point. Cells with fewer than five centromeres lack the necessary number of kinetochore-microtubule attachments needed to counter outward forces in the metaphase spindle, triggering the spindle assembly checkpoint and prolonging metaphase. Our findings demonstrate that spindle architecture is a constraining factor for karyotype evolution.
Collapse
Affiliation(s)
- Jana Helsen
- Cell Biology and Biophysics, European Molecular Biology Laboratory; Heidelberg, 69117, Germany
- Department of Genetics, Stanford University School of Medicine; Stanford, 94305, USA
| | - Hashim Reza
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research; Bengaluru, 560064, India
| | - Ricardo Carvalho
- Cell Biology and Biophysics, European Molecular Biology Laboratory; Heidelberg, 69117, Germany
| | - Gavin Sherlock
- Department of Genetics, Stanford University School of Medicine; Stanford, 94305, USA
| | - Gautam Dey
- Cell Biology and Biophysics, European Molecular Biology Laboratory; Heidelberg, 69117, Germany
| |
Collapse
|
4
|
Chriss A, Börner GV, Ryan SD. Agent-based modeling of nuclear chromosome ensembles identifies determinants of homolog pairing during meiosis. PLoS Comput Biol 2024; 20:e1011416. [PMID: 38739641 PMCID: PMC11115365 DOI: 10.1371/journal.pcbi.1011416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 05/23/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
During meiosis, pairing of homologous chromosomes (homologs) ensures the formation of haploid gametes from diploid precursor cells, a prerequisite for sexual reproduction. Pairing during meiotic prophase I facilitates crossover recombination and homolog segregation during the ensuing reductional cell division. Mechanisms that ensure stable homolog alignment in the presence of an excess of non-homologous chromosomes have remained elusive, but rapid chromosome movements appear to play a role in the process. Apart from homolog attraction, provided by early intermediates of homologous recombination, dissociation of non-homologous associations also appears to contribute to homolog pairing, as suggested by the detection of stable non-homologous chromosome associations in pairing-defective mutants. Here, we have developed an agent-based model for homolog pairing derived from the dynamics of a naturally occurring chromosome ensemble. The model simulates unidirectional chromosome movements, as well as collision dynamics determined by attractive and repulsive forces arising from close-range physical interactions. Chromosome number and size as well as movement velocity and repulsive forces are identified as key factors in the kinetics and efficiency of homologous pairing in addition to homolog attraction. Dissociation of interactions between non-homologous chromosomes may contribute to pairing by crowding homologs into a limited nuclear area thus creating preconditions for close-range homolog attraction. Incorporating natural chromosome lengths, the model accurately recapitulates efficiency and kinetics of homolog pairing observed for wild-type and mutant meiosis in budding yeast, and can be adapted to nuclear dimensions and chromosome sets of other organisms.
Collapse
Affiliation(s)
- Ariana Chriss
- Department of Mathematics and Statistics, Cleveland State University, Cleveland, Ohio, United States of America
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio, United States of America
| | - G. Valentin Börner
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio, United States of America
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio, United States of America
| | - Shawn D. Ryan
- Department of Mathematics and Statistics, Cleveland State University, Cleveland, Ohio, United States of America
- Center for Applied Data Analysis and Modeling, Cleveland State University, Cleveland, Ohio, United States of America
| |
Collapse
|
5
|
Augustijnen H, Bätscher L, Cesanek M, Chkhartishvili T, Dincă V, Iankoshvili G, Ogawa K, Vila R, Klopfstein S, de Vos JM, Lucek K. A macroevolutionary role for chromosomal fusion and fission in Erebia butterflies. SCIENCE ADVANCES 2024; 10:eadl0989. [PMID: 38630820 PMCID: PMC11023530 DOI: 10.1126/sciadv.adl0989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024]
Abstract
The impact of large-scale chromosomal rearrangements, such as fusions and fissions, on speciation is a long-standing conundrum. We assessed whether bursts of change in chromosome numbers resulting from chromosomal fusion or fission are related to increased speciation rates in Erebia, one of the most species-rich and karyotypically variable butterfly groups. We established a genome-based phylogeny and used state-dependent birth-death models to infer trajectories of karyotype evolution. We demonstrated that rates of anagenetic chromosomal changes (i.e., along phylogenetic branches) exceed cladogenetic changes (i.e., at speciation events), but, when cladogenetic changes occur, they are mostly associated with chromosomal fissions rather than fusions. We found that the relative importance of fusion and fission differs among Erebia clades of different ages and that especially in younger, more karyotypically diverse clades, speciation is more frequently associated with cladogenetic chromosomal changes. Overall, our results imply that chromosomal fusions and fissions have contrasting macroevolutionary roles and that large-scale chromosomal rearrangements are associated with bursts of species diversification.
Collapse
Affiliation(s)
- Hannah Augustijnen
- Department of Environmental Science, University of Basel, 4056 Basel, Switzerland
| | - Livio Bätscher
- Department of Environmental Science, University of Basel, 4056 Basel, Switzerland
| | - Martin Cesanek
- Slovak Entomological Society, Slovak Academy of Sciences, Bratislava 1, Slovakia
| | | | - Vlad Dincă
- Ecology and Genetics Research Unit, University of Oulu, 90570 Oulu, Finland
| | | | - Kota Ogawa
- Faculty of Social and Cultural Studies, Kyushu University, Fukuoka 819-0395, Japan
- Insect Sciences and Creative Entomology Center, Kyushu University, Fukuoka 819-0395, Japan
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Univ. Pompeu Fabra), 08003 Barcelona, Spain
| | - Seraina Klopfstein
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Life Sciences, Natural History Museum Basel, 4051 Basel, Switzerland
| | - Jurriaan M. de Vos
- Department of Environmental Science, University of Basel, 4056 Basel, Switzerland
| | - Kay Lucek
- Department of Environmental Science, University of Basel, 4056 Basel, Switzerland
- Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| |
Collapse
|
6
|
Sullivan W. Remarkable chromosomes and karyotypes: A top 10 list. Mol Biol Cell 2024; 35:pe1. [PMID: 38517328 PMCID: PMC11064663 DOI: 10.1091/mbc.e23-12-0498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/23/2024] Open
Abstract
Chromosomes and karyotypes are particularly rich in oddities and extremes. Described below are 10 remarkable chromosomes and karyotypes sprinkled throughout the tree of life. These include variants in chromosome number, structure, and dynamics both natural and engineered. This versatility highlights the robustness and tolerance of the mitotic and meiotic machinery to dramatic changes in chromosome and karyotype architecture. These examples also illustrate that the robustness comes at a cost, enabling the evolution of chromosomes that subvert mitosis and meiosis.
Collapse
Affiliation(s)
- William Sullivan
- Department of MCD Biology, University of California, Santa Cruz, CA 95064
| |
Collapse
|
7
|
Wright CJ, Stevens L, Mackintosh A, Lawniczak M, Blaxter M. Comparative genomics reveals the dynamics of chromosome evolution in Lepidoptera. Nat Ecol Evol 2024; 8:777-790. [PMID: 38383850 PMCID: PMC11009112 DOI: 10.1038/s41559-024-02329-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/12/2024] [Indexed: 02/23/2024]
Abstract
Chromosomes are a central unit of genome organization. One-tenth of all described species on Earth are butterflies and moths, the Lepidoptera, which generally possess 31 chromosomes. However, some species display dramatic variation in chromosome number. Here we analyse 210 chromosomally complete lepidopteran genomes and show that the chromosomes of extant lepidopterans are derived from 32 ancestral linkage groups, which we term Merian elements. Merian elements have remained largely intact through 250 million years of evolution and diversification. Against this stable background, eight lineages have undergone extensive reorganization either through numerous fissions or a combination of fusion and fission events. Outside these lineages, fusions are rare and fissions are rarer still. Fusions often involve small, repeat-rich Merian elements and the sex-linked element. Our results reveal the constraints on genome architecture in Lepidoptera and provide a deeper understanding of chromosomal rearrangements in eukaryotic genome evolution.
Collapse
Affiliation(s)
| | - Lewis Stevens
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | | | | | - Mark Blaxter
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK.
| |
Collapse
|
8
|
Chriss A, Börner GV, Ryan SD. Agent-based modeling of nuclear chromosome ensemble identifies determinants of homolog pairing during meiosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.09.552574. [PMID: 38260664 PMCID: PMC10802385 DOI: 10.1101/2023.08.09.552574] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
During meiosis, pairing of homologous chromosomes (homologs) ensures the formation of haploid gametes from diploid precursor cells, a prerequisite for sexual reproduction. Pairing during meiotic prophase I facilitates crossover recombination and homolog segregation during the ensuing reductional cell division. Mechanisms that ensure stable homolog alignment in the presence of an excess of non-homologous chromosomes have remained elusive, but rapid chromosome movements during prophase I appear to play a role in the process. Apart from homolog attraction, provided by early intermediates of homologous recombination, dissociation of non-homologous associations also appears to contribute to homolog pairing, as suggested by the detection of stable non-homologous chromosome associations in pairing-defective mutants. Here, we have developed an agent-based model for homolog pairing derived from the dynamics of a naturally occurring chromosome ensemble. The model simulates unidirectional chromosome movements, as well as collision dynamics determined by attractive and repulsive forces arising from close-range physical interactions. In addition to homolog attraction, chromosome number and size as well as movement velocity and repulsive forces are identified as key factors in the kinetics and efficiency of homologous pairing. Dissociation of interactions between non-homologous chromosomes may contribute to pairing by crowding homologs into a limited nuclear area thus creating preconditions for close-range homolog attraction. Predictions from the model are readily compared to experimental data from budding yeast, parameters can be adjusted to other cellular systems and predictions from the model can be tested via experimental manipulation of the relevant chromosomal features.
