1
|
Zhao T, Song N, Lin X, Zhang Y. Complete mitochondrial genomes of the slugs Deroceraslaeve (Agriolimacidae) and Ambigolimaxvalentianus (Limacidae) provide insights into the phylogeny of Stylommatophora (Mollusca, Gastropoda). Zookeys 2023; 1173:43-59. [PMID: 37560262 PMCID: PMC10407649 DOI: 10.3897/zookeys.1173.102786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/13/2023] [Indexed: 08/11/2023] Open
Abstract
In this study, we sequenced two complete mitogenomes from Deroceraslaeve and Ambigolimaxvalentianus. The mitogenome of Ambigolimaxvalentianus represented the first such data from the family Limacidae. The lengths of the mitogenomes of Deroceraslaeve and Ambigolimaxvalentianus were 14,773 bp and 15,195 bp, respectively. The entire set of 37 mitochondrial genes were identified for both mitogenomes. Compared with the mitogenome of Achatinafulica, the trnP_trnA tRNA cluster was rearranged in both Deroceraslaeve and Ambigolimaxvalentianus. The secondary structures of tRNA and rRNA genes for the two species were predicted. Phylogenetic analyses based on amino acid sequences supported (1) monophyly of Stylommatophora, (2) division of Stylommatophora into the 'achatinoid' clade (i.e., the suborder Achatinina) and the 'non-achatinoid' clade (i.e., the suborder Helicina), (3) placement of the Orthurethra in the 'non-achatinoid' clade, and (4) monophyly of each of the superfamilies Helicoidea, Urocoptoidea, Succineoidea, Arionoidea, Pupilloidea and Limacoidea. The exemplars of Helicidae, Philomycidae and Achatinellidae displayed many more mitochondrial gene rearrangements than other species of Stylommatophora.
Collapse
Affiliation(s)
- Te Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, ChinaHenan Agricultural UniversityZhengzhouChina
| | - Nan Song
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, ChinaHenan Agricultural UniversityZhengzhouChina
| | - Xingyu Lin
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, ChinaHenan Agricultural UniversityZhengzhouChina
| | - Yang Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, ChinaHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
2
|
Kosicka E, Pieńkowska JR, Lesicki A. The complete mitochondrial genome of the terrestrial snail Monachacartusiana (O.F. Müller, 1774) (Gastropoda, Eupulmonata, Hygromiidae). Zookeys 2022; 1130:65-78. [PMID: 36761020 PMCID: PMC9836564 DOI: 10.3897/zookeys.1130.91325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022] Open
Abstract
The mitochondrial genome of Monachacartusiana is the first complete mitochondrial sequence described for the pulmonate snail genus Monacha and for the family Hygromiidae. The identified mitogenome has a length of 13,894 bp and encodes 13 proteins, 22 tRNAs, and two rRNAs. A phylogenetic analysis of available mitogenomes from representatives of helicoid families shows a sister group relationship of Hygromiidae and Geomitridae, which have been recently recognised as separate families.
Collapse
Affiliation(s)
- Ewa Kosicka
- Department of Cell Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 6, 61-614, Poznań, PolandAdam Mickiewicz UniversityPoznańPoland
| | - Joanna R. Pieńkowska
- Department of Cell Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 6, 61-614, Poznań, PolandAdam Mickiewicz UniversityPoznańPoland
| | - Andrzej Lesicki
- Department of Cell Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 6, 61-614, Poznań, PolandAdam Mickiewicz UniversityPoznańPoland
| |
Collapse
|
3
|
Guzmán LB, Vogler RE, Beltramino AA. The mitochondrial genome of the semi-slug Omalonyx unguis (Gastropoda: Succineidae) and the phylogenetic relationships within Stylommatophora. PLoS One 2021; 16:e0253724. [PMID: 34170937 PMCID: PMC8232460 DOI: 10.1371/journal.pone.0253724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/10/2021] [Indexed: 11/23/2022] Open
Abstract
Here we report the first complete mitochondrial genome of the semi-slug Omalonyx unguis (d’Orbigny, 1836) (Gastropoda: Succineidae). Sequencing was performed on a specimen from Argentina. Assembly was performed using Sanger data and Illumina next generation sequencing (NGS). The mitogenome was 13,984 bp in length and encoded the 37 typical Metazoan genes. A potential origin for mitochondrial DNA replication was found in a non-coding intergenic spacer (49 bp) located between cox3 and tRNA-Ile genes, and its secondary structure was characterized. Secondary structure models of the tRNA genes of O. unguis largely agreed with those proposed for other mollusks. Secondary structure models for the two rRNA genes were also obtained. To our knowledge, the 12S-rRNA model derived here is the first complete one available for mollusks. Phylogenetic analyses based on the mitogenomes of O. unguis and 37 other species of Stylommatophora were performed using amino acid sequences from the 13 protein-coding genes. Our results located Succineoidea as a sister group of Helicoidea + Urocoptoidea, similar to previous studies based on mitochondrial genomes. The gene arrangement of O. unguis was identical to that reported for another species of Succineoidea. The unique rearrangements observed for this group within Stylommatophora, may constitute synapomorphies for the