1
|
van der Lee GH, Polling M, van der Laan I, Kodde L, Verdonschot RCM. From DNA to diagnostics: A case study using macroinvertebrate metabarcoding to assess the effectiveness of restoration measures in a Dutch stream. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171413. [PMID: 38442754 DOI: 10.1016/j.scitotenv.2024.171413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Stream ecosystems are under pressure due to multiple stressors. Restoration measures can halt further degradation and improve their ecological status. However, assessment of the effectiveness of the implemented measures is often insufficient because of logistic and financial constraints. DNA-metabarcoding has been proposed to scale up sample processing, although its application as a diagnostic tool has received less attention. The aim of our study was to evaluate if DNA-metabarcoding of stream macroinvertebrates can be used to compute a stressor-specific index to assess the effectiveness of a stream restoration project. For this purpose, we sampled the upstream, restored, and downstream section of a recently restored lowland stream in the Netherlands. At each site, we applied three different methods of macroinvertebrate identification: morphological identification of bulk samples (morphology), DNA-metabarcoding of the same bulk samples (DNA) and metabarcoding of eDNA extracted from the water (eDNA). First, we compared the community composition identified by each method. The communities identified by morphology and DNA were highly similar, whereas the communities generated by the eDNA differed. Second, we analysed whether the identification methods could be used to assess the effectiveness of the restoration project, focussing on a stressor-specific index for flow as the restoration measures aimed at improving flow conditions. Both the morphology and bulk DNA samples indicated improved flow conditions in the restored section of the stream (i.e., less stress from the reduction or absence of flow than in the unrestored sections). Contrary, the eDNA-water samples did not differentiate the amount of stress throughout the catchment, although applying recent developments in eDNA sampling could lead to more robust results. In conclusion, this study forms proof of concept that DNA from bulk samples can be utilized to assess the effectiveness of restoration measures, showing the added value of this approach for water managers.
Collapse
Affiliation(s)
- Gea H van der Lee
- Wageningen Environmental Research, Wageningen UR, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| | - Marcel Polling
- Wageningen Environmental Research, Wageningen UR, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Iris van der Laan
- Waterschap de Dommel, Bosscheweg 56, 5283 WB Boxtel, the Netherlands
| | - Linda Kodde
- Wageningen Environmental Research, Wageningen UR, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Ralf C M Verdonschot
- Wageningen Environmental Research, Wageningen UR, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
2
|
Testing the Influence of Incomplete DNA Barcode Libraries on Ecological Status Assessment of Mediterranean Transitional Waters. BIOLOGY 2021; 10:biology10111092. [PMID: 34827084 PMCID: PMC8614736 DOI: 10.3390/biology10111092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 12/03/2022]
Abstract
Simple Summary The biodiversity and ecological status assessment of transitional water ecosystems by benthic macroinvertebrates investigation could use DNA barcode tools for more rapid and efficient outputs. The principal limits of this application are the incompleteness of DNA barcode databases, the identification of optimal primers set, and the gap in the species sequences. The influence of the incompleteness of DNA barcode libraries on species diversity indices, ecological indicators, and ecological status assessment in transitional waters of the southeast Mediterranean were analysed, underlying the importance to implement DNA barcode libraries and to put an effort toward specific species at a local level. Abstract The ecological assessment of European aquatic ecosystems is regulated under the framework directives on strategy for water and marine environments. Benthic macroinvertebrates are the most used biological quality element for ecological assessment of rivers, coastal-marines, and transitional waters. The morphological identification of benthic macroinvertebrates is the current tool for their assessment. Recently, DNA-based tools have been proposed as effective alternatives. The main current limits of DNA-based applications include the incompleteness of species recorded in the DNA barcode reference libraries and the primers bias. Here, we analysed the influence of the incompleteness of DNA barcode databases on species diversity indices, ecological indicators, and ecological assessment in transitional waters of the southeast Mediterranean, taking into account the availability of commonly sequenced and deposited genomic regions for listed species. The ecological quality status assigned through the potential application of both approaches to the analysed transitional water ecosystems was different in 27% of sites. We also analysed the inter-specific genetic distances to evaluate the potential application of the DNA metabarcoding method. Overall, this work highlights the importance to expand the barcode databases and to analyse, at the regional level, the gaps in the DNA barcodes.