Collapse
Affiliation(s)
- Ariana Chriss
- Department of Mathematics and Statistics, Cleveland State University, Cleveland, OH 44115
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115
| | - G. Valentin Börner
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH 44115
| | - Shawn D. Ryan
- Department of Mathematics and Statistics, Cleveland State University, Cleveland, OH 44115
- Center for Applied Data Analysis and Modeling, Cleveland State University, Cleveland, OH 44115
| |
Collapse
|
9
|
Traut W, Sahara K, ffrench-Constant RH. Lepidopteran Synteny Units reveal deep chromosomal conservation in butterflies and moths. G3 (BETHESDA, MD.) 2023; 13:jkad134. [PMID: 37310934 PMCID: PMC10411566 DOI: 10.1093/g3journal/jkad134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
DNA is compacted into individual particles or chromosomes that form the basic units of inheritance. However, different animals and plants have widely different numbers of chromosomes. This means that we cannot readily tell which chromosomes are related to which. Here, we describe a simple technique that looks at the similarity of genes on each chromosome and thus gives us a true picture of their homology or similarity through evolutionary time. We use this new system to look at the chromosomes of butterflies and moths or Lepidoptera. We term the associated synteny units, Lepidopteran Synteny Units (LSUs). Using a sample of butterfly and moth genomes from across evolutionary time, we show that LSUs form a simple and reliable method of tracing chromosomal homology back through time. Surprisingly, this technique reveals that butterfly and moth chromosomes show conserved blocks dating back to their sister group the Trichoptera. As Lepidoptera have holocentric chromosomes, it will be interesting to see if similar levels of synteny are shown in groups of animals with monocentric chromosomes. The ability to define homology via LSU analysis makes it considerably easier to approach many questions in chromosomal evolution.
Collapse
Affiliation(s)
- Walther Traut
- Institut für Biologie, Zentrum für Medizinische Struktur- und Zellbiologie, Universität zu Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany
| | - Ken Sahara
- Laboratory of Molecular Entomology, Faculty of Agriculture, Iwate University, 3-18-8, Ueda, Morioka 020-8550, Japan
| | | |
Collapse
|
10
|
Pazhenkova EA, Lukhtanov VA. Chromosomal conservatism vs chromosomal megaevolution: enigma of karyotypic evolution in Lepidoptera. Chromosome Res 2023; 31:16. [PMID: 37300756 DOI: 10.1007/s10577-023-09725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
In the evolution of many organisms, periods of slow genome reorganization (= chromosomal conservatism) are interrupted by bursts of numerous chromosomal changes (= chromosomal megaevolution). Using comparative analysis of chromosome-level genome assemblies, we investigated these processes in blue butterflies (Lycaenidae). We demonstrate that the phase of chromosome number conservatism is characterized by the stability of most autosomes and dynamic evolution of the sex chromosome Z, resulting in multiple variants of NeoZ chromosomes due to autosome-sex chromosome fusions. In contrast during the phase of rapid chromosomal evolution, the explosive increase in chromosome number occurs mainly through simple chromosomal fissions. We show that chromosomal megaevolution is a highly non-random canalized process, and in two phylogenetically independent Lysandra lineages, the drastic parallel increase in number of fragmented chromosomes was achieved, at least partially, through reuse of the same ancestral chromosomal breakpoints. In species showing chromosome number doubling, we found no blocks of duplicated sequences or duplicated chromosomes, thus refuting the hypothesis of polyploidy. In the studied taxa, long blocks of interstitial telomere sequences (ITSs) consist of (TTAGG)n arrays interspersed with telomere-specific retrotransposons. ITSs are sporadically present in rapidly evolving Lysandra karyotypes, but not in the species with ancestral chromosome number. Therefore, we hypothesize that the transposition of telomeric sequences may be triggers of the rapid chromosome number increase. Finally, we discuss the hypothetical genomic and population mechanisms of chromosomal megaevolution and argue that the disproportionally high evolutionary role of the Z sex chromosome can be additionally reinforced by sex chromosome-autosome fusions and Z-chromosome inversions.
Collapse
Affiliation(s)
- Elena A Pazhenkova
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, 1000, Ljubljana, Slovenia.
| | - Vladimir A Lukhtanov
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya Nab. 1, 199034, St. Petersburg, Russia.
| |
Collapse
|
11
|
Dalíková M, Provazníková I, Provazník J, Grof-Tisza P, Pepi A, Nguyen P. The Role of Repetitive Sequences in Repatterning of Major Ribosomal DNA Clusters in Lepidoptera. Genome Biol Evol 2023; 15:evad090. [PMID: 37226278 PMCID: PMC10257491 DOI: 10.1093/gbe/evad090] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
Genes for major ribosomal RNAs (rDNA) are present in multiple copies mainly organized in tandem arrays. The number and position of rDNA loci can change dynamically and their repatterning is presumably driven by other repetitive sequences. We explored a peculiar rDNA organization in several representatives of Lepidoptera with either extremely large or numerous rDNA clusters. We combined molecular cytogenetics with analyses of second- and third-generation sequencing data to show that rDNA spreads as a transcription unit and reveal association between rDNA and various repeats. Furthermore, we performed comparative long read analyses among the species with derived rDNA distribution and moths with a single rDNA locus, which is considered ancestral. Our results suggest that satellite arrays, rather than mobile elements, facilitate homology-mediated spread of rDNA via either integration of extrachromosomal rDNA circles or ectopic recombination. The latter arguably better explains preferential spread of rDNA into terminal regions of lepidopteran chromosomes as efficiency of ectopic recombination depends on the proximity of homologous sequences to telomeres.
Collapse
Affiliation(s)
- Martina Dalíková
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Irena Provazníková
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jan Provazník
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Patrick Grof-Tisza
- Institute of Biology, Laboratory of Evolutionary Entomology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Adam Pepi
- Department of Biology, Tufts University
| | - Petr Nguyen
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic
| |
Collapse
|
12
|
Pazhenkova EA, Lukhtanov VA. Whole-Genome Analysis Reveals the Dynamic Evolution of Holocentric Chromosomes in Satyrine Butterflies. Genes (Basel) 2023; 14:437. [PMID: 36833364 PMCID: PMC9956908 DOI: 10.3390/genes14020437] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Butterfly chromosomes are holocentric, i.e., lacking a localized centromere. Potentially, this can lead to rapid karyotypic evolution through chromosome fissions and fusions, since fragmented chromosomes retain kinetic activity, while fused chromosomes are not dicentric. However, the actual mechanisms of butterfly genome evolution are poorly understood. Here, we analyzed chromosome-scale genome assemblies to identify structural rearrangements between karyotypes of satyrine butterfly species. For the species pair Erebia ligea-Maniola jurtina, sharing the ancestral diploid karyotype 2n = 56 + ZW, we demonstrate a high level of chromosomal macrosynteny and nine inversions separating these species. We show that the formation of a karyotype with a low number of chromosomes (2n = 36 + ZW) in Erebia aethiops was based on ten fusions, including one autosome-sex chromosome fusion, resulting in a neo-Z chromosome. We also detected inversions on the Z sex chromosome that were differentially fixed between the species. We conclude that chromosomal evolution is dynamic in the satyrines, even in the lineage that preserves the ancestral chromosome number. We hypothesize that the exceptional role of Z chromosomes in speciation may be further enhanced by inversions and sex chromosome-autosome fusions. We argue that not only fusions/fissions but also inversions are drivers of the holocentromere-mediated mode of chromosomal speciation.
Collapse
Affiliation(s)
- Elena A. Pazhenkova
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Vladimir A. Lukhtanov
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, Russia
| |
Collapse
|
13
|
Shipilina D, Näsvall K, Höök L, Vila R, Talavera G, Backström N. Linkage mapping and genome annotation give novel insights into gene family expansions and regional recombination rate variation in the painted lady (Vanessa cardui) butterfly. Genomics 2022; 114:110481. [PMID: 36115505 DOI: 10.1016/j.ygeno.2022.110481] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/01/2022] [Accepted: 09/10/2022] [Indexed: 01/14/2023]
Abstract
Characterization of gene family expansions and crossing over is crucial for understanding how organisms adapt to the environment. Here, we develop a high-density linkage map and detailed genome annotation of the painted lady butterfly (Vanessa cardui) - a non-diapausing, highly polyphagous species famous for its long-distance migratory behavior and almost cosmopolitan distribution. Our results reveal a complex interplay between regional recombination rate variation, gene duplications and transposable element activity shaping the genome structure of the painted lady. We identify several lineage specific gene family expansions. Their functions are mainly associated with protein and fat metabolism, detoxification, and defense against infection - critical processes for the painted lady's unique life-history. Furthermore, the detailed recombination maps allow us to characterize the regional recombination landscape, data that reveal a strong effect of chromosome size on the recombination rate, a limited impact of GC-biased gene conversion and a positive association between recombination and short interspersed elements.
