1
|
Doorenspleet K, Mailli AA, van der Hoorn BB, Beentjes KK, De Backer A, Derycke S, Murk AJ, Reiss H, Nijland R. Advancing molecular macrobenthos biodiversity monitoring: a comparison between Oxford Nanopore and Illumina based metabarcoding and metagenomics. PeerJ 2025; 13:e19158. [PMID: 40247828 PMCID: PMC12005195 DOI: 10.7717/peerj.19158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 02/21/2025] [Indexed: 04/19/2025] Open
Abstract
DNA-based methods and developments of sequencing technologies are integral to macrobenthos biodiversity studies, and their implementation as standardized monitoring methods is approaching. Evaluating the efficacy and reliability of these technological developments is crucial for macrobenthos biodiversity assessments. In this study, we compared three DNA-based techniques for assessing the diversity of bulk macrobenthos samples from the Belgian North Sea. Specifically, we compared amplicon sequencing using Illumina MiSeq and portable real-time sequencing of Oxford Nanopore versus shotgun sequencing using Illumina NovaSeq sequencing. The 313 bp mitochondrial cytochrome c oxidase subunit I (COI) metabarcoding fragment served as the target region for the metabarcoding analysis. Our results indicate that Oxford Nanopore and MiSeq metabarcoding had similar performances in terms of alpha and beta diversity, revealing highly similar location-specific community compositions. The NovaSeq metagenomics method also resulted in similar alpha diversity, but slightly different community compositions compared to the metabarcoding approach. Despite these differences, location-specific community compositions were maintained across all platforms. Notably, read counts from the NovaSeq metagenomic analysis showed the weakest correlation to size corrected morphological abundance and there were mismatches between morphological identification and all DNA based findings which are likely caused by a combination of factors such as primer efficiency and an incomplete reference database. Our findings underscore the critical importance of database completeness prior to implementing DNA-based techniques as standardized monitoring method, especially for metagenomics. Nevertheless, our findings emphasize that Oxford Nanopore metabarcoding proves to be a viable alternative to the conventional Illumina MiSeq metabarcoding platform for macrobenthos biodiversity monitoring.
Collapse
Affiliation(s)
- Karlijn Doorenspleet
- Marine Animal Ecology, Wageningen University and Research, Wageningen, Netherlands
| | | | | | | | - Annelies De Backer
- ILVO Marine Research, Flanders Research Institute for Agriculture, Fisheries and Food, Oostende, Belgium
| | - Sofie Derycke
- ILVO Marine Research, Flanders Research Institute for Agriculture, Fisheries and Food, Oostende, Belgium
| | - Albertinka J. Murk
- Marine Animal Ecology, Wageningen University and Research, Wageningen, Netherlands
| | - Henning Reiss
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Reindert Nijland
- Marine Animal Ecology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
2
|
Lavrador AS, Amaral FG, Moutinho J, Vieira PE, Costa FO, Duarte S. Comprehensive DNA metabarcoding-based detection of non-indigenous invertebrates in recreational marinas through a multi-substrate approach. MARINE ENVIRONMENTAL RESEARCH 2024; 200:106660. [PMID: 39088889 DOI: 10.1016/j.marenvres.2024.106660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
eDNA metabarcoding has been increasingly employed in the monitoring of marine invertebrate non-indigenous species (NIS), in particular using filtered seawater. However, comprehensive detection of all NIS may require a diversity of sampling substrates. To assess the effectiveness of 5 sample types (hard and artificial substrates, water, zooplankton) on the recovery of invertebrates' diversity, two marinas were monitored over three time points, using COI and 18S rRNA genes as DNA metabarcoding markers. We detected a total of 628 species and 23 NIS, with only up to 9% species and 17% of NIS detected by all sample types. Hard and artificial substrates were similar to each other but displayed the most significant difference in invertebrate recovery when compared to water eDNA and zooplankton. Five NIS are potential first records for Portugal. No NIS were detected in all sample types and seasons, highlighting the need for varied sampling approaches, and consideration of temporal variation for comprehensive marine NIS surveillance.
Collapse
Affiliation(s)
- Ana S Lavrador
- Centre of Molecular and Environmental Biology (CBMA) and ARNET-Aquatic Research Network, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Fábio G Amaral
- Centre of Molecular and Environmental Biology (CBMA) and ARNET-Aquatic Research Network, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Jorge Moutinho
- Centre of Molecular and Environmental Biology (CBMA) and ARNET-Aquatic Research Network, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Pedro E Vieira
- Centre of Molecular and Environmental Biology (CBMA) and ARNET-Aquatic Research Network, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Filipe O Costa
- Centre of Molecular and Environmental Biology (CBMA) and ARNET-Aquatic Research Network, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Sofia Duarte
- Centre of Molecular and Environmental Biology (CBMA) and ARNET-Aquatic Research Network, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
3
|
Gwiazdowski R. Principles for Constructing DNA Barcode Reference Libraries. Methods Mol Biol 2024; 2744:491-502. [PMID: 38683337 DOI: 10.1007/978-1-0716-3581-0_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
All DNA barcode methods rely on reference sequences linked to well-curated voucher specimens. Definitions for and locations of DNA barcode reference libraries are not standardized, and vary throughout the literature. Standardizing, and centralizing reference specimens would provide an unambiguous source, analogous to reference genomes, to reproduce identifications and improve a library. This chapter proposes a working definition of a DNA barcode reference library, consistent with DNA barcode data standards, along with principles and methods to consider when producing or using such a library. These methods allow explicit traceback to sequence-sources which elevate the value of voucher specimens, and create a potential for community curation.
Collapse
Affiliation(s)
- Rodger Gwiazdowski
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
4
|
Moutinho J, Carreira-Flores D, Gomes PT, Costa FO, Duarte S. Assessing the Seasonal and Spatial Dynamics of Zooplankton through DNA Metabarcoding in a Temperate Estuary. Animals (Basel) 2023; 13:3876. [PMID: 38136913 PMCID: PMC10740712 DOI: 10.3390/ani13243876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Zooplankton are key components of estuarine trophic networks. However, routine monitoring is hindered by the difficulty of morphology-based identification. DNA-based methods allow us to circumvent some of these hurdles, providing precise species identifications regardless of the taxonomic expertise of the investigator or the developmental stage of the specimens. However, the process is dependent on the completeness of the reference libraries. In this study, we sought to evaluate the potential of DNA metabarcoding to assess the seasonal (summer, autumn, and early spring) and spatial dynamics of zooplankton (four locations spanning ca. 6 km) in the Lima estuary (NW Portugal). Two genetic markers were used: the cytochrome c oxidase subunit I and the V4 hypervariable region of the ribosomal 18S rRNA genes. Overall, 327 species were recovered, and both markers displayed minute overlap (7% were detected with both markers). Species richness, composition, and taxonomic distinctness were majorly influenced by the season, with a declining tendency from summer (highest number of exclusive species, n = 74) to spring. Second to season, the taxa composition was influenced by spatial variation where the most downstream site displayed the highest number of exclusive species, n = 53. A total of 16 non-indigenous species were detected using metabarcoding, but only one (Austrominus modestus) has been documented out in the estuary. In conclusion, both the seasonal and spatial gradients influenced the recovered richness, composition, and taxonomic distinctness, confirming the great aptitude of DNA metabarcoding for providing higher density monitoring and shedding new light on the composition and dynamics of complex zooplankton communities.
Collapse
Affiliation(s)
- Jorge Moutinho
- Centre of Molecular and Environmental Biology (CBMA) and ARNET—Aquatic Research Network, Department of Biology, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (D.C.-F.); (P.T.G.); (F.O.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Diego Carreira-Flores
- Centre of Molecular and Environmental Biology (CBMA) and ARNET—Aquatic Research Network, Department of Biology, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (D.C.-F.); (P.T.G.); (F.O.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Pedro T. Gomes
- Centre of Molecular and Environmental Biology (CBMA) and ARNET—Aquatic Research Network, Department of Biology, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (D.C.-F.); (P.T.G.); (F.O.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Filipe O. Costa
- Centre of Molecular and Environmental Biology (CBMA) and ARNET—Aquatic Research Network, Department of Biology, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (D.C.-F.); (P.T.G.); (F.O.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Sofia Duarte
- Centre of Molecular and Environmental Biology (CBMA) and ARNET—Aquatic Research Network, Department of Biology, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (D.C.-F.); (P.T.G.); (F.O.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
5
|
Noll NW, Scherber C, Schäffler L. taxalogue: a toolkit to create comprehensive CO1 reference databases. PeerJ 2023; 11:e16253. [PMID: 38077427 PMCID: PMC10702336 DOI: 10.7717/peerj.16253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/18/2023] [Indexed: 12/18/2023] Open
Abstract
Background Taxonomic identification through DNA barcodes gained considerable traction through the invention of next-generation sequencing and DNA metabarcoding. Metabarcoding allows for the simultaneous identification of thousands of organisms from bulk samples with high taxonomic resolution. However, reliable identifications can only be achieved with comprehensive and curated reference databases. Therefore, custom reference databases are often created to meet the needs of specific research questions. Due to taxonomic inconsistencies, formatting issues, and technical difficulties, building a custom reference database requires tremendous effort. Here, we present taxalogue, an easy-to-use software for creating comprehensive and customized reference databases that provide clean and taxonomically harmonized records. In combination with extensive geographical filtering options, taxalogue opens up new possibilities for generating and testing evolutionary hypotheses. Methods taxalogue collects DNA sequences from several online sources and combines them into a reference database. Taxonomic incongruencies between the different data sources can be harmonized according to available taxonomies. Dereplication and various filtering options are available regarding sequence quality or metadata information. taxalogue is implemented in the open-source Ruby programming language, and the source code is available at https://github.com/nwnoll/taxalogue. We benchmark four reference databases by sequence identity against eight queries from different localities and trapping devices. Subsamples from each reference database were used to compare how well another one is covered. Results taxalogue produces reference databases with the best coverage at high identities for most tested queries, enabling more accurate, reliable predictions with higher certainty than the other benchmarked reference databases. Additionally, the performance of taxalogue is more consistent while providing good coverage for a variety of habitats, regions, and sampling methods. taxalogue simplifies the creation of reference databases and makes the process reproducible and transparent. Multiple available output formats for commonly used downstream applications facilitate the easy adoption of taxalogue in many different software pipelines. The resulting reference databases improve the taxonomic classification accuracy through high coverage of the query sequences at high identities.
Collapse
Affiliation(s)
- Niklas W. Noll
- Centre for Biodiversity Monitoring and Conservation Science, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, North Rhine-Westphalia, Germany
| | - Christoph Scherber
- Centre for Biodiversity Monitoring and Conservation Science, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, North Rhine-Westphalia, Germany
| | - Livia Schäffler
- Centre for Biodiversity Monitoring and Conservation Science, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, North Rhine-Westphalia, Germany
| |
Collapse
|
6
|
Csabai Z, Čiamporová-Zaťovičová Z, Boda P, Čiampor F. 50%, not great, not terrible: Pan-European gap-analysis shows the real status of the DNA barcode reference libraries in two aquatic invertebrate groups and points the way ahead. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160922. [PMID: 36539085 DOI: 10.1016/j.scitotenv.2022.160922] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
The essential key to routine molecular species identification (DNA barcoding/metabarcoding) is the existence of an error-free DNA barcode reference library providing full coverage of all species. Published studies generally state the need to produce more barcodes, and control their quality, but unfortunately, the number of barcoded species is still low. However, to initiate real progress, we need to know where the gaps lie, how big they are and why they persist. Our aims were to draw and understand the current state of knowledge regarding species diversity, distribution, and barcode coverage, and offer solutions for improvement. In this study, we used two groups of aquatic insects, beetles and true bugs. We have compiled and critically evaluated an essentially complete and up-to-date European list, containing 1527 species. The list served as a basis for the barcode gap analyses in the Barcode-of-Life-Data-System (BOLD) conducted in three subsequent years (2020-2022). The overall barcode coverage of the pan-European fauna was around 50 % in both groups. The lowest coverage was in the Mediterranean, the Balkans and South-eastern Europe. The coverage in each country depended significantly on the local diversity, the number of rare, endemic species and the similarity of its fauna to that of the most active barcoding European countries. Gap analyses showed a very small increase in species coverage (<1 % in European aquatic beetles) despite an ~25 % increase in the number of barcodes. Hence, it is clear that future barcoding campaigns must prioritise quality over quantity. To visibly improve reference libraries, we need to increase the involvement of taxonomic experts and focus on targeted studies and underexplored but biodiversity-rich areas.
Collapse
Affiliation(s)
- Zoltán Csabai
- University of Pécs, Faculty of Sciences, Department of Hydrobiology, Ifjúság útja 6, H7624 Pécs, Hungary; Masaryk University, Faculty of Sciences, Department of Zoology and Botany, Kotlářská 2, 62500 Brno, Czech Republic; Balaton Limnological Research Institute, Klebelsberg Kuno utca 3, 8237 Tihany, Hungary.
| | - Zuzana Čiamporová-Zaťovičová
- Slovak Academy of Sciences, Plant Science and Biodiversity Centre, Department of Biodiversity and Ecology, Dúbravská cesta 9, 84523 Bratislava, Slovakia; Department of Ecology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia.
| | - Pál Boda
- Centre for Ecological Research, Institute of Aquatic Ecology, Bem tér 18/c, H4026 Debrecen, Hungary.
| | - Fedor Čiampor
- Slovak Academy of Sciences, Plant Science and Biodiversity Centre, Department of Biodiversity and Ecology, Dúbravská cesta 9, 84523 Bratislava, Slovakia.
| |
Collapse
|
7
|
Bourret A, Nozères C, Parent E, Parent GJ. Maximizing the reliability and the number of species assignments in metabarcoding studies using a curated regional library and a public repository. METABARCODING AND METAGENOMICS 2023. [DOI: 10.3897/mbmg.7.98539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Biodiversity assessments relying on DNA have increased rapidly over the last decade. However, the reliability of taxonomic assignments in metabarcoding studies is variable and affected by the reference databases and the assignment methods used. Species level assignments are usually considered as reliable using regional libraries but unreliable using public repositories. In this study, we aimed to test this assumption for metazoan species detected in the Gulf of St. Lawrence in the Northwest Atlantic. We first created a regional library (GSL-rl) by data mining COI barcode sequences from BOLD, and included a reliability ranking system for species assignments. We then estimated 1) the accuracy and precision of the public repository NCBI-nt for species assignments using sequences from the regional library and 2) compared the detection and reliability of species assignments of a metabarcoding dataset using either NCBI-nt or the regional library and popular assignment methods. With NCBI-nt and sequences from the regional library, the BLAST-LCA (least common ancestor) method was the most precise method for species assignments, but the accuracy was higher with the BLAST-TopHit method (>80% over all taxa, between 70% and 90% amongst taxonomic groups). With the metabarcoding dataset, the reliability of species assignments was greater using GSL-rl compared to NCBI-nt. However, we also observed that the total number of reliable species assignments could be maximized using both GSL-rl and NCBI-nt with different optimized assignment methods. The use of a two-step approach for species assignments, i.e., using a regional library and a public repository, could improve the reliability and the number of detected species in metabarcoding studies.
Collapse
|
8
|
Compilation, Revision, and Annotation of DNA Barcodes of Marine Invertebrate Non-Indigenous Species (NIS) Occurring in European Coastal Regions. DIVERSITY 2023. [DOI: 10.3390/d15020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The introduction of non-indigenous species (NIS) is one of the major threats to the integrity of European coastal ecosystems. DNA-based assessments have been increasingly adopted for monitoring NIS. However, the accuracy of DNA-based taxonomic assignments is largely dependent on the completion and reliability of DNA barcode reference libraries. As such, we aimed to compile and audit a DNA barcode reference library for marine invertebrate NIS occurring in Europe. To do so, we compiled a list of NIS using three databases: the European Alien Species Information Network (EASIN), the Information System on Aquatic Non-indigenous and Cryptogenic Species (AquaNIS), and the World Register of Introduced Marine Species (WRiMS). For each species, we retrieved the available cytochrome c oxidase subunit I (COI) mitochondrial gene sequences from the Barcode of Life Data System (BOLD) and used the Barcode, Audit & Grade System (BAGS) to check congruence between morphospecies names and Barcode Index Numbers (BINs). From the 1249 species compiled, approximately 42% had records on BOLD, among which 56% were discordant. We further analyzed these cases to determine the causes of the discordances and attributed additional annotation tags. Of the 622 discordant BINs, after revision, 35% were successfully solved, which increased the number of NIS detected in metabarcoding datasets from 12 to 16. However, a fair number of BINs remained discordant. Reliability of reference barcode records is particularly critical in the case of NIS, where erroneous identification may trigger action or inaction when not required.
Collapse
|
9
|
Willassen E, Westgaard JI, Kongsrud JA, Hanebrekke T, Buhl-Mortensen P, Holte B. Benthic invertebrates in Svalbard fjords-when metabarcoding does not outperform traditional biodiversity assessment. PeerJ 2022; 10:e14321. [PMID: 36415859 PMCID: PMC9676020 DOI: 10.7717/peerj.14321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022] Open
Abstract
To protect and restore ecosystems and biodiversity is one of the 10 challenges identified by the United Nations's Decade of the Ocean Science. In this study we used eDNA from sediments collected in two fjords of the Svalbard archipelago and compared the taxonomic composition with traditional methods through metabarcoding, targeting mitochondrial CO1, to survey benthos. Clustering of 21.6 mill sequence reads with a d value of 13 in swarm, returned about 25 K OTU reads. An identification search with the BOLD database returned 12,000 taxonomy annotated sequences spanning a similarity range of 50% to 100%. Using an acceptance filter of minimum 90% similarity to the CO1 reference sequence, we found that 74% of the ca 100 taxon identified sequence reads were Polychaeta and 22% Nematoda. Relatively few other benthic invertebrate species were detected. Many of the identified sequence reads were extra-organismal DNA from terrestrial, planktonic, and photic zone sources. For the species rich Polychaeta, we found that, on average, only 20.6% of the species identified from morphology were also detected with DNA. This discrepancy was not due to missing reference sequences in the search database, because 90-100% (mean 96.7%) of the visually identified species at each station were represented with barcodes in Boldsystems. The volume of DNA samples is small compared with the volume searched in visual sorting, and the replicate DNA-samples in sum covered only about 2% of the surface area of a grab. This may considerably reduce the detection rate of species that are not uniformly distributed in the sediments. Along with PCR amplification bias and primer mismatch, this may be an important reason for the limited congruence of species identified with the two approaches. However, metabarcoding also identified 69 additional species that are usually overlooked in visual sample sorting, demonstrating how metabarcoding can complement traditional methodology by detecting additional, less conspicuous groups of organisms.
Collapse
Affiliation(s)
- Endre Willassen
- Department of Natural History, University of Bergen, Bergen, Norway
| | - Jon-Ivar Westgaard
- Department of Population Genetics, Institute of Marine Research, Tromsø, Troms, Norway
| | | | - Tanja Hanebrekke
- Department of Population Genetics, Institute of Marine Research, Tromsø, Troms, Norway
| | - Pål Buhl-Mortensen
- Department of Bentic Communities, Institute of Marine Research, Bergen, Norway
| | - Børge Holte
- Department of Bentic Communities, Institute of Marine Research, Tromsø, Troms, Norway
| |
Collapse
|
10
|
Leite BR, Vieira PE, Troncoso JS, Costa FO. Comparing species detection success between molecular markers in DNA metabarcoding of coastal macroinvertebrates. METABARCODING AND METAGENOMICS 2021. [DOI: 10.3897/mbmg.5.70063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
DNA metabarcoding has great potential to improve marine biomonitoring programs by providing a rapid and accurate assessment of species composition in zoobenthic communities. However, some methodological improvements are still required, especially regarding failed detections, primers efficiency and incompleteness of databases. Here we assessed the efficiency of two different marker loci (COI and 18S) and three primer pairs in marine species detection through DNA metabarcoding of the macrozoobenthic communities colonizing three types of artificial substrates (slate, PVC and granite), sampled between 3 and 15 months of deployment. To accurately compare detection success between markers, we also compared the representativeness of the detected species in public databases and revised the reliability of the taxonomic assignments. Globally, we recorded extensive complementarity in the species detected by each marker, with 69% of the species exclusively detected by either 18S or COI. Individually, each of the three primer pairs recovered, at most, 52% of all species detected on the samples, showing also different abilities to amplify specific taxonomic groups. Most of the detected species have reliable reference sequences in their respective databases (82% for COI and 72% for 18S), meaning that when a species was detected by one marker and not by the other, it was most likely due to faulty amplification, and not by lack of matching sequences in the database. Overall, results showed the impact of marker and primer applied on species detection ability and indicated that, currently, if only a single marker or primer pair is employed in marine zoobenthos metabarcoding, a fair portion of the diversity may be overlooked.
Collapse
|