Collapse
|
3
|
Pereira CL, Gilbert MTP, Araújo MB, Matias MG. Fine‐tuning biodiversity assessments: A framework to pair eDNA metabarcoding and morphological approaches. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Cátia Lúcio Pereira
- Museo Nacional de Ciencias NaturalesCSIC Madrid Spain
- Centre for Macroecology, Evolution and Climate Globe Institute University of Copenhagen Copenhagen Denmark
- Rui Nabeiro Biodiversity Chair MED – Mediterranean Institute for Agriculture Environment and Development University of Évora Évora Portugal
| | - M. Thomas P. Gilbert
- Centre for Evolutionary Hologenomics Globe Institute University of Copenhagen Copenhagen Denmark
- University MuseumNTNU Trondheim Norway
| | - Miguel Bastos Araújo
- Museo Nacional de Ciencias NaturalesCSIC Madrid Spain
- Rui Nabeiro Biodiversity Chair MED – Mediterranean Institute for Agriculture Environment and Development University of Évora Évora Portugal
| | - Miguel Graça Matias
- Museo Nacional de Ciencias NaturalesCSIC Madrid Spain
- Rui Nabeiro Biodiversity Chair MED – Mediterranean Institute for Agriculture Environment and Development University of Évora Évora Portugal
| |
Collapse
|
4
|
Jurburg SD, Keil P, Singh BK, Chase JM. All together now: Limitations and recommendations for the simultaneous analysis of all eukaryotic soil sequences. Mol Ecol Resour 2021; 21:1759-1771. [PMID: 33943001 DOI: 10.1111/1755-0998.13401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
The soil environment contains a large, but historically underexplored, reservoir of biodiversity. Sequencing prokaryotic marker genes has become commonplace for the discovery and characterization of soil bacteria and archaea. Increasingly, this approach is also applied to eukaryotic marker genes to characterize the diversity and distribution of soil eukaryotes. However, understanding the properties and limitations of eukaryotic marker sequences is essential for correctly analysing, interpreting, and synthesizing the resulting data. Here, we illustrate several biases from sequencing data that affect measurements of biodiversity that arise from variation in morphology, taxonomy and phylogeny between organisms, as well as from sampling designs. We recommend analytical approaches to overcome these limitations, and outline how the benchmarking and standardization of sequencing protocols may improve the comparability of the data.
Collapse
Affiliation(s)
- Stephanie D Jurburg
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | - Petr Keil
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Department of Computer Science, Martin Luther University, Halle-Wittenberg, Halle, Germany.,Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Praha-Suchdol, Czech Republic
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, and Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, Australia
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Department of Computer Science, Martin Luther University, Halle-Wittenberg, Halle, Germany
| |
Collapse
|
5
|
Rivera SF, Vasselon V, Mary N, Monnier O, Rimet F, Bouchez A. Exploring the capacity of aquatic biofilms to act as environmental DNA samplers: Test on macroinvertebrate communities in rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:144208. [PMID: 33385843 DOI: 10.1016/j.scitotenv.2020.144208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/06/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Aquatic biofilms are heterogeneous assemblages of microorganisms surrounded by a matrix of extracellular polymeric substances (EPS). Recent studies suggest that aquatic biofilms can physically act as sorptive sponges of DNA. We took the opportunity from already available samples of stone biofilms and macroinvertebrates specimens collected in parallel at the same sites to test the capacity of biofilms to act as DNA samplers of macroinvertebrate communities in streams. Macroinvertebrate communities are usually studied with metabarcoding using the DNA extracted from their bodies bulk samples, which remains a time-consuming approach and involves the destruction of all individual specimens from the samples. The ability of biofilms to capture DNA was explored on 19 rivers sites of a tropical island (Mayotte Island, France). First, macroinvertebrate specimens were identified based on their morphological characteristics. Second, DNA was extracted from biofilms, and macroinvertebrate communities were targeted using a standard COI barcode. The resulting morphological and molecular inventories were compared. They provided comparable structures and diversities for macroinvertebrate communities when one is working with the unassigned OTU data. After taxonomic assignment of the OTU data, diversity and richness were no longer correlated. The ecological assessment derived from morphological bulk samples was conserved by the biofilms samples. We also showed that the biofilm method allows to detect a higher diversity for some organisms (Cnidaria), that is hardly accessible with the morphological method. The results of this study exploring the DNA signal captured by natural biofilms are encouraging. However, a more detailed study integrating more replicates and comparing the biodiversity signal based on both morphological and molecular bulk macroinvertebrate samples to the one captured by biofilms will be necessary. Better understanding how the DNA signal captured by natural biofilms represents the biodiversity of a given sampling site is necessary before considering its use for bioassessment applications.