Collapse
Affiliation(s)
- Daria Shipilina
- Evolutionary Biology Program, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden; Swedish Collegium for Advanced Study, Thunbergsvägen 2, 75236 Uppsala, Sweden.
| | - Karin Näsvall
- Evolutionary Biology Program, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Lars Höök
- Evolutionary Biology Program, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Roger Vila
- The Butterfly Diversity and Evolution Lab, Institut de Biologia Evolutiva, Passeig Martim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Gerard Talavera
- Institut Botànic de Barcelona (IBB), CSIC-Ajuntament de Barcelona, Passeig del Migdia s/n, 08038 Barcelona, Spain
| | - Niclas Backström
- Evolutionary Biology Program, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| |
Collapse
|
14
|
Gasparotto AE, Milani D, Martí E, Ferretti ABSM, Bardella VB, Hickmann F, Zrzavá M, Marec F, Cabral-de-Mello DC. A step forward in the genome characterization of the sugarcane borer, Diatraea saccharalis: karyotype analysis, sex chromosome system and repetitive DNAs through a cytogenomic approach. Chromosoma 2022; 131:253-267. [PMID: 36219241 DOI: 10.1007/s00412-022-00781-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/10/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022]
Abstract
Moths of the family Crambidae include a number of pests that cause economic losses to agricultural crops. Despite their economic importance, little is known about their genome architecture and chromosome evolution. Here, we characterized the chromosomes and repetitive DNA of the sugarcane borer Diatraea saccharalis using a combination of low-pass genome sequencing, bioinformatics, and cytogenetic methods, focusing on the sex chromosomes. Diploid chromosome numbers differed between the sexes, i.e., 2n = 33 in females and 2n = 34 in males. This difference was caused by the occurrence of a WZ1Z2 trivalent in female meiosis, indicating a multiple sex-chromosome system WZ1Z2/Z1Z1Z2Z2. A strong interstitial telomeric signal was observed on the W chromosome, indicating a fusion of the ancestral W chromosome with an autosome. Among repetitive DNAs, transposable elements (TEs) accounted for 39.18% (males) to 41.35% (females), while satDNAs accounted for only 0.214% (males) and 0.215% (females) of the genome. FISH mapping revealed different chromosomal organization of satDNAs, such as single localized clusters, spread repeats, and non-clustered repeats. Two TEs mapped by FISH were scattered. Although we found a slight enrichment of some satDNAs in the female genome, they were not differentially enriched on the W chromosome. However, we found enriched FISH signals for TEs on the W chromosome, suggesting their involvement in W chromosome degeneration and differentiation. These data shed light on karyotype and repetitive DNA dynamics due to multiple chromosome fusions in D. saccharalis, contribute to the understanding of genome structure in Lepidoptera and are important for future genomic studies.
Collapse
Affiliation(s)
- Ana E Gasparotto
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências/IB, UNESP - Universidade Estadual Paulista, Rio Claro, SP, 13506-900, Brazil
| | - Diogo Milani
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências/IB, UNESP - Universidade Estadual Paulista, Rio Claro, SP, 13506-900, Brazil
| | - Emiliano Martí
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências/IB, UNESP - Universidade Estadual Paulista, Rio Claro, SP, 13506-900, Brazil
| | - Ana Beatriz S M Ferretti
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências/IB, UNESP - Universidade Estadual Paulista, Rio Claro, SP, 13506-900, Brazil
| | - Vanessa B Bardella
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências/IB, UNESP - Universidade Estadual Paulista, Rio Claro, SP, 13506-900, Brazil
| | - Frederico Hickmann
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, (USP/ESALQ), University of São Paulo, Piracicaba, SP, Brazil
| | - Magda Zrzavá
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - František Marec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
| | - Diogo C Cabral-de-Mello
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências/IB, UNESP - Universidade Estadual Paulista, Rio Claro, SP, 13506-900, Brazil.
- Department of Experimental Biology, Genetics Area, University of Jaen, Paraje las Lagunillas s/n, 23071, Jaen, Spain.
| |
Collapse
|
15
|
Lucek K, Augustijnen H, Escudero M. A holocentric twist to chromosomal speciation? Trends Ecol Evol 2022; 37:655-662. [PMID: 35484024 DOI: 10.1016/j.tree.2022.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
Chromosomal rearrangements trigger speciation by acting as barriers to gene flow. However, the underlying theory was developed with monocentric chromosomes in mind. Holocentric chromosomes, lacking a centromeric region, have repeatedly evolved and account for a significant fraction of extant biodiversity. Because chromosomal rearrangements may be more likely retained in holocentric species, holocentricity could provide a twist to chromosomal speciation. Here, we discuss how the abundance of chromosome-scale genomes, combined with novel analytical tools, offer the opportunity to assess the impacts of chromosomal rearrangements on rates of speciation by outlining a phylogenetic framework that aligns with the two major lines of chromosomal speciation theory. We further highlight how holocentric species could help to test for causal roles of chromosomal rearrangements in speciation.
Collapse
Affiliation(s)
- Kay Lucek
- Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland.
| | - Hannah Augustijnen
- Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland
| | - Marcial Escudero
- Department of Plant Biology and Ecology, University of Seville, Reina Mercedes, ES-41012 Seville, Spain
| |
Collapse
|
16
|
Kataoka K, Togawa Y, Sanno R, Asahi T, Yura K. Dissecting cricket genomes for the advancement of entomology and entomophagy. Biophys Rev 2022; 14:75-97. [PMID: 35340598 PMCID: PMC8921346 DOI: 10.1007/s12551-021-00924-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
Significant advances in biophysical methods such as next-generation sequencing technologies have now opened the way to conduct evolutionary and applied research based on the genomic information of greatly diverse insects. Crickets belonging to Orthoptera (Insecta: Polyneoptera), one of the most flourishing groups of insects, have contributed to the development of multiple scientific fields including developmental biology and neuroscience and have been attractive targets in evolutionary ecology for their diverse ecological niches. In addition, crickets have recently gained recognition as food and feed. However, the genomic information underlying their biological basis and application research toward breeding is currently underrepresented. In this review, we summarize the progress of genomics of crickets. First, we outline the phylogenetic position of crickets in insects and then introduce recent studies on cricket genomics and transcriptomics in a variety of fields. Furthermore, we present findings from our analysis of polyneopteran genomes, with a particular focus on their large genome sizes, chromosome number, and repetitive sequences. Finally, how the cricket genome can be beneficial to the food industry is discussed. This review is expected to enhance greater recognition of how important the cricket genomes are to the multiple biological fields and how basic research based on cricket genome information can contribute to tackling global food security.
Collapse
Affiliation(s)
- Kosuke Kataoka
- Comprehensive Research Organization, Waseda University, Tokyo, Japan
| | - Yuki Togawa
- School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Ryuto Sanno
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Toru Asahi
- Comprehensive Research Organization, Waseda University, Tokyo, Japan
- School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo, Japan
| | - Kei Yura
- School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| |
Collapse
|
17
|
Cardoso DC, Cristiano MP. Karyotype Diversity, Mode, and Tempo of the Chromosomal Evolution of Attina (Formicidae: Myrmicinae: Attini): Is There an Upper Limit to Chromosome Number? INSECTS 2021; 12:insects12121084. [PMID: 34940172 PMCID: PMC8707115 DOI: 10.3390/insects12121084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/02/2022]
Abstract
Simple Summary Ants are an important insect group that includes a considerable number of species. Along with this diversity in species, they also exhibit a wide variation in chromosome numbers, from 1 up to 60 chromosomes. DNA molecules can be counted in a specific stage of the cell life cycle and quantified. These DNA molecules are very tightly packed together with several proteins and are called chromosomes. Each species shows a specific number of chromosomes with different shapes and sizes, as well as different quantities of DNA. We can use such information (the number of chromosomes, shape of the chromosomes, and quantity of DNA) as morphological attributes to study evolution at the species level. In this study, we describe new karyotypes of several ant species. In addition, from previous studies, we have compiled all the available information regarding the chromosome number and DNA quantity in fungus-farming ant cells. Different processes, called rearrangements, can change chromosomes over time, producing new character states. Such states can be tracked, along with the species and groups of similar species, using their relationships to identify patterns. We use DNA sequences to reconstruct the relationships of fungus-farming ant species (molecular phylogeny). By comparing such phylogeny with the chromosome number and DNA quantity, we discuss the evolution of chromosomes and DNA quantity (or genome size), and the potential limits to these features across fungus-farming ants. Abstract Ants are an important insect group that exhibits considerable diversity in chromosome numbers. Some species show only one chromosome, as in the males of the Australian bulldog ant Myrmecia croslandi, while some have as many as 60 chromosomes, as in the males of the giant Neotropical ant Dinoponera lucida. Fungus-growing ants are a diverse group in the Neotropical ant fauna, engaged in a symbiotic relationship with a basidiomycete fungus, and are widely distributed from Nearctic to Neotropical regions. Despite their importance, new chromosome counts are scarcely reported, and the marked variation in chromosome number across species has been poorly studied under phylogenetic and genome evolutionary contexts. Here, we present the results of the cytogenetic examination of fungus-farming ants and compile the cytogenetic characteristics and genome size of the species studied to date to draw insights regarding the evolutionary paths of karyotype changes and diversity. These data are coupled with a fossil-calibrated phylogenetic tree to discuss the mode and tempo of chromosomal shifting, considering whether there is an upper limit for chromosome number and genome size in ants, using fungus-farming ants as a model study. We recognize that karyotypes are generally quite variable across fungus-farming ant phylogeny, mostly between genera, and are more numerically conservative within genera. A low chromosome number, between 10 and 12 chromosomes, seems to present a notable long-term evolutionary stasis (intermediate evolutionary stasis) in fungus-farming ants. All the genome size values were inside a limited spectrum below 1 pg. Eventual departures in genome size occurred with regard to the mean of 0.38 pg, indicating that there is a genome, and likely a chromosome, number upper limit.
Collapse
|
18
|
Kuznetsova VG, Gavrilov-Zimin IA, Grozeva SM, Golub NV. Comparative analysis of chromosome numbers and sex chromosome systems in Paraneoptera (Insecta). COMPARATIVE CYTOGENETICS 2021; 15:279-327. [PMID: 34616525 PMCID: PMC8490342 DOI: 10.3897/compcytogen.v15.i3.71866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/06/2021] [Indexed: 05/28/2023]
Abstract
This article is part (the 4th article) of the themed issue (a monograph) "Aberrant cytogenetic and reproductive patterns in the evolution of Paraneoptera". The purpose of this article is to consider chromosome structure and evolution, chromosome numbers and sex chromosome systems, which all together constitute the chromosomal basis of reproduction and are essential for reproductive success. We are based on our own observations and literature data available for all major lineages of Paraneoptera including Zoraptera (angel insects), Copeognatha (=Psocoptera; bark lice), Parasita (=Phthiraptera s. str; true lice), Thysanoptera (thrips), Homoptera (scale insects, aphids, jumping plant-lice, whiteflies, and true hoppers), Heteroptera (true bugs), and Coleorrhyncha (moss bugs). Terminology, nomenclature, classification, and the study methods are given in the first paper of the issue (Gavrilov-Zimin et al. 2021).
Collapse
Affiliation(s)
- Valentina G. Kuznetsova
- Zoological Institute, Russian Academy of Sciences, Universitetskaya emb. 1, St. Petersburg, 199034, RussiaZoological Institute, Russian Academy of SciencesSt. PetersburgRussia
| | - Ilya A. Gavrilov-Zimin
- Zoological Institute, Russian Academy of Sciences, Universitetskaya emb. 1, St. Petersburg, 199034, RussiaZoological Institute, Russian Academy of SciencesSt. PetersburgRussia
| | - Snejana M. Grozeva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Blvd Tsar Osvoboditel 1, Sofia 1000, BulgariaInstitute of Biodiversity and Ecosystem Research, Bulgarian Academy of SciencesSofiaBulgaria
| | - Natalia V. Golub
- Zoological Institute, Russian Academy of Sciences, Universitetskaya emb. 1, St. Petersburg, 199034, RussiaZoological Institute, Russian Academy of SciencesSt. PetersburgRussia
| |
Collapse
|
19
|
Abstract
Chromosome size and morphology vary within and among species, but little is known about the proximate or ultimate causes of these differences. Cichlid fish species in the tribe Oreochromini share an unusual giant chromosome that is ∼3 times longer than the other chromosomes. This giant chromosome functions as a sex chromosome in some of these species. We test two hypotheses of how this giant sex chromosome may have evolved. The first hypothesis proposes that it evolved by accumulating repetitive elements as recombination was reduced around a dominant sex determination locus, as suggested by canonical models of sex chromosome evolution. An alternative hypothesis is that the giant sex chromosome originated via the fusion of an autosome with a highly repetitive B chromosome, one of which carried a sex determination locus. We test these hypotheses using comparative analysis of chromosome-scale cichlid and teleost genomes. We find that the giant sex chromosome consists of three distinct regions based on patterns of recombination, gene and transposable element content, and synteny to the ancestral autosome. The WZ sex determination locus encompasses the last ∼105 Mb of the 134-Mb giant chromosome. The last 47 Mb of the giant chromosome shares no obvious homology to any ancestral chromosome. Comparisons across 69 teleost genomes reveal that the giant sex chromosome contains unparalleled amounts of endogenous retroviral elements, immunoglobulin genes, and long noncoding RNAs. The results favor the B chromosome fusion hypothesis for the origin of the giant chromosome.
Collapse
Affiliation(s)
- Matthew A Conte
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Frances E Clark
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Reade B Roberts
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Luohao Xu
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Qi Zhou
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
- MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD, USA
| |
Collapse
|
20
|
Lukhtanov VA, Dantchenko AV. Chromosomal and DNA barcode analysis of the Polyommatus ( Agrodiaetus) damone (Eversmann, 1841) species complex (Lepidoptera, Lycaenidae). COMPARATIVE CYTOGENETICS 2021; 15:1-22. [PMID: 33505635 PMCID: PMC7801365 DOI: 10.3897/compcytogen.v15.i1.60347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
The Polyommatus (Agrodiaetus) damone (Eversmann, 1841) species complex comprises from 5 to 8 species distributed in southeastern Europe and southern Siberia. Here we used chromosomal and DNA-barcode markers in order to test the taxonomic hypotheses previously suggested for this complex. We revealed that all taxa within this group demonstrate chromosomal stasis and share the same or very similar haploid chromosome number (n = 66 or n = 67). This finding is unexpected since the karyotypes are known to be very diverse and species-specific within the other taxa of the subgenus Agrodiaetus Hübner, 1822. Analysis of the mitochondrial gene COI revealed six diverged clusters of individuals within the complex. Each cluster has a specific geographic distribution and is characterized by distinct morphological features in the wing pattern. The clusters mostly (but not always) correlate with traditionally recognized species. As a result of our study, we describe a new subspecies P. (A.) iphigenides zarmitanussubsp. nov. from Uzbekistan and Tajikistan and show that the taxon originally described as Lycaena kindermanni var. melania Staudinger, 1886 represents a subspecies P. (A.) iphigenides melanius (Staudinger, 1886). Polyommatus (A.) samusi Korb, 2017 (syn. nov.) and P. (A.) melanius komarovi Korb, 2017 (syn. nov.) are considered here as junior subjective synonyms of P. (A.) iphigenides iphigenides (Staudinger, 1886).
Collapse
Affiliation(s)
- Vladimir A. Lukhtanov
- Department of Karyosystematics, Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, RussiaZoological Institute of the Russian Academy of SciencesSt. PetersburgRussia
| | - Alexander V. Dantchenko
- Department of Karyosystematics, Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, RussiaZoological Institute of the Russian Academy of SciencesSt. PetersburgRussia
- Faculty of Chemistry, Lomonosov Moscow State University, GSP-1, Leninskiye Gory 1/11, Moscow119991, RussiaLomonosov Moscow State UniversityMoscowRussia
| |
Collapse
|
21
|
Lukhtanov VA, Dantchenko AV, Balayan KV, Gagarina AV. Karyotype and DNA barcode of Polyommatus ( Agrodiaetus) cyaneus (Staudinger, 1899) from its type locality: implication for taxonomic and evolutionary research in Polyommatus blue butterflies (Lepidoptera, Lycaenidae). COMPARATIVE CYTOGENETICS 2020; 14:567-575. [PMID: 33244355 PMCID: PMC7686216 DOI: 10.3897/compcytogen.v14i4.59574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
Chromosomal and molecular analyses of rapidly evolving organisms such as Polyommatus Latreille, 1804 blue butterflies are essential for understanding their taxonomy and evolutionary history, and the studies of populations from their type localities are crucially important for resolving problems of nomenclature and species identity. Here we present data on the topotypical population of the blue butterfly species described as Lycaena damone var. cyanea Staudinger, 1899. This taxon was described from Khankendi (Nagorno-Karabakh, Caucasus), and rediscovered at the type locality for the first time since it was collected there in 1869. The specimens were found on dry stony meadows with a predominance of Onobrychis radiata Bieberstein, 1810, on upper border of oak forests. Their haploid chromosome number (n) was established as n = 17. Chromosomal and mitochondrial DNA barcode analyses of the studied samples from type-locality provided an opportunity for the critical taxonomic re-examination of Caucasian species of the subgenus Agrodiaetus Hübner, 1822 of the genus Polyommatus Latreille, 1804. The obtained data support the interpretation of the P. (A.) cyaneus (Staudinger, 1899) and P. (A.) carmon (Herrich-Schäffer, 1851) as two different, not closely related species complexes as previously hypothesized by Hugo de Lesse. On the contrary, the treatment by Walter Forster who considered these taxa as two groups of conspecific populations was not supported by our data.
Collapse
Affiliation(s)
- Vladimir A. Lukhtanov
- Department of Karyosystematics, Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, RussiaZoological Institute, Russian Academy of SciencesSt. PetersburgRussia
| | - Alexander V. Dantchenko
- Department of Karyosystematics, Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, RussiaZoological Institute, Russian Academy of SciencesSt. PetersburgRussia
- Faculty of Chemistry, Lomonosov Moscow State University, GSP-1, Leninskiye Gory 1/11, Moscow119991, RussiaLomonosov Moscow State UniversityMoscowRussia
| | - Karine V. Balayan
- Yerevan Botanical Garden of the Institute of Botany of the NAS RA, Acharyan str. 1, Yerevan 0040, ArmeniaInstitute of Botany, NAS RAYerevanArmenia
| | - Anastasia V. Gagarina
- Department of Karyosystematics, Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, RussiaZoological Institute, Russian Academy of SciencesSt. PetersburgRussia
| |
Collapse
|
22
|
Šťáhlavský F, Nguyen P, Sadílek D, Štundlová J, Just P, Haddad CR, Koç H, Ranawana KB, Stockmann M, Yağmur EA, Kovařík F. Evolutionary dynamics of rDNA clusters on chromosomes of buthid scorpions (Chelicerata: Arachnida). Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
We examined the distribution of genes for major ribosomal RNAs (rDNA) on holokinetic chromosomes of 74 species belonging to 19 genera of scorpions from the family Buthidae using fluorescence in situ hybridization (FISH). Our analysis revealed differences between the two main evolutionary lineages within the family. The genera belonging to the ‘Buthus group’, with a proposed Laurasian origin, possess one pair of rDNA mainly in an interstitial position, with the only exceptions being the terminal location found in some Hottentotta and Buthacus species, possibly as a result of chromosome fissions. All the remaining buthid ‘groups’ possess rDNA found strictly in a terminal position. However, the number of signals may increase from an ancestral state of one pair of rDNA loci to up to seven signals in Reddyanus ceylonensis Kovařík et al., 2016. Despite the differences in evolutionary dynamics of the rDNA clusters between the ‘Buthus group’ and other lineages investigated, we found a high incidence of reciprocal translocations and presence of multivalent associations during meiosis in the majority of the genera studied. These phenomena seem to be typical for the whole family Buthidae.
Collapse
Affiliation(s)
- František Šťáhlavský
- Department of Zoology, Faculty of Science, Charles University, Viničná, Prague, Czech Republic
| | - Petr Nguyen
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská, České Budějovice, Czech Republic
| | - David Sadílek
- Department of Zoology, Faculty of Science, Charles University, Viničná, Prague, Czech Republic
| | - Jana Štundlová
- Department of Zoology, Faculty of Science, Charles University, Viničná, Prague, Czech Republic
| | - Pavel Just
- Department of Zoology, Faculty of Science, Charles University, Viničná, Prague, Czech Republic
| | - Charles R Haddad
- Department of Zoology and Entomology, University of the Free State, Bloemfontein, South Africa
| | - Halil Koç
- Department of Biology, Faculty of Arts and Science, Sinop University, Sinop, Turkey
| | - Kithsiri B Ranawana
- Department of Zoology, Faculty of Science, University of Peradeniya, Sri Lanka
| | | | - Ersen Aydin Yağmur
- Alaşehir Vocational School, Celal Bayar University, Alaşehir, Manisa, Turkey
| | - František Kovařík
- Department of Zoology, Faculty of Science, Charles University, Viničná, Prague, Czech Republic
| |
Collapse
|
23
|
Lukhtanov VA, Dantchenko AV, Khakimov FR, Sharafutdinov D, Pazhenkova EA. Karyotype evolution and flexible (conventional versus inverted) meiosis in insects with holocentric chromosomes: a case study based on Polyommatus butterflies. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
The Polyommatus butterflies have holocentric chromosomes, which are characterized by kinetic activity distributed along the entire chromosome length, and the highest range of haploid chromosome numbers (n) known within a single eukaryotic genus (from n = 10 to n = 226). Previous analyses have shown that these numbers most likely evolved gradually from an ancestral karyotype, in accordance with the Brownian motion model of chromosome change accumulation. Here we studied chromosome sets within a monophyletic group of previously non-karyotyped Polyommatus species. We demonstrate that these species have a limited interspecific chromosome number variation from n = 16 to n = 25, which is consistent with the Brownian motion model prediction. We also found intra- and interpopulation variation in the chromosome numbers. These findings support the model of karyotype evolution through the gradual accumulation of neutral or weakly underdominant rearrangements that can persist in the heterozygous state within a population. For Polyommatus poseidonides we report the phenomenon of flexible meiosis in which the chromosome multivalents are able to undergo either conventional or inverted meiosis within the same individual. We hypothesise that the ability to invert the order of the meiotic events may be adaptive and can facilitate proper chromosome segregation in chromosomal heterozygotes, thus promoting rapid karyotype evolution.
Collapse
Affiliation(s)
- Vladimir A Lukhtanov
- Department of Karyosystematics, Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexander V Dantchenko
- Department of Karyosystematics, Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Fayzali R Khakimov
- Pavlovsky Institute of Zoology and Parasitology, Academy of Sciences of the Republic of Tajikistan, Dushanbe, Tajikistan
| | - Damir Sharafutdinov
- Pavlovsky Institute of Zoology and Parasitology, Academy of Sciences of the Republic of Tajikistan, Dushanbe, Tajikistan
| | - Elena A Pazhenkova
- Department of Entomology, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
24
|
de Vos JM, Augustijnen H, Bätscher L, Lucek K. Speciation through chromosomal fusion and fission in Lepidoptera. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190539. [PMID: 32654638 DOI: 10.1098/rstb.2019.0539] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Changes in chromosome numbers may strongly affect reproductive barriers, because individuals heterozygous for distinct karyotypes are typically expected to be at least partially sterile or to show reduced recombination. Therefore, several classic speciation models are based on chromosomal changes. One import mechanism generating variation in chromosome numbers is fusion and fission of existing chromosomes, which is particularly likely in species with holocentric chromosomes, i.e. chromosomes that lack a single centromere. Holocentric chromosomes evolved repeatedly across the tree of life, including in Lepidoptera. Although changes in chromosome numbers are hypothesized to be an important driver of the spectacular diversification of Lepidoptera, comparative studies across the order are lacking. We performed the first comprehensive literature survey of karyotypes for Lepidoptera species since the 1970s and tested if, and how, chromosomal variation might affect speciation. Even though a meta-analysis of karyological differences between closely related taxa did not reveal an effect on the degree of reproductive isolation, phylogenetic diversification rate analyses across the 16 best-covered genera indicated a strong, positive association of rates of chromosome number evolution and speciation. These findings suggest a macroevolutionary impact of varying chromosome numbers in Lepidoptera and likely apply to other taxonomic groups, especially to those with holocentric chromosomes. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.
Collapse
Affiliation(s)
- Jurriaan M de Vos
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Hannah Augustijnen
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Livio Bätscher
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Kay Lucek
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
25
|
Lukhtanov VA, Dantchenko AV. Karyotype of Polyommatus (Agrodiaetus) eriwanensis Forster, 1960 and taxonomic position of P. (A.) interjectus de Lesse, 1960 (Lepidoptera, Lycaenidae). COMPARATIVE CYTOGENETICS 2019; 13:359-366. [PMID: 31762946 PMCID: PMC6863936 DOI: 10.3897/compcytogen.v13i4.46897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
The karyotype of Polyommatus (Agrodiaetus) eriwanensis Forster, 1960 from the type locality ("Eriwan" [Yerevan, Armenia]) and other localities in Armenia was investigated. The number of chromosomal elements (bivalents+ multivalents) observed in male meiosis I was found to vary from 29 to 34. In individuals with n = 34, all observed elements were represented by bivalents. In other specimens, heterozygosity for different number of chromosomal fusions resulted in multivalent formation at MI stage and consequently in a lower number of recognizable chromosomal elements. We show that all karyotype peculiarities of P. (A.) interjectus de Lesse, 1960 (n = 29-32) from Turkey are similar to those in A. eriwanensis. The butterflies of these taxa have allopatric distribution and can be considered as conspecific.
Collapse
Affiliation(s)
- Vladimir A. Lukhtanov
- Department of Karyosystematics, Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, Russia
- Department of Entomology, St. Petersburg State University, Universitetskaya nab 7/9, St. Petersburg 199034, Russia
| | - Alexander V. Dantchenko
- Department of Karyosystematics, Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, GSP-1, Leninskiye Gory 1/11, Moscow119991, Russia
| |
Collapse
|
26
|
Lukhtanov VA, Efetov KA, Dantchenko AV. Karyotype reinvestigation does not confirm the presence of two cryptic species and interspecific hybridization in the Polyommatus ( Agrodiaetus) damocles complex in the Crimea (Lepidoptera, Lycaenidae). COMPARATIVE CYTOGENETICS 2019; 13:311-319. [PMID: 31662831 PMCID: PMC6813172 DOI: 10.3897/compcytogen.v13i3.46777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
The karyotype of the blue butterflies from the Angarskiy Pass (Crimea), previously attributed to Polyommatus (Agrodiaetus) poseidon (Herrich-Schäffer, 1851), was re-examined. In all 19 studied individuals, we found the haploid chromosome number n = 26, including 7 pairs of relatively large and 19 pairs of relatively small chromosomes. According to the chromosome number and karyotype structure, the studied population does not differ from P. (A.) damocles krymaeus (Sheljuzhko, 1928) from the eastern part of the Crimean Mountains. This result does not confirm the previously formulated hypotheses, according to which (1) two morphologically similar but karyologically different species, P. (A.) poseidon and P. (A.) damocles krymaeus, occur sympatrically in the Crimea and (2) there is hybridization between these taxa on the Angarskiy Pass. Thus, only three species of the subgenus Agrodiaetus Hübner, 1822 have been reliably established for the Crimea: P. (A.) damone pljushtchi Lukhtanov & Budashkin, 1993, P. (A.) damocles krymaeus (Sheljuzhko, 1928) and P. (A.) ripartii budashkini Kolev & de Prins, 1995.
Collapse
Affiliation(s)
- Vladimir A. Lukhtanov
- Department of Karyosystematics, Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, RussiaZoological Institute, Russian Academy of SciencesSt. PetersburgRussia
- Department of Entomology, St. Petersburg State University, Universitetskaya nab 7/9, St. Petersburg 199034, RussiaSt. Petersburg State UniversitySt. PetersburgRussia
| | - Konstantin A. Efetov
- Department of Biological Chemistry and Laboratory of Biotechnology, V. I. Vernadsky Crimean Federal University, Lenin blvd. 5/7, Simferopol 295051, RussiaV. I. Vernadsky Crimean Federal UniversitySimferopolRussia
| | - Alexander V. Dantchenko
- Department of Karyosystematics, Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, RussiaZoological Institute, Russian Academy of SciencesSt. PetersburgRussia
- Faculty of Chemistry, Lomonosov Moscow State University, GSP-1, Leninskiye Gory 1/11, Moscow119991, RussiaZoological Institute, Russian Academy of SciencesSaint PetersburgRussia
| |
Collapse
|
27
|
Hill J, Rastas P, Hornett EA, Neethiraj R, Clark N, Morehouse N, de la Paz Celorio-Mancera M, Cols JC, Dircksen H, Meslin C, Keehnen N, Pruisscher P, Sikkink K, Vives M, Vogel H, Wiklund C, Woronik A, Boggs CL, Nylin S, Wheat CW. Unprecedented reorganization of holocentric chromosomes provides insights into the enigma of lepidopteran chromosome evolution. SCIENCE ADVANCES 2019; 5:eaau3648. [PMID: 31206013 PMCID: PMC6561736 DOI: 10.1126/sciadv.aau3648] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 05/03/2019] [Indexed: 05/04/2023]
Abstract
Chromosome evolution presents an enigma in the mega-diverse Lepidoptera. Most species exhibit constrained chromosome evolution with nearly identical haploid chromosome counts and chromosome-level gene collinearity among species more than 140 million years divergent. However, a few species possess radically inflated chromosomal counts due to extensive fission and fusion events. To address this enigma of constraint in the face of an exceptional ability to change, we investigated an unprecedented reorganization of the standard lepidopteran chromosome structure in the green-veined white butterfly (Pieris napi). We find that gene content in P. napi has been extensively rearranged in large collinear blocks, which until now have been masked by a haploid chromosome number close to the lepidopteran average. We observe that ancient chromosome ends have been maintained and collinear blocks are enriched for functionally related genes suggesting both a mechanism and a possible role for selection in determining the boundaries of these genome-wide rearrangements.
Collapse
Affiliation(s)
- Jason Hill
- Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Corresponding author. (J.H.); (C.W.W.)
| | - Pasi Rastas
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Emily A. Hornett
- Department of Zoology, University of Cambridge, Cambridge, UK
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Ramprasad Neethiraj
- Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Nathan Clark
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Nathan Morehouse
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | | | - Jofre Carnicer Cols
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, 08028 Barcelona, Spain
- CREAF, Global Ecology Unit, Autonomous University of Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Heinrich Dircksen
- Functional Morphology, Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Camille Meslin
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- INRA, Department of Sensory Ecology, Institute of Ecology and Environmental Sciences of Paris, Route de Saint-Cyr, 78026 Versailles Cedex, France
| | - Naomi Keehnen
- Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Peter Pruisscher
- Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Kristin Sikkink
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN 55108, USA
- Department of Biology, University of Mississippi, University, MS 38677, USA
| | - Maria Vives
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, 08028 Barcelona, Spain
- CREAF, Global Ecology Unit, Autonomous University of Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Christer Wiklund
- Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Alyssa Woronik
- Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Carol L. Boggs
- Department of Biological Sciences University of South Carolina, Columbia, SC 29208, USA
| | - Sören Nylin
- Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Christopher W. Wheat
- Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden
- Corresponding author. (J.H.); (C.W.W.)
| |
Collapse
|
28
|
Menezes RST, Gazoni T, Costa MA. Cytogenetics of warrior wasps (Vespidae:Synoeca) reveals intense evolutionary dynamics of ribosomal DNA clusters and an unprecedented number of microchromosomes in Hymenoptera. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/bly210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Rodolpho S T Menezes
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras – Universidade de São Paulo (FFCLRP/USP), Ribeirão Preto, SP, Brazil
| | - Thiago Gazoni
- Departamento de Biologia – Universidade Estadual Paulista (UNESP), Instituto de Biociências, Rio Claro, SP, Brazil
| | - Marco A Costa
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| |
Collapse
|
29
|
Lukhtanov VA. Two types of highly ordered micro- and macrochromosome arrangement in metaphase plates of butterflies (Lepidoptera). COMPARATIVE CYTOGENETICS 2019; 13:19-25. [PMID: 30687457 PMCID: PMC6341045 DOI: 10.3897/compcytogen.v13i1.32614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 05/13/2023]
Abstract
In karyotype of many organisms, chromosomes form two distinct size groups: macrochromosomes and microchromosomes. During cell divisions, the position of the macro- and microchromosomes is often ordered within metaphase plate. In many reptiles, amphibians, birds, insects of the orthopteran family Tettigoniidae and in some plants, a so called "reptilian" type organization is found, with microchromosomes situated in the center of metaphase plate and with macrochromosomes situated at the periphery. An opposite, "lepidopteran" type is known in butterflies and moths (i.e. in the order Lepidoptera) and is characterized by macrochromosomes situated in the center and by microchromosomes situated at the periphery. The anomalous arrangement found in Lepidoptera was previously explained by holocentric organization of their chromosomes. Here I analyse the structure of meiotic metaphase I plates in ithomiine butterfly, Forbestraolivencia (H. Bates, 1862) (Nymphalidae, Danainae, Ithomiini) which has a clear "reptilian" organization, contrary to previous observations in Lepidoptera. In this species large bivalents (i.e. macrochromosomes) form a regular peripheral circle, whereas the minute bivalents (i.e. microchromosomes) occupy the center of this circle. The reasons and possible mechanisms resulting in two drastically different spatial chromosome organization in butterflies are discussed.
Collapse
Affiliation(s)
- Vladimir A. Lukhtanov
- Department of Karyosystematics, Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, RussiaZoological Institute of the Russian Academy of SciencesSt. PetersburgRussia
- Department of Entomology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, RussiaSt. Petersburg State UniversitySt. PetersburgRussia
| |
Collapse
|
30
|
Inevitability or contingency: how many chromosomes do we really need? SCIENCE CHINA-LIFE SCIENCES 2018; 62:140-143. [PMID: 30519879 DOI: 10.1007/s11427-018-9425-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/25/2018] [Indexed: 12/15/2022]
|
31
|
Versatility of multivalent orientation, inverted meiosis, and rescued fitness in holocentric chromosomal hybrids. Proc Natl Acad Sci U S A 2018; 115:E9610-E9619. [PMID: 30266792 DOI: 10.1073/pnas.1802610115] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chromosomal rearrangements (e.g., fusions/fissions) have the potential to drive speciation. However, their accumulation in a population is generally viewed as unlikely, because chromosomal heterozygosity should lead to meiotic problems and aneuploid gametes. Canonical meiosis involves segregation of homologous chromosomes in meiosis I and sister chromatid segregation during meiosis II. In organisms with holocentric chromosomes, which are characterized by kinetic activity distributed along almost the entire chromosome length, this order may be inverted depending on their metaphase I orientation. Here we analyzed the evolutionary role of this intrinsic versatility of holocentric chromosomes, which is not available to monocentric ones, by studying F1 to F4 hybrids between two chromosomal races of the Wood White butterfly (Leptidea sinapis), separated by at least 24 chromosomal fusions/fissions. We found that these chromosomal rearrangements resulted in multiple meiotic multivalents, and, contrary to the theoretical prediction, the hybrids displayed relatively high reproductive fitness (42% of that of the control lines) and regular behavior of meiotic chromosomes. In the hybrids, we also discovered inverted meiosis, in which the first and critical stage of chromosome number reduction was replaced by the less risky stage of sister chromatid separation. We hypothesize that the ability to invert the order of the main meiotic events facilitates proper chromosome segregation and hence rescues fertility and viability in chromosomal hybrids, potentially promoting dynamic karyotype evolution and chromosomal speciation.
Collapse
|
32
|
Insights into the Structure of the Spruce Budworm ( Choristoneura fumiferana) Genome, as Revealed by Molecular Cytogenetic Analyses and a High-Density Linkage Map. G3-GENES GENOMES GENETICS 2018; 8:2539-2549. [PMID: 29950429 PMCID: PMC6071596 DOI: 10.1534/g3.118.200263] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genome structure characterization can contribute to a better understanding of processes such as adaptation, speciation, and karyotype evolution, and can provide useful information for refining genome assemblies. We studied the genome of an important North American boreal forest pest, the spruce budworm, Choristoneura fumiferana, through a combination of molecular cytogenetic analyses and construction of a high-density linkage map based on single nucleotide polymorphism (SNP) markers obtained through a genotyping-by-sequencing (GBS) approach. Cytogenetic analyses using fluorescence in situ hybridization methods confirmed the haploid chromosome number of n = 30 in both sexes of C. fumiferana and showed, for the first time, that this species has a WZ/ZZ sex chromosome system. Synteny analysis based on a comparison of the Bombyx mori genome and the C. fumiferana linkage map revealed the presence of a neo-Z chromosome in the latter species, as previously reported for other tortricid moths. In this neo-Z chromosome, we detected an ABC transporter C2 (ABCC2) gene that has been associated with insecticide resistance. Sex-linkage of the ABCC2 gene provides a genomic context favorable to selection and rapid spread of resistance against Bacillus thuringiensis serotype kurstaki (Btk), the main insecticide used in Canada to control spruce budworm populations. Ultimately, the linkage map we developed, which comprises 3586 SNP markers distributed over 30 linkage groups for a total length of 1720.41 cM, will be a valuable tool for refining our draft assembly of the spruce budworm genome.
Collapse
|
33
|
Lukhtanov VA, Dantchenko AV. A new butterfly species from south Russia revealed through chromosomal and molecular analysis of the Polyommatus (Agrodiaetus) damonides complex (Lepidoptera, Lycaenidae). COMPARATIVE CYTOGENETICS 2017; 11:769-795. [PMID: 29302297 PMCID: PMC5740405 DOI: 10.3897/compcytogen.v11i4.20072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 10/22/2017] [Indexed: 05/26/2023]
Abstract
Finding a new species is a rare event in easy-to-see and well-studied organisms like butterflies, especially if they inhabit well-explored areas such as the Western Palaearctic. However, even in this region, gaps in taxonomic knowledge still exist and here we report such a discovery. Using a combined analysis of chromosomal and molecular markers we demonstrate that Polyommatus blue populations from Daghestan (South Russia), previously identified as P. aserbeidschanus, represent in fact a new species which is described here as P. australorossicussp. n. We also show that the enigmatic Polyommatus damonides described as a form of Polyommatus damone and later considered as an entity similar to P. poseidon or P. ninae is conspecific with a taxon previously known as P. elbursicus. As a result of our study, we propose several taxonomic changes within the P. damonides species complex and suggest the following new combinations: P. damonides elbursicus Forster, 1956, comb. n. and P. damonides gilanensis Eckweiler, 2002, comb. n.
Collapse
Affiliation(s)
- Vladimir A. Lukhtanov
- Department of Karyosystematics, Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, Russia
- Department of Entomology, St. Petersburg State University, Universitetskaya nab 7/9, St. Petersburg 199034, Russia
| | - Alexander V. Dantchenko
- Faculty of Chemistry, Lomonosov Moscow State University, GSP-1, Leninskiye Gory 1/13, Moscow119991, Russia
| |
Collapse
|
34
|
Lukhtanov VA, Shapoval NA. Chromosomal identification of cryptic species sharing their DNA barcodes: Polyommatus (Agrodiaetus) antidolus and P. (A.) morgani in Iran (Lepidoptera, Lycaenidae). COMPARATIVE CYTOGENETICS 2017; 11:759-768. [PMID: 29302296 PMCID: PMC5740395 DOI: 10.3897/compcytogen.v11i4.20876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/08/2017] [Indexed: 05/26/2023]
Abstract
DNA barcoding has been suggested as a universal tool for molecular species identification; however, it cannot be applied in cases when morphologically similar species share their DNA barcodes due to the common ancestry or mitochondrial introgression. Here we analyze the karyotype of Polyommatus (Agrodiaetus) morgani (Le Cerf, 1909) from the region of its type locality in the southern Zagros Mountains in Iran, provide first chromosomal evidence for P. (A.) antidolus (Rebel, 1901) in Iran and demonstrate that these two species can be easily identified through analysis of their karyotypes whereas they share their mitochondrial barcodes.
Collapse
Affiliation(s)
- Vladimir A. Lukhtanov
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, Russia
- Department of Entomology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, Russia
| | - Nazar A. Shapoval
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, Russia
| |
Collapse
|
35
|
|
36
|
Talla V, Suh A, Kalsoom F, Dincă V, Vila R, Friberg M, Wiklund C, Backström N. Rapid Increase in Genome Size as a Consequence of Transposable Element Hyperactivity in Wood-White (Leptidea) Butterflies. Genome Biol Evol 2017; 9:2491-2505. [PMID: 28981642 PMCID: PMC5737376 DOI: 10.1093/gbe/evx163] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2016] [Indexed: 12/14/2022] Open
Abstract
Characterizing and quantifying genome size variation among organisms and understanding if genome size evolves as a consequence of adaptive or stochastic processes have been long-standing goals in evolutionary biology. Here, we investigate genome size variation and association with transposable elements (TEs) across lepidopteran lineages using a novel genome assembly of the common wood-white (Leptidea sinapis) and population re-sequencing data from both L. sinapis and the closely related L. reali and L. juvernica together with 12 previously available lepidopteran genome assemblies. A phylogenetic analysis confirms established relationships among species, but identifies previously unknown intraspecific structure within Leptidea lineages. The genome assembly of L. sinapis is one of the largest of any lepidopteran taxon so far (643 Mb) and genome size is correlated with abundance of TEs, both in Lepidoptera in general and within Leptidea where L. juvernica from Kazakhstan has considerably larger genome size than any other Leptidea population. Specific TE subclasses have been active in different Lepidoptera lineages with a pronounced expansion of predominantly LINEs, DNA elements, and unclassified TEs in the Leptidea lineage after the split from other Pieridae. The rate of genome expansion in Leptidea in general has been in the range of four Mb/Million year (My), with an increase in a particular L. juvernica population to 72 Mb/My. The considerable differences in accumulation rates of specific TE classes in different lineages indicate that TE activity plays a major role in genome size evolution in butterflies and moths.
Collapse
Affiliation(s)
- Venkat Talla
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Sweden
| | - Alexander Suh
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Sweden
| | - Faheema Kalsoom
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Sweden
| | - Vlad Dincă
- Animal Biodiversity and Evolution Program, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| | - Roger Vila
- Animal Biodiversity and Evolution Program, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| | - Magne Friberg
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre (EBC), Uppsala University, Sweden
| | - Christer Wiklund
- Division of Ecology, Department of Zoology, Stockholm University, Sweden
| | - Niclas Backström
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Sweden
| |
Collapse
|
37
|
Chromosome Healing Is Promoted by the Telomere Cap Component Hiphop in Drosophila. Genetics 2017; 207:949-959. [PMID: 28942425 DOI: 10.1534/genetics.117.300317] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/21/2017] [Indexed: 11/18/2022] Open
Abstract
The addition of a new telomere onto a chromosome break, a process termed healing, has been studied extensively in organisms that utilize telomerase to maintain their telomeres. In comparison, relatively little is known about how new telomeres are constructed on broken chromosomes in organisms that do not use telomerase. Chromosome healing was studied in somatic and germline cells of Drosophila melanogaster, a nontelomerase species. We observed, for the first time, that broken chromosomes can be healed in somatic cells. In addition, overexpression of the telomere cap component Hiphop increased the survival of somatic cells with broken chromosomes, while the cap component HP1 did not, and overexpression of the cap protein HOAP decreased their survival. In the male germline, Hiphop overexpression greatly increased the transmission of healed chromosomes. These results indicate that Hiphop can stimulate healing of a chromosome break. We suggest that this reflects a unique function of Hiphop: it is capable of seeding formation of a new telomeric cap on a chromosome end that lacks a telomere.
Collapse
|
38
|
Vershinina AO, Lukhtanov VA. Evolutionary mechanisms of runaway chromosome number change in Agrodiaetus butterflies. Sci Rep 2017; 7:8199. [PMID: 28811556 PMCID: PMC5557896 DOI: 10.1038/s41598-017-08525-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/10/2017] [Indexed: 11/17/2022] Open
Abstract
Despite predictions of the classic, hybrid-sterility model of chromosomal speciation, some organisms demonstrate high rate of karyotype evolution. This rate is especially impressive in Agrodiaetus butterflies that rapidly evolved the greatest chromosome number diversity known in animal kingdom within a single subgenus. Here we analyzed karyotype evolution in Agrodiaetus using phylogenetic comparative methods. We found that chromosome numbers possess a strong phylogenetic signal. This disproves the chromosome megaevolution model that proposes multiple chromosome rearrangements to accumulate independently in each of closely related species. We found that Brownian motion gives a more adequate description of observed trait changes than Ornstein-Uhlenbeck model. This indicates that chromosome numbers evolve via random walk along branches of the phylogeny. We discovered a correlation between karyotype changes and phylogeny branch lengths. This gradual pattern is inconsistent with the hybrid-sterility model which, due to association of major chromosome changes with cladogenetic events, predicts a high degree of punctualism in karyotype evolution. Thus, low underdominace of chromosomal rearrangements and/or prevalence of the recombination-suppression model over the hybrid-sterility model of chromosome speciation are the most common engines of the runaway chromosome number change observed.
Collapse
Affiliation(s)
- Alisa O Vershinina
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya nab. 1, 199034, St. Petersburg, Russia.
- Department of Ecology & Evolutionary Biology, University of California Santa Cruz, 95064, Santa Cruz, CA, USA.
| | - Vladimir A Lukhtanov
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya nab. 1, 199034, St. Petersburg, Russia.
- Department of Entomology, St Petersburg State University, Universitetskaya nab. 7/9, 199034, St. Petersburg, Russia.
| |
Collapse
|
39
|
|
40
|
Vishnevskaya MS, Saifitdinova AF, Lukhtanov VA. Karyosystematics and molecular taxonomy of the anomalous blue butterflies (Lepidoptera, Lycaenidae) from the Balkan Peninsula. COMPARATIVE CYTOGENETICS 2016; 10:1-85. [PMID: 28105291 PMCID: PMC5220643 DOI: 10.3897/compcytogen.v10i5.10944] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 11/29/2016] [Indexed: 05/26/2023]
Abstract
The Balkan Peninsula represents one of the hottest biodiversity spots in Europe. However, the invertebrate fauna of this region is still insufficiently investigated, even in respect of such well-studied organisms as Lepidoptera. Here we use a combination of chromosomal, molecular and morphological markers to rearrange the group of so-called anomalous blue butterflies (also known as 'brown complex' of the subgenus Agrodiaetus Hübner, [1822] and as the Polyommatus (Agrodiaetus) admetus (Esper, 1783) species group) and to reveal its cryptic taxonomic structure. We demonstrate that Polyommatus aroaniensis (Brown, 1976) is not as widespread in the Balkans as was previously thought. In fact, it has a dot-like distribution range restricted to the Peloponnese Peninsula in South Greece. Polyommatus orphicus Kolev, 2005 is not as closely related to the Turkish species Polyommatus dantchenkoi (Lukhtanov & Wiemers, 2003) as was supposed earlier. Instead, it is a Balkan endemic represented by two subspecies: Polyommatus orphicus orphicus (Bulgaria) and Polyommatus orphicus eleniae Coutsis & De Prins, 2005 (Northern Greece). Polyommatus ripartii (Freyer, 1830) is represented in the Balkans by an endemic subspecies Polyommatus ripartii pelopi. The traditionally recognized Polyommatus admetus (Esper, 1783) is shown to be a heterogeneous complex and is divided into Polyommatus admetus sensu stricto (the Balkans and west Turkey) and Polyommatus yeranyani (Dantchenko & Lukhtanov, 2005) (east Turkey, Armenia, Azerbaijan and Iran). Polyommatus nephohiptamenos (Brown & Coutsis, 1978) is confirmed to be a species with a dot-like distribution range in Northern Greece. Finally, from Central Greece (Timfristos and Parnassos mountains) we describe Polyommatus timfristos Lukhtanov, Vishnevskaya & Shapoval, sp. n. which differs by its haploid chromosome number (n=38) from the closely related and morphologically similar Polyommatus aroaniensis (n=47-48) and Polyommatus orphicus (n=41-42). We provide chromosomal evidence for three separate south Balkan Pleistocene refugia (Peloponnesse, Central Greece and Northern Greece/South Bulgaria) and stress the biogeographic importance of Central Greece as a place of diversification. Then we argue that the data obtained have direct implications for butterfly karyology, taxonomy, biogeography and conservation.
Collapse
Affiliation(s)
- Maria S Vishnevskaya
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya nab. 1, 199034 St. Petersburg, Russia; Department of Entomology, St Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| | - Alsu F Saifitdinova
- Department of Cytology and Histology, St Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| | - Vladimir A Lukhtanov
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya nab. 1, 199034 St. Petersburg, Russia; Department of Entomology, St Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| |
Collapse
|
41
|
Vogt G. Structural specialties, curiosities, and record-breaking features of crustacean reproduction. J Morphol 2016; 277:1399-1422. [DOI: 10.1002/jmor.20582] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/18/2016] [Accepted: 07/06/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Günter Vogt
- Faculty of Biosciences; University of Heidelberg; Im Neuenheimer Feld 230 69120 Heidelberg Germany
| |
Collapse
|
42
|
Šíchová J, Ohno M, Dincă V, Watanabe M, Sahara K, Marec F. Fissions, fusions, and translocations shaped the karyotype and multiple sex chromosome constitution of the northeast-Asian wood white butterfly,Leptidea amurensis. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12756] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jindra Šíchová
- Institute of Entomology; Biology Centre CAS; 370 05 České Budějovice Czech Republic
- Faculty of Science; University of South Bohemia; 370 05 České Budějovice Czech Republic
| | - Mizuki Ohno
- Laboratory of Applied Entomology; Faculty of Agriculture; Iwate University; Morioka 020-8550 Japan
| | - Vlad Dincă
- Biodiversity Institute of Ontario; University of Guelph; Guelph Ontario N1G 2W1 Canada
- Institut de Biologia Evolutiva, (CSIC-Universitat Pompeu-Fabra); 08003 Barcelona Spain
| | - Michihito Watanabe
- NPO Mt. Fuji Nature Conservation Center; 6603 Funatsu, Fujikawaguchiko-machi Yamanashi 401-0301 Japan
| | - Ken Sahara
- Laboratory of Applied Entomology; Faculty of Agriculture; Iwate University; Morioka 020-8550 Japan
| | - František Marec
- Institute of Entomology; Biology Centre CAS; 370 05 České Budějovice Czech Republic
- Faculty of Science; University of South Bohemia; 370 05 České Budějovice Czech Republic
| |
Collapse
|
43
|
Kuznetsova V, Aguin-Pombo D. Comparative cytogenetics of Auchenorrhyncha (Hemiptera, Homoptera): a review. Zookeys 2015:63-93. [PMID: 26807037 PMCID: PMC4722918 DOI: 10.3897/zookeys.538.6724] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/25/2015] [Indexed: 11/12/2022] Open
Abstract
A comprehensive review of cytogenetic features is provided for the large hemipteran suborder Auchenorrhyncha, which currently contains approximately 42,000 valid species. This review is based on the analysis of 819 species, 483 genera, and 31 families representing all presently recognized Auchenorrhyncha superfamilies, e.i. Cicadoidea (cicadas), Cercopoidea (spittle bugs), Membracoidea (leafhoppers and treehoppers), Myerslopioidea (ground-dwelling leafhoppers), and Fulgoroidea (planthoppers). History and present status of chromosome studies are described, as well as the structure of chromosomes, chromosome counts, trends and mechanisms of evolution of karyotypes and sex determining systems, their variation at different taxonomic levels and most characteristic (modal) states, occurrence of parthenogenesis, polyploidy, B-chromosomes and chromosome rearrangements, and methods used for cytogenetic analysis of Auchenorrhyncha.
Collapse
Affiliation(s)
- Valentina Kuznetsova
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya nab. 1, 199034 St. Petersburg, Russia; Saint Petersburg Scientific Center, Universitetskaya nab. 5, 199034, St. Petersburg, Russia
| | - Dora Aguin-Pombo
- University of Madeira, 9000-390 Funchal, Madeira Il., Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO), Vairão, Portugal
| |
Collapse
|