1
|
Lu Y, Ye F, Li J, Gao C, Wang Y, Shi X, Su Y, Xue H, Bu W, Zheng L, Xie Q. Phylogenomics of the superfamily Lygaeoidea with proposals on taxonomic system (Hemiptera: Heteroptera). Mol Phylogenet Evol 2025:108356. [PMID: 40250819 DOI: 10.1016/j.ympev.2025.108356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/21/2025] [Accepted: 04/10/2025] [Indexed: 04/20/2025]
Abstract
Lygaeoidea, one of the largest superfamilies of the true bugs (Hemiptera: Heteroptera), currently comprises 16 families and exhibits abundant diversification in habitats, body plans, and feeding habits. The relationships within this superfamily are complex, and comprehensive molecular phylogenetic studies, particularly those focusing on subfamilies and tribes within Rhyparochromidae, have been lacking. In the present study, we sampled 125 lygaeoid species representing all 16 families of Lygaeoidea, with a focus on two subfamilies and 12 tribes within Rhyparochromidae. A phylogenetic dataset with 102 genes was assembled, including two nuclear rRNA genes (18S rDNA, 28S rDNA), two mitochondrial rRNA genes (12S rDNA, 16S rDNA), 13 mitochondrial protein-coding genes (PCGs) and 85 nuclear PCGs generated from the low-coverage genomes. Our inferences indicate that Rhyparochromidae is not monophyletic, with one subfamily, one tribe, and one genus deserving elevation to the rank of family. Additionally, this phylogenetic result is also supported by corresponding morphological evidence. Besides, the transfer of the Heissothignus from Heterogastridae to Meschiidae is supported by molecular evidence in this study.
Collapse
Affiliation(s)
- Ying Lu
- School of Life Sciences/School of Ecology, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou/Shenzhen, Guangdong, China
| | - Fei Ye
- School of Life Sciences/School of Ecology, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou/Shenzhen, Guangdong, China; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Junlan Li
- College of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Cuiqing Gao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Yanhui Wang
- School of Life Sciences/School of Ecology, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou/Shenzhen, Guangdong, China
| | - Xueqin Shi
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yiqin Su
- School of Life Sciences/School of Ecology, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou/Shenzhen, Guangdong, China
| | - Huaijun Xue
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China.
| | - Leyi Zheng
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China.
| | - Qiang Xie
- School of Life Sciences/School of Ecology, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou/Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Zhang D, Chen X, Yang J, Yi W, Xie Q, Yang H, Sweet MH, Bu W, Li T. Phylogenetic placement and comparative analysis of the mitochondrial genomes of Idiostoloidea (Hemiptera: Heteroptera). Ecol Evol 2024; 14:e11328. [PMID: 38698924 PMCID: PMC11063732 DOI: 10.1002/ece3.11328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024] Open
Abstract
The classification system and the higher level phylogenetic relationships of Pentatomomorpha, the second largest infraorder of Heteroptera (Insecta: Hemiptera), have been debated and remain controversial over decades. In particular, the placement and phylogenetic relationship of Idiostoloidea are not well resolved, which hampers a better understanding of the evolutionary history of Pentatomomorpha. In this study, for the first time, we reported the complete mitochondrial genome for two narrowly distributed families of Idiostoloidea (including Idiostolidae and Henicocoridae), respectively. The length of the mitochondrial genome of Monteithocoris hirsutus and Henicocoris sp. is 16,632 and 16,013 bp, respectively. The content of AT is ranging from 75.15% to 80.48%. The mitogenomic structure of Idiostoloidea is highly conservative and there are no gene arrangements. By using the Bayesian inference, maximum likelihood, and Bayesian site-heterogeneous mixture model, we inferred the phylogenetic relationships within Pentatomomorpha and estimated their divergence times based on concatenated mitogenomes and nuclear ribosomal genes. Our results support the classification system of six superfamilies within Pentatomomorpha and confirm the monophyletic groups of each superfamily, with the following phylogenetic relationships: (Aradoidea + (Pentatomoidea + (Idiostoloidea + (Coreoidea + (Pyrrhocoroidea + Lygaeoidea))))). Furthermore, estimated divergence times revealed that most pentatomomorphan superfamilies and families diverged during the Late Jurassic to Early Cretaceous, which coincides with the explosive radiation of angiosperms.
Collapse
Affiliation(s)
- Danli Zhang
- College of Biological Sciences and TechnologyTaiyuan Normal UniversityJinzhongChina
| | - XiaoYan Chen
- College of Biological Sciences and TechnologyTaiyuan Normal UniversityJinzhongChina
| | - Jingjing Yang
- College of Biological Sciences and TechnologyTaiyuan Normal UniversityJinzhongChina
| | - Wenbo Yi
- Institute of Entomology, College of Life SciencesNankai UniversityTianjinChina
| | - Qiang Xie
- Institute of Entomology, College of Life SciencesNankai UniversityTianjinChina
| | - HuanHuan Yang
- School of BioengineeringQilu University of Technology (Shandong Academy of Sciences)JinanChina
| | - Merrill H. Sweet
- Department of Entomology, Plant Pathology, and Weed ScienceNew Mexico State UniversityLas CrucesNew MexicoUSA
| | - Wenjun Bu
- Institute of Entomology, College of Life SciencesNankai UniversityTianjinChina
| | - Teng Li
- Institute of Entomology, College of Life SciencesNankai UniversityTianjinChina
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
3
|
Lis JA, Domagała PJ. Inconsistencies in the Classification of the Family Cydnidae (Hemiptera: Heteroptera: Pentatomoidea) Revealed by Molecular Apomorphies in the Secondary and Tertiary Structures of 18S rRNA Length-Variable Region L (LVR L). Int J Mol Sci 2024; 25:939. [PMID: 38256014 PMCID: PMC10815949 DOI: 10.3390/ijms25020939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The SSU nuclear rDNA (encoding 18S ribosomal RNA) is one of the most frequently sequenced genes in the molecular analysis of insects. Molecular apomorphies in the secondary and tertiary structures of several 18S rRNA length-variable regions (LVRs) located within the V2, V4, and V7 hypervariable regions can be good indicators for recovering monophyletic groups within some heteropteran families. Among the LVRs that have been analysed, the LVR L in the V4 hypervariable region is the longest and most crucial for such assessments. We analysed the 18S rRNA V4 hypervariable region sequences of 45 species from the family Cydnidae, including all 6 subfamilies (Amaurocorinae, Amnestinae, Cephalocteinae, Cydninae, Garsauriinae, and Sehirinae) and three pentatomoid families (Parastrachiidae, Thaumastellidae, and Thyreocoridae), which have often been included in the broadly defined Cydnidae family. This is the first time that representatives of all Cydnidae subfamilies have been included in a molecular analysis. Only taxa from two subfamilies, Sehirinae and Cydninae, have been used in previous molecular studies. The secondary and tertiary structures of the LVR L were predicted for each species using the two-step procedure already accepted for such analyses to recover any molecular apomorphy essential for determining monophyly. The results of our comparative studies contradict the current understanding of the relationships among burrowing bugs and the current family classification.
Collapse
Affiliation(s)
- Jerzy A. Lis
- Institute of Biology, University of Opole, Oleska 22, 45-052 Opole, Poland;
| | | |
Collapse
|
4
|
Yang ZW, Luo JY, Men Y, Liu ZH, Zheng ZK, Wang YH, Xie Q. Different roles of host and habitat in determining the microbial communities of plant-feeding true bugs. MICROBIOME 2023; 11:244. [PMID: 37932839 PMCID: PMC10629178 DOI: 10.1186/s40168-023-01702-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND The true bugs (Heteroptera) occupy nearly all of the known ecological niches of insects. Among them, as a group containing more than 30,000 species, the phytophagous true bugs are making increasing impacts on agricultural and forestry ecosystems. Previous studies proved that symbiotic bacteria play important roles in these insects in fitting various habitats. However, it is still obscure about the evolutionary and ecological patterns of the microorganisms of phytophagous true bugs as a whole with comprehensive taxon sampling. RESULTS Here, in order to explore the symbiotic patterns between plant-feeding true bugs and their symbiotic microorganisms, 209 species belonging to 32 families of 9 superfamilies had been sampled, which covered all the major phytophagous families of true bugs. The symbiotic microbial communities were surveyed by full-length 16S rRNA gene and ITS amplicons respectively for bacteria and fungi using the PacBio platform. We revealed that hosts mainly affect the dominant bacteria of symbiotic microbial communities, while habitats generally influence the subordinate ones. Thereafter, we carried out the ancestral state reconstruction of the dominant bacteria and found that dramatic replacements of dominant bacteria occurred in the early Cretaceous and formed newly stable symbiotic relationships accompanying the radiation of insect families. In contrast, the symbiotic fungi were revealed to be horizontally transmitted, which makes fungal communities distinctive in different habitats but not significantly related to hosts. CONCLUSIONS Host and habitat determine microbial communities of plant-feeding true bugs in different roles. The symbiotic bacterial communities are both shaped by host and habitat but in different ways. Nevertheless, the symbiotic fungal communities are mainly influenced by habitat but not host. These findings shed light on a general framework for future microbiome research of phytophagous insects. Video Abstract.
Collapse
Affiliation(s)
- Zi-Wen Yang
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Jiu-Yang Luo
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Yu Men
- School of Life Sciences, Zhaoqing University, Zhaoqing, 526061, China
| | - Zhi-Hui Liu
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Zi-Kai Zheng
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Yan-Hui Wang
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Qiang Xie
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
| |
Collapse
|
5
|
Lis B, Domagała PJ, Lis JA. Tribe Acalyptaini ( Hemiptera: Tingidae: Tinginae) Revisited: Can Apomorphies in Secondary and Tertiary Structures of 18S rRNA Length-Variable Regions (LVRs) Support Tribe Validity? INSECTS 2023; 14:600. [PMID: 37504606 PMCID: PMC10380217 DOI: 10.3390/insects14070600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
The lace bug tribe Acalyptaini (Tingidae: Tinginae) includes five genera, Acalypta, Derephysia, Dictyonota, Kalama, and Recaredus, and it was recently resurrected based on morphological and karyological characters. We aimed to validate the distinctiveness of this tribe using 18S rDNA sequences, which have not been used in previous Tingidae phylogenomic studies. Our results confirmed the monophyly of the tribe. Moreover, the monophyly of the subfamily Cantacaderinae and its basal position within the family Tingidae were indicated, as well as the position of the tribe Litadeini as sister to all other Tinginae. In addition, we attempted to determine the apomorphic morpho-molecular characters in the secondary and tertiary structures of length-variable regions of the 18S rRNA sequences of the analysed species. The results showed that two LVRs (LVR X and LVR L) of the hypervariable region V4 exhibited significant variability in the number of nucleotides and could be considered for apomorphic recognition.
Collapse
Affiliation(s)
- Barbara Lis
- Institute of Biology, University of Opole, 45-052 Opole, Oleska 22, Poland
| | - Paweł J Domagała
- Institute of Biology, University of Opole, 45-052 Opole, Oleska 22, Poland
| | - Jerzy A Lis
- Institute of Biology, University of Opole, 45-052 Opole, Oleska 22, Poland
| |
Collapse
|
6
|
Bucher M, Condamine FL, Luo Y, Wang M, Bourgoin T. Phylogeny and diversification of planthoppers (Hemiptera Fulgoromorpha) based on a comprehensive molecular dataset and large taxon sampling. Mol Phylogenet Evol 2023:107862. [PMID: 37331454 DOI: 10.1016/j.ympev.2023.107862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/24/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Our understanding of the evolution of Fulgoromorpha (Insects, Hemiptera) has relied on molecular studies that have only considered either a limited number of taxa where all the families were not represented simultaneously, or a reduced number of genes.The absence of a global analysis comparing all the available data has thus led to significant biases in the analyzes, as evidenced by the incongruence of the results reported for planthopper phylogeny. Here we provide a phylogenetic and dating analysis of the Fulgoromorpha with a large sampling of 531 ingroup taxa, representing about 80% of the currently described suprageneric taxonomic diversity in this group. This study is based on most of the molecular sequences available to date and duly verified, for a set of nuclear and mitochondrial genes from a taxonomic sampling as complete as possible. The most significant results of our study are: (1) the unexpected paraphyly of Delphacidae whose Protodelphacida seem more related to Cixiidae than to other Delphacidae;(2) the group Meenoplidae-Kinnaridae recovered sister to the remaining Fulgoroidea families; (3) the early branching node of Tettigometridae sister of all the other families;(4) the Achilidae-Derbidae clade with Achilidae Plectoderini including Achilixiidae recovered as monophyletic as well as theFulgoridae-Dictyopharidae clade; and (5) the Tropiduchidae placed sister to the other so called 'higher' families (sec. Shcherbakov, 2006).Our divergence times analysis, calibrated with a set of duly verified fossils, suggests that the first diversification of planthoppers occurred in the Early Triassic around 240 Mya and those of the superfamilies Delphacoidea and Fulgoroidea in the Middle-Late Triassic around 210 Mya and 230 Mya, respectively. By the end of the Jurassic, all major planthopper lineages were originated, and all families, around 125 Mya, might havebeen driven in their distribution and evolution (in their first subfamilial divisions) by the geographical constraints of the Gondwanan break-up.Rapid evolutionary radiations occurred particularly in Fulgoridae around 125-130 Mya. Our results stress the importance of the good quality of the sequences used in the molecular analyzes and the primordial importance of a large sampling when analyzing the phylogeny of the group.
Collapse
Affiliation(s)
- Manon Bucher
- Institut de Systématique, Evolution, Biodiversité (ISYEB), MNHN-CNRS-Sorbonne Université-EPHE-Université des Antilles, Muséum National d'Histoire Naturelle, CP 50, 45 rue Buffon, 75005 Paris, France.
| | - Fabien L Condamine
- Institut des Sciences de l'Évolution de Montpellier (ISEM), CNRS-Université de Montpellier-IRD-EPHE, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France.
| | - Yang Luo
- Hunan Key Laboratory of Green Packaging and Application of Biological Nanotechnology Hunan University of Technology, Zhuzhou 412007, China.
| | - Menglin Wang
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong 637009, China.
| | - Thierry Bourgoin
- Institut de Systématique, Evolution, Biodiversité (ISYEB), MNHN-CNRS-Sorbonne Université-EPHE-Université des Antilles, Muséum National d'Histoire Naturelle, CP 50, 45 rue Buffon, 75005 Paris, France.
| |
Collapse
|
7
|
Lis JA. Molecular Apomorphies in the Secondary and Tertiary Structures of Length-Variable Regions (LVRs) of 18S rRNA Shed Light on the Systematic Position of the Family Thaumastellidae (Hemiptera: Heteroptera: Pentatomoidea). Int J Mol Sci 2023; 24:ijms24097758. [PMID: 37175465 PMCID: PMC10178826 DOI: 10.3390/ijms24097758] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
The SSU nrDNA, a small subunit of the nuclear ribosomal DNA (coding 18S rRNA), is one of the most frequently sequenced genes in molecular studies in Hexapoda. In insects, including true bugs (Hemiptera: Heteroptera), only its primary structures (i.e., aligned sequences) are predominantly used in phylogenetic reconstructions. It is known that including RNA secondary structures in the alignment procedure is essential for improving accuracy and robustness in phylogenetic tree reconstruction. Moreover, local plasticity in rRNAs might impact their tertiary structures and corresponding functions. To determine the systematic position of Thaumastellidae within the superfamily Pentatomoidea, the secondary and-for the first time among all Hexapoda-tertiary structures of 18S rRNAs in twelve pentatomoid families were compared and analysed. Results indicate that the shapes of the secondary and tertiary structures of the length-variable regions (LVRs) in the 18S rRNA are phylogenetically highly informative. Based on these results, it is suggested that the Thaumastellidae is maintained as an independent family within the superfamily Pentatomoidea, rather than as a part of the family Cydnidae. Moreover, the analyses indicate a close relationship between Sehirinae and Parastrachiidae, expressed in morpho-molecular synapomorphies in the predicted secondary and tertiary structures of the length-variable region L (LVR L).
Collapse
Affiliation(s)
- Jerzy A Lis
- Institute of Biology, University of Opole, Oleska 22, 45-052 Opole, Poland
| |
Collapse
|
8
|
Men Y, Yang ZW, Luo JY, Chen PP, Moreira FFF, Liu ZH, Yin JD, Xie BJ, Wang YH, Xie Q. Symbiotic Microorganisms and Their Different Association Types in Aquatic and Semiaquatic Bugs. Microbiol Spectr 2022; 10:e0279422. [PMID: 36409137 PMCID: PMC9769989 DOI: 10.1128/spectrum.02794-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022] Open
Abstract
True bugs (Hemiptera, suborder Heteroptera) constitute the largest suborder of nonholometabolous insects and occupy a wide range of habitats various from terrestrial to semiaquatic to aquatic niches. The transition and occupation of these diverse habitats impose various challenges to true bugs, including access to oxygen for the aquatic species and plant defense for the terrestrial phytophagans. Although numerous studies have demonstrated that microorganisms can provide multiple benefits to terrestrial host insects, a systematic study with comprehensive higher taxa sampling that represents aquatic and semiaquatic habitats is still lacking. To explore the role of symbiotic microorganisms in true bug adaptations, 204 samples belonging to all seven infraorders of Heteroptera were investigated, representing approximately 85% of its superfamilies and almost all known habitats. The symbiotic microbial communities of these insects were analyzed based on the full-length amplicons of the bacterial 16S rRNA gene and fungal ITS region. Bacterial communities varied among hosts inhabiting terrestrial, semiaquatic, and aquatic habitats, while fungal communities were more related to the geographical distribution of the hosts. Interestingly, co-occurrence networks showed that species inhabiting similar habitats shared symbiotic microorganism association types. Moreover, functional prediction analyses showed that the symbiotic bacterial community of aquatic species displayed richer amino acid and lipid metabolism pathways, while plant-feeding true bugs benefited more from the symbiont-provided xenobiotics biodegradation pathway. These results deepened the recognition that symbiotic microorganisms were likely to help heteropterans occupy diverse ecological habitats and provided a reference framework for further studies on how microorganisms affect host insects living in various habitats. IMPORTANCE Symbiotic bacteria and fungi generally colonize insects and provide various benefits for hosts. Although numerous studies have investigated symbionts in terrestrial plant-feeding insects, explorations of symbiotic bacterial and fungal communities in aquatic and semiaquatic insects are rare. In this study, the symbiotic microorganisms of 204 aquatic, semiaquatic, and terrestrial true bugs were explored. This comprehensive taxon sampling covers ~85% of the superfamilies of true bugs and most insect habitats. Analyses of the diversity of symbionts demonstrated that the symbiotic microbial diversities of true bugs were mainly affected by host habitats. Co-occurrence networks showed that true bugs inhabiting similar habitats shared symbiotic microbial association types. These correlations between symbionts and hosts together with the functions of bacterial communities indicated that symbiotic microbial communities may help true bugs adapt to (semi)aquatic habitats.
Collapse
Affiliation(s)
- Yu Men
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zi-wen Yang
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiu-yang Luo
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ping-ping Chen
- Netherlands Centre of Biodiversity Naturalis, Leiden, Netherlands
| | | | - Zhi-hui Liu
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jia-dong Yin
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bao-jun Xie
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan-hui Wang
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiang Xie
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Ye F, Kment P, Rédei D, Luo JY, Wang YH, Kuechler SM, Zhang WW, Chen PP, Wu HY, Wu YZ, Sun XY, Ding L, Wang YR, Xie Q. Diversification of the phytophagous lineages of true bugs (Insecta: Hemiptera: Heteroptera) shortly after that of the flowering plants. Cladistics 2022; 38:403-428. [PMID: 35349192 DOI: 10.1111/cla.12501] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 12/20/2022] Open
Abstract
More than 95% of phytophagous true bug (Hemiptera: Heteroptera) species belong to four superfamilies: Miroidea (Cimicomorpha), Pentatomoidea, Coreoidea, and Lygaeoidea (all Pentatomomorpha). These iconic groups of highly diverse, overwhelmingly phytophagous insects include several economically prominent agricultural and silvicultural pest species, though their evolutionary history has not yet been well resolved. In particular, superfamily- and family-level phylogenetic relationships of these four lineages have remained controversial, and the divergence times of some crucial nodes for phytophagous true bugs have hitherto been little known, which hampers a better understanding of the evolutionary processes and patterns of phytophagous insects. In the present study, we used 150 species and concatenated nuclear and mitochondrial protein-coding genes and rRNA genes to infer the phylogenetic relationships within the Terheteroptera (Cimicomorpha + Pentatomomorpha) and estimated their divergence times. Our results support the monophyly of Cimicomorpha, Pentatomomorpha, Miroidea, Pentatomoidea, Pyrrhocoroidea, Coreoidea, and Lygaeoidea. The phylogenetic relationships across phytophagous lineages are largely congruent at deep nodes across the analyses based on different datasets and tree-reconstructing methods with just a few exceptions. Estimated divergence times and ancestral state reconstructions for feeding habit indicate that phytophagous true bugs explosively radiated in the Early Cretaceous-shortly after the angiosperm radiation-with the subsequent diversification of the most speciose clades (Mirinae, Pentatomidae, Coreinae, and Rhyparochromidae) in the Late Cretaceous.
Collapse
Affiliation(s)
- Fei Ye
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China.,Department of Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Petr Kment
- Department of Entomology, National Museum, Praha, Czech Republic
| | | | - Jiu-Yang Luo
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China.,Department of Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yan-Hui Wang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China.,Department of Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Stefan M Kuechler
- Department of Animal Ecology II, University of Bayreuth, Bayreuth, Germany
| | | | - Ping-Ping Chen
- Netherlands Centre of Biodiversity Naturalis, Leiden, Netherlands
| | - Hao-Yang Wu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China.,Department of Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | | | - Xiao-Ya Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Lu Ding
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China.,Department of Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yue-Ran Wang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China.,Department of Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiang Xie
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China.,Department of Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Miller CD, Forthman M, Miller CW, Kimball RT. Extracting ‘legacy loci’ from an invertebrate sequence capture data set. ZOOL SCR 2021. [DOI: 10.1111/zsc.12513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Caroline D. Miller
- Department of Entomology & Nematology University of Florida Gainesville FL USA
| | - Michael Forthman
- Department of Entomology & Nematology University of Florida Gainesville FL USA
- California State Collection of Arthropods Plant Pest Diagnostics Branch California Department of Food & Agriculture Sacramento CA USA
| | - Christine W. Miller
- Department of Entomology & Nematology University of Florida Gainesville FL USA
| | | |
Collapse
|
11
|
Ye F, Li H, Xie Q. Mitochondrial Genomes from Two Specialized Subfamilies of Reduviidae (Insecta: Hemiptera) Reveal Novel Gene Rearrangements of True Bugs. Genes (Basel) 2021; 12:1134. [PMID: 34440308 PMCID: PMC8392325 DOI: 10.3390/genes12081134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/11/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
Reduviidae, a hyper-diverse family, comprise 25 subfamilies with nearly 7000 species and include many natural enemies of crop pests and vectors of human disease. To date, 75 mitochondrial genomes (mitogenomes) of assassin bugs from only 11 subfamilies have been reported. The limited sampling of mitogenome at higher categories hinders a deep understanding of mitogenome evolution and reduviid phylogeny. In this study, the first mitogenomes of Holoptilinae (Ptilocnemus lemur) and Emesinae (Ischnobaenella hainana) were sequenced. Two novel gene orders were detected in the newly sequenced mitogenomes. Combined 421 heteropteran mitogenomes, we identified 21 different gene orders and six gene rearrangement units located in three gene blocks. Comparative analyses of the diversity of gene order for each unit reveal that the tRNA gene cluster trnI-trnQ-trnM is the hotspot of heteropteran gene rearrangement. Furthermore, combined analyses of the gene rearrangement richness of each unit and the whole mitogenome among heteropteran lineages confirm Reduviidae as a 'hot-spot group' of gene rearrangement in Heteroptera. The phylogenetic analyses corroborate the current view of phylogenetic relationships between basal groups of Reduviidae with high support values. Our study provides deeper insights into the evolution of mitochondrial gene arrangement in Heteroptera and the early divergence of reduviids.
Collapse
Affiliation(s)
- Fei Ye
- Department of Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Qiang Xie
- Department of Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
12
|
Voronova AN, Chelomina GN. The SSU rRNA secondary structures of the Plagiorchiida species (Digenea), its applications in systematics and evolutionary inferences. INFECTION GENETICS AND EVOLUTION 2019; 78:104042. [PMID: 31770596 DOI: 10.1016/j.meegid.2019.104042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/05/2019] [Accepted: 09/16/2019] [Indexed: 10/25/2022]
Abstract
The small subunit ribosomal RNA (SSU rRNA) is widely used phylogenetic marker in broad groups of organisms and its secondary structure increasingly attracts the attention of researchers as supplementary tool in sequence alignment and advanced phylogenetic studies. Its comparative analysis provides a great contribution to evolutionary biology, allowing find out how the SSU rRNA secondary structure originated, developed and evolved. Herein, we provide the first data on the putative SSU rRNA secondary structures of the Plagiorchiida species. The structures were found to be quite conserved across broad range of species studied, well compatible with those of others eukaryotic SSU rRNA and possessed some peculiarities: cross-shaped structure of the ES6b, additional shortened ES6c2 helix, and elongated ES6a helix and h39 + ES9 region. The secondary structures of variable regions ES3 and ES7 appeared to be tissue-specific while ES6 and ES9 were specific at a family level allowing considering them as promising markers for digenean systematics. Their uniqueness more depends on the length than on the nucleotide diversity of primary sequences which evolutionary rates well differ. The findings have important implications for understanding rRNA evolution, developing molecular taxonomy and systematics of Plagiorchiida as well as for constructing new anthelmintic drugs.
Collapse
Affiliation(s)
- A N Voronova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity FEB RAS, 7 Russia, 100-letiya Street, 159, Vladivostok 690022, Russia
| | - G N Chelomina
- Federal Scientific Center of the East Asia Terrestrial Biodiversity FEB RAS, 7 Russia, 100-letiya Street, 159, Vladivostok 690022, Russia.
| |
Collapse
|
13
|
Zhao W, Zhao Q, Li M, Wei J, Zhang X, Zhang H. Characterization of the complete mitochondrial genome and phylogenetic implications for Eurydema maracandica (Hemiptera: Pentatomidae). MITOCHONDRIAL DNA PART B-RESOURCES 2017; 2:550-551. [PMID: 33490465 PMCID: PMC7800374 DOI: 10.1080/23802359.2017.1365649] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The complete mitochondrial genome of Eurydema maracandica was sequenced and was 15,391 bp long with 76.82% A + T. There were 37 typical genes including 13 protein-coding genes/PCGs, 22 transfer RNA/tRNAs, and 2 ribosomal RNA/rRNAs. The 690 bp D-loop region was located between 12S rRNA and trnI-Ile. All PCGs started with ATN codons, except COI, ATP8, and ND1, and ended with TAA, except COI, COII, and ND5. Phylogenetic analyses indicated highly supported monophyly for each family, and Pentatomidae species formed a solid monophyletic group. Eurydema maracandica and Eurydema gebleri were clustered sibling clades, and the genus Halyomorpha was close to Eurydema.
Collapse
Affiliation(s)
- Wanqing Zhao
- Department of Entomology, Shanxi Agricultural University, Taigu, China
| | - Qing Zhao
- Department of Entomology, Shanxi Agricultural University, Taigu, China
| | - Min Li
- Department of Biology, Taiyuan Normal University, Taiyuan, China
| | - Jiufeng Wei
- Department of Entomology, Shanxi Agricultural University, Taigu, China
| | - Xianhong Zhang
- Department of Entomology, Shanxi Agricultural University, Taigu, China
| | - Hufang Zhang
- Department of Biology, Xinzhou Teachers University, Xinzhou, China
| |
Collapse
|
14
|
Wu YZ, Yu SS, Wang YH, Wu HY, Li XR, Men XY, Zhang YW, Rédei D, Xie Q, Bu WJ. The evolutionary position of Lestoniidae revealed by molecular autapomorphies in the secondary structure of rRNA besides phylogenetic reconstruction (Insecta: Hemiptera: Heteroptera). Zool J Linn Soc 2016. [DOI: 10.1111/zoj.12385] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yan-Zhuo Wu
- Institute of Entomology; College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Sha-Sha Yu
- Institute of Entomology; College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Yan-Hui Wang
- Institute of Entomology; College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Hao-Yang Wu
- Institute of Entomology; College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Xiu-Rong Li
- Institute of Entomology; College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Xin-Yu Men
- Institute of Entomology; College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Yi-Wei Zhang
- Institute of Entomology; College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Dávid Rédei
- Institute of Entomology; College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Qiang Xie
- Institute of Entomology; College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Wen-Jun Bu
- Institute of Entomology; College of Life Sciences; Nankai University; Tianjin 300071 China
| |
Collapse
|
15
|
Sequencing of the mitochondrial genome of the avocado lace bug Pseudacysta perseae (Heteroptera, Tingidae) using a genome skimming approach. C R Biol 2015; 338:149-60. [PMID: 25636225 DOI: 10.1016/j.crvi.2014.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 11/23/2022]
Abstract
Lace bugs (Tingidae) are a family of phytophagous heteropterans, some of which are important agricultural and forestry pests. They currently comprise around 2500 species distributed worldwide, for which only one mitochondrial genome has been described so far. We sequenced the complete mitochondrial genome and the nuclear ribosomal gene segment of the avocado lace bug Pseudacysta perseae using a genome skimming approach on an Illumina Hiseq 2000 platform. Fifty-four additional heteropteran mitogenomes, including the one of the sycamore lace bug Corythucha ciliata, were retrieved to allow for comparisons and phylogenetic analyses. P. perseae mitochondrial genome was determined to be 15,850 bp long, and presented the typical organisation of insect mitogenomes. The phylogenetic analysis placed P. perseae as a sister to C. ciliata but did not confirm the monophyly of Miroidae including Tingidae. Our results contradicted widely accepted phylogenetic hypothesis, which highlights the limits of analyses based on mitochondrial data only. Shotgun sequencing approaches should provide substantial improvements in harmonizing mitochondrial and nuclear databases.
Collapse
|
16
|
Shotgun assembly of the assassin bug Brontostoma colossus mitochondrial genome (Heteroptera, Reduviidae). Gene 2014; 552:184-94. [PMID: 25240790 DOI: 10.1016/j.gene.2014.09.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/27/2014] [Accepted: 09/15/2014] [Indexed: 12/26/2022]
Abstract
The complete mitochondrial genome of the assassin bug Brontostoma colossus (Distant, 1902) (Heteroptera: Reduviidae) has been sequenced using a genome-skimming approach on an Illumina Hiseq 2000 platform. Fifty-four additional heteropteran mitogenomes, including five assassin bug species, were retrieved to allow for comparisons and phylogenetic analyses. The mitochondrial genome of B. colossus was determined to be 16,625 bp long, and consists of 13 protein-coding genes (PCGs), 23 transfer-RNA genes (tRNAs), two ribosomal-RNA genes (rRNAs), and one control region. The nucleotide composition is biased toward adenine and thymine (A+T=73.4%). Overall, architecture, nucleotide composition and genome asymmetry are similar among all available assassin bug mitogenomes. All PCGs have usual start-codons (Met and Ile). Three T and two TA incomplete termination codons were identified adjacent to tRNAs, which was consistent with the punctuation model for primary transcripts processing followed by 3' polyadenylation of mature mRNA. All tRNAs exhibit the classic clover-leaf secondary structure except for tRNASer(AGN) in which the DHU arm forms a simple loop. Two notable features are present in the B. colossus mitogenome: (i) a 131 bp duplicated unit including the complete tRNAArg gene, resulting in 23 potentially functional tRNAs in total, and (ii) a 857 bp duplicated region comprising 277 bp of the srRNA gene and 580 bp of the control region. A phylogenetic analysis based on 55 true bug mitogenomes confirmed that B. colossus belongs to Reduviidae, but contradicted a widely accepted hypothesis. This highlights the limits of phylogenetic analyses based on mitochondrial data only.
Collapse
|