Collapse
Affiliation(s)
- Sinziana F Rivera
- Université Savoie Mont-Blanc, INRAE, UMR CARRTEL, 75bis av. de Corzent, FR-74200 Thonon-les-Bains, France.
| | - Valentin Vasselon
- OFB, Pôle R&D «ECLA», Site INRAE, UMR CARRTEL, 75bis av. de Corzent, FR-74200 Thonon-les-Bains, France
| | - Nathalie Mary
- ETHYC'O, B.P. 13821, 98803 Nouméa Cedex, Nouvelle-Calédonie
| | - Olivier Monnier
- OFB, Service Mobilisation de la Recherche, 5 square Félix Nadar, FR-94300 Vincennes, France
| | - Fréderic Rimet
- Université Savoie Mont-Blanc, INRAE, UMR CARRTEL, 75bis av. de Corzent, FR-74200 Thonon-les-Bains, France
| | - Agnès Bouchez
- Université Savoie Mont-Blanc, INRAE, UMR CARRTEL, 75bis av. de Corzent, FR-74200 Thonon-les-Bains, France
| |
Collapse
|
6
|
Macher TH, Beermann AJ, Leese F. TaxonTableTools: A comprehensive, platform-independent graphical user interface software to explore and visualise DNA metabarcoding data. Mol Ecol Resour 2021; 21:1705-1714. [PMID: 33590697 DOI: 10.1111/1755-0998.13358] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/09/2021] [Indexed: 01/04/2023]
Abstract
DNA metabarcoding is increasingly used as a tool to assess biodiversity in research and environmental management. Powerful analysis software exists to process raw data. However, the translation of sequence read data into biological information and downstream analyses may be difficult for end users with limited expertise in bioinformatics. Thus, there is a growing need for easy-to-use, graphical user interface (GUI) software to analyse and visualise DNA metabarcoding data. Here, we present TaxonTableTools (TTT), a new platform-independent GUI that aims to fill this gap by providing simple, reproducible analysis and visualisation workflows. At its base, TTT uses a "TaXon table", which is a data format that can be generated easily within TTT from two input files: a read table and a taxonomy table obtained using various published metabarcoding pipelines. TTT analysis and visualisation modules include Venn diagrams to compare taxon overlap among replicates, samples, or analysis methods. TTT analyses and visualises basic statistics, such as read proportion per taxon, as well as more sophisticated visualisations, such as interactive Krona charts for taxonomic data exploration. Various ecological analyses can be produced directly, including alpha or beta diversity estimates, and rarefaction analysis ordination plots. Metabarcoding data can be converted into formats required for traditional, taxonomy-based analyses performed by regulatory bioassessment programs. In addition, TTT is able to produce html-based interactive graphics that can be analysed in any web browser. The software comes with a manual and tutorial, is free and publicly available through GitHub (https://github.com/TillMacher/TaxonTableTools) or the Python package index (https://pypi.org/project/taxontabletools/).
Collapse
Affiliation(s)
| | - Arne J Beermann
- Aquatic Ecosystem Research, University of Duisburg-Essen, Essen, Germany
| | - Florian Leese
- Aquatic Ecosystem Research, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
7
|
Arribas P, Andújar C, Bidartondo MI, Bohmann K, Coissac É, Creer S, deWaard JR, Elbrecht V, Ficetola GF, Goberna M, Kennedy S, Krehenwinkel H, Leese F, Novotny V, Ronquist F, Yu DW, Zinger L, Creedy TJ, Meramveliotakis E, Noguerales V, Overcast I, Morlon H, Vogler AP, Papadopoulou A, Emerson BC. Connecting high-throughput biodiversity inventories: Opportunities for a site-based genomic framework for global integration and synthesis. Mol Ecol 2021; 30:1120-1135. [PMID: 33432777 PMCID: PMC7986105 DOI: 10.1111/mec.15797] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 01/03/2023]
Abstract
High-throughput sequencing (HTS) is increasingly being used for the characterization and monitoring of biodiversity. If applied in a structured way, across broad geographical scales, it offers the potential for a much deeper understanding of global biodiversity through the integration of massive quantities of molecular inventory data generated independently at local, regional and global scales. The universality, reliability and efficiency of HTS data can potentially facilitate the seamless linking of data among species assemblages from different sites, at different hierarchical levels of diversity, for any taxonomic group and regardless of prior taxonomic knowledge. However, collective international efforts are required to optimally exploit the potential of site-based HTS data for global integration and synthesis, efforts that at present are limited to the microbial domain. To contribute to the development of an analogous strategy for the nonmicrobial terrestrial domain, an international symposium entitled "Next Generation Biodiversity Monitoring" was held in November 2019 in Nicosia (Cyprus). The symposium brought together evolutionary geneticists, ecologists and biodiversity scientists involved in diverse regional and global initiatives using HTS as a core tool for biodiversity assessment. In this review, we summarize the consensus that emerged from the 3-day symposium. We converged on the opinion that an effective terrestrial Genomic Observatories network for global biodiversity integration and synthesis should be spatially led and strategically united under the umbrella of the metabarcoding approach. Subsequently, we outline an HTS-based strategy to collectively build an integrative framework for site-based biodiversity data generation.
Collapse
Affiliation(s)
- Paula Arribas
- Island Ecology and Evolution Research GroupInstituto de Productos Naturales y Agrobiología (IPNA‐CSIC)San Cristóbal de la LagunaSpain
| | - Carmelo Andújar
- Island Ecology and Evolution Research GroupInstituto de Productos Naturales y Agrobiología (IPNA‐CSIC)San Cristóbal de la LagunaSpain
| | - Martin I. Bidartondo
- Department of Life SciencesImperial College LondonLondonUK
- Comparative Plant and Fungal BiologyRoyal Botanic GardensLondonUK
| | - Kristine Bohmann
- Section for Evolutionary Genomics, Faculty of Health and Medical Sciences, Globe InstituteUniversity of CopenhagenCopenhagenDenmark
| | - Éric Coissac
- Université Grenoble Alpes, CNRS, Université Savoie Mont BlancLECA, Laboratoire d’Ecologie AlpineGrenobleFrance
| | - Simon Creer
- School of Natural SciencesBangor UniversityGwyneddUK
| | - Jeremy R. deWaard
- Centre for Biodiversity GenomicsUniversity of GuelphGuelphCanada
- School of Environmental SciencesUniversity of GuelphGuelphCanada
| | - Vasco Elbrecht
- Centre for Biodiversity Monitoring (ZBM)Zoological Research Museum Alexander KoenigBonnGermany
| | - Gentile F. Ficetola
- Université Grenoble Alpes, CNRS, Université Savoie Mont BlancLECA, Laboratoire d’Ecologie AlpineGrenobleFrance
- Department of Environmental Sciences and PolicyUniversity of MilanoMilanoItaly
| | - Marta Goberna
- Department of Environment and AgronomyINIAMadridSpain
| | - Susan Kennedy
- Biodiversity and Biocomplexity UnitOkinawa Institute of Science and Technology Graduate UniversityOnna‐sonJapan
- Department of BiogeographyTrier UniversityTrierGermany
| | | | - Florian Leese
- Aquatic Ecosystem Research, Faculty of BiologyUniversity of Duisburg‐EssenEssenGermany
- Centre for Water and Environmental Research (ZWU) EssenUniversity of Duisburg‐EssenEssenGermany
| | - Vojtech Novotny
- Biology Centre, Institute of EntomologyCzech Academy of SciencesCeske BudejoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| | - Fredrik Ronquist
- Department of Bioinformatics and GeneticsSwedish Museum of Natural HistoryStockholmSweden
| | - Douglas W. Yu
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunmingChina
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Lucie Zinger
- Institut de Biologie de l’ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERMUniversité PSLParisFrance
| | | | | | | | - Isaac Overcast
- Institut de Biologie de l’ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERMUniversité PSLParisFrance
- Division of Vertebrate ZoologyAmerican Museum of Natural HistoryNew YorkUSA
| | - Hélène Morlon
- Institut de Biologie de l’ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERMUniversité PSLParisFrance
| | - Alfried P. Vogler
- Department of Life SciencesImperial College LondonLondonUK
- Department of Life SciencesNatural History MuseumLondonUK
| | | | - Brent C. Emerson
- Island Ecology and Evolution Research GroupInstituto de Productos Naturales y Agrobiología (IPNA‐CSIC)San Cristóbal de la LagunaSpain
| |
Collapse
|
8
|
van Kuijk T, Biesmeijer JC, van der Hoorn BB, Verdonschot PFM. Functional traits explain crayfish invasive success in the Netherlands. Sci Rep 2021; 11:2772. [PMID: 33531568 PMCID: PMC7854663 DOI: 10.1038/s41598-021-82302-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 01/18/2021] [Indexed: 01/30/2023] Open
Abstract
Biological invasions by nonindigenous species can have negative effects on economies and ecosystems. To limit this impact, current research on biological invasions uses functional traits to facilitate a mechanistic understanding of theoretical and applied questions. Here we aimed to assess the role of functional traits in the progression of crayfish species through different stages of invasion and determine the traits associated with invasive success. A dataset of thirteen functional traits of 15 species currently occurring or available for sale in the Netherlands was evaluated. Six of these crayfish appeared invasive. Important traits distinguishing successful from unsuccessful invaders were a temperate climate in the native range, a medium to high egg count and producing more than one egg clutch per year. The most successful invaders had different functional trait combinations: Procambarus clarkii has a higher reproductive output, can migrate over longer distances and possesses a higher aggression level; Faxonius limosus is adapted to a colder climate, can reproduce parthenogetically and has broader environmental tolerances. Using a suit of functional traits to analyse invasive potential can help risk management and prevention. For example, based on our data Procambarus virginalis is predicted to become the next successful invasive crayfish in the Netherlands.
Collapse
Affiliation(s)
- Tiedo van Kuijk
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA, Leiden, The Netherlands.
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
| | - Jacobus C Biesmeijer
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA, Leiden, The Netherlands
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | | | - Piet F M Verdonschot
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- Wageningen Environmental Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
9
|
Mächler E, Walser JC, Altermatt F. Decision-making and best practices for taxonomy-free environmental DNA metabarcoding in biomonitoring using Hill numbers. Mol Ecol 2020; 30:3326-3339. [PMID: 33188644 DOI: 10.1111/mec.15725] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/22/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022]
Abstract
Environmental DNA (eDNA) metabarcoding is raising expectations for biomonitoring of organisms that have hitherto been neglected. To bypass current limitations in taxonomic assignments due to incomplete or erroneous reference databases, taxonomy-free approaches are proposed for biomonitoring at the level of operational taxonomic units (OTUs). This is challenging, because OTUs cannot be annotated and directly compared against classically derived taxonomic data. The application of good stringency treatments to infer the validity of OTUs and clear understanding of the consequences of such treatments is especially relevant for biodiversity assessments. We investigated how common practices of stringency filtering affect eDNA diversity estimates in the statistical framework of Hill numbers. We collected water eDNA samples at 61 sites across a 740-km2 river catchment, reflecting a spatially realistic scenario in biomonitoring. After bioinformatic processing of the data, we studied how different stringency treatments affect conclusions with respect to biodiversity at the catchment and site levels. The applied stringency treatments were based on the consistent appearance of OTUs across filter replicates, a relative abundance cut-off and rarefaction. We detected large differences in diversity estimates when accounting for presence/absence only, such that detected diversity at the catchment scale differed by an order of magnitude between the treatments. These differences disappeared when using stringency treatments with increasing weighting of the OTU abundances. Our study demonstrated the usefulness of Hill numbers for biodiversity analyses and comparisons of eDNA data sets that strongly differ in diversity. We recommend best practice for data stringency filtering for biomonitoring using eDNA.
Collapse
Affiliation(s)
- Elvira Mächler
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Jean-Claude Walser
- Federal Institute of Technology (ETH), Zürich, Switzerland.,Genetic Diversity Centre, Zürich, Switzerland
| | - Florian Altermatt
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| |
Collapse
|
10
|
Zizka VMA, Weiss M, Leese F. Can metabarcoding resolve intraspecific genetic diversity changes to environmental stressors? A test case using river macrozoobenthos. METABARCODING AND METAGENOMICS 2020. [DOI: 10.3897/mbmg.4.51925] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Genetic diversity is the most basal level of biodiversity and determines the evolutionary capacity of species to adapt to changing environments, yet it is typically neglected in routine biomonitoring and stressor impact assessment. For a comprehensive analysis of stressor impacts on genetic diversity, it is necessary to assess genetic variants simultaneously in many individuals and species. Such an assessment is not as straightforward and usually limited to one or few focal species. However, nowadays species diversity can be assessed by analysing thousands of individuals of a community simultaneously with DNA metabarcoding. Recent bioinformatic advances also allow for the extraction of exact sequence variants (ESVs or haplotypes) in addition to Operational Taxonomic Units (OTUs). By using this new capability, we here evaluated if the analysis of intraspecific mitochondrial diversity in addition to species diversity can provide insights into responses of stream macrozoobenthic communities to environmental stressors. For this purpose, we analysed macroinvertebrate bulk samples of three German river systems with different stressor levels using DNA metabarcoding. While OTU and haplotype number were negatively correlated with stressor impact, this association was not as clear when studying haplotype diversity across all taxa. However, stressor responses were found for sensitive EPT (Ephemeroptera, Plecoptera, Trichoptera) taxa and those exceedingly resistant to organic stress. An increase in haplotype number per OTU and haplotype diversity of sensitive taxa was observed with an increase in ecosystem quality and stability, while the opposite pattern was detected for pollution resistant taxa. However, this pattern was less prominent than expected based on the strong differences in stressor intensity between sites. To compare genetic diversity among communities in river systems, we focussed on OTUs, which were present in all systems. As OTU composition differed strongly between rivers, this led to the exclusion of a high number of OTUs, especially in diverse river systems of good quality, which potentially diminished the increase in intraspecific diversity. To better understand responses of intraspecific genetic diversity to environmental stressors, for example in river ecosystems, it would be important to increase OTU overlap between compared sites, e.g. by sampling a narrower stressor gradient, and to perform calibrated studies controlling for the number of individuals and their haplotypes. However, this pioneer study shows that the extraction of haplotypes from DNA metabarcoding datasets is a promising source of information to simultaneously assess intraspecific diversity changes in response to environmental impacts for a metacommunity.
Collapse
|
11
|
Buchner D, Beermann AJ, Laini A, Rolauffs P, Vitecek S, Hering D, Leese F. Analysis of 13,312 benthic invertebrate samples from German streams reveals minor deviations in ecological status class between abundance and presence/absence data. PLoS One 2019; 14:e0226547. [PMID: 31869356 PMCID: PMC6927632 DOI: 10.1371/journal.pone.0226547] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/28/2019] [Indexed: 11/18/2022] Open
Abstract
Benthic invertebrates are the most commonly used organisms used to assess ecological status as required by the EU Water Framework Directive (WFD). For WFD-compliant assessments, benthic invertebrate communities are sampled, identified and counted. Taxa × abundance matrices are used to calculate indices and the resulting scores are compared to reference values to determine the ecological status class. DNA-based tools, such as DNA metabarcoding, provide a new and precise method for species identification but cannot deliver robust abundance data. To evaluate the applicability of DNA-based tools to ecological status assessment, we evaluated whether the results derived from presence/absence data are comparable to those derived from abundance data. We analysed benthic invertebrate community data obtained from 13,312 WFD assessments of German streams. Broken down to 30 official stream types, we compared assessment results based on abundance and presence/absence data for the assessment modules “organic pollution” (i.e., the saprobic index) and “general degradation” (a multimetric index) as well as their underlying metrics. In 76.6% of cases, the ecological status class did not change after transforming abundance data to presence/absence data. In 12% of cases, the status class was reduced by one (e.g., from good to moderate), and in 11.2% of cases, the class increased by one. In only 0.2% of cases, the status shifted by two classes. Systematic stream type-specific deviations were found and differences between abundance and presence/absence data were most prominent for stream types where abundance information contributed directly to one or several metrics of the general degradation module. For a single stream type, these deviations led to a systematic shift in status from ‘good’ to ‘moderate’ (n = 201; with only n = 3 increasing). The systematic decrease in scores was observed, even when considering simulated confidence intervals for abundance data. Our analysis suggests that presence/absence data can yield similar assessment results to those for abundance-based data, despite type-specific deviations. For most metrics, it should be possible to intercalibrate the two data types without substantial efforts. Thus, benthic invertebrate taxon lists generated by standardised DNA-based methods should be further considered as a complementary approach.
Collapse
Affiliation(s)
- Dominik Buchner
- University of Duisburg-Essen, Aquatic Ecosystem Research, Essen, Germany
| | - Arne J. Beermann
- University of Duisburg-Essen, Aquatic Ecosystem Research, Essen, Germany
- Centre for Water and Environmental Research (ZWU), Essen, Germany
| | - Alex Laini
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parma, Italy
| | - Peter Rolauffs
- University of Duisburg-Essen, Aquatic Ecology, Essen, Germany
| | - Simon Vitecek
- WasserCluster Lunz, Lunz am See, Austria
- University of Natural Resources Vienna, Wien, Austria
| | - Daniel Hering
- Centre for Water and Environmental Research (ZWU), Essen, Germany
- University of Duisburg-Essen, Aquatic Ecology, Essen, Germany
| | - Florian Leese
- University of Duisburg-Essen, Aquatic Ecosystem Research, Essen, Germany
- Centre for Water and Environmental Research (ZWU), Essen, Germany
- * E-mail:
| |
Collapse
|
12
|
Beentjes KK, Speksnijder AGCL, Schilthuizen M, Hoogeveen M, Pastoor R, van der Hoorn BB. Increased performance of DNA metabarcoding of macroinvertebrates by taxonomic sorting. PLoS One 2019; 14:e0226527. [PMID: 31841568 PMCID: PMC6913968 DOI: 10.1371/journal.pone.0226527] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/29/2019] [Indexed: 11/23/2022] Open
Abstract
DNA-based identification through the use of metabarcoding has been proposed as the next step in the monitoring of biological communities, such as those assessed under the Water Framework Directive (WFD). Advances have been made in the field of metabarcoding, but challenges remain when using complex samples. Uneven biomass distributions, preferential amplification and reference database deficiencies can all lead to discrepancies between morphological and DNA-based taxa lists. The effects of different taxonomic groups on these issues remain understudied. By metabarcoding WFD monitoring samples, we analyzed six different taxonomic groups of freshwater organisms, both separately and combined. Identifications based on metabarcoding data were compared directly to morphological assessments performed under the WFD. The diversity of taxa for both morphological and DNA-based assessments was similar, although large differences were observed in some samples. The overlap between the two taxon lists was 56.8% on average across all taxa, and was highest for Crustacea, Heteroptera, and Coleoptera, and lowest for Annelida and Mollusca. Taxonomic sorting in six basic groups before DNA extraction and amplification improved taxon recovery by 46.5%. The impact on ecological quality ratio (EQR) scoring was considerable when replacing morphology with DNA-based identifications, but there was a high correlation when only replacing a single taxonomic group with molecular data. Different taxonomic groups provide their own challenges and benefits. Some groups might benefit from a more consistent and robust method of identification. Others present difficulties in molecular processing, due to uneven biomass distributions, large genetic diversity or shortcomings of the reference database. Sorting samples into basic taxonomic groups that require little taxonomic knowledge greatly improves the recovery of taxa with metabarcoding. Current standards for EQR monitoring may not be easily replaced completely with molecular strategies, but the effectiveness of molecular methods opens up the way for a paradigm shift in biomonitoring.
Collapse
Affiliation(s)
- Kevin K. Beentjes
- Naturalis Biodiversity Center, Leiden, the Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
- * E-mail:
| | | | - Menno Schilthuizen
- Naturalis Biodiversity Center, Leiden, the Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | | | - Rob Pastoor
- Naturalis Biodiversity Center, Leiden, the Netherlands
| | | |
Collapse
|
13
|
Bush A, Compson ZG, Monk WA, Porter TM, Steeves R, Emilson E, Gagne N, Hajibabaei M, Roy M, Baird DJ. Studying Ecosystems With DNA Metabarcoding: Lessons From Biomonitoring of Aquatic Macroinvertebrates. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00434] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
14
|
Blackman R, Mächler E, Altermatt F, Arnold A, Beja P, Boets P, Egeter B, Elbrecht V, Filipe AF, Jones J, Macher J, Majaneva M, Martins F, Múrria C, Meissner K, Pawlowski J, Schmidt Yáñez P, Zizka V, Leese F, Price B, Deiner K. Advancing the use of molecular methods for routine freshwater macroinvertebrate biomonitoring – the need for calibration experiments. METABARCODING AND METAGENOMICS 2019. [DOI: 10.3897/mbmg.3.34735] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Over the last decade, steady advancements have been made in the use of DNA-based methods for detection of species in a wide range of ecosystems. This progress has culminated in molecular monitoring methods being employed for the detection of several species for enforceable management purposes of endangered, invasive, and illegally harvested species worldwide. However, the routine application of DNA-based methods to monitor whole communities (typically a metabarcoding approach) in order to assess the status of ecosystems continues to be limited. In aquatic ecosystems, the limited use is particularly true for macroinvertebrate communities. As part of the DNAqua-Net consortium, a structured discussion was initiated with the aim to identify potential molecular methods for freshwater macroinvertebrate community assessment and identify important knowledge gaps for their routine application. We focus on three complementary DNA sources that can be metabarcoded: 1) DNA from homogenised samples (bulk DNA), 2) DNA extracted from sample preservative (fixative DNA), and 3) environmental DNA (eDNA) from water or sediment. We provide a brief overview of metabarcoding macroinvertebrate communities from each DNA source and identify challenges for their application to routine monitoring. To advance the utilisation of DNA-based monitoring for macroinvertebrates, we propose an experimental design template for a series of methodological calibration tests. The template compares sources of DNA with the goal of identifying the effects of molecular processing steps on precision and accuracy. Furthermore, the same samples will be morphologically analysed, which will enable the benchmarking of molecular to traditional processing approaches. In doing so we hope to highlight pathways for the development of DNA-based methods for the monitoring of freshwater macroinvertebrates.
Collapse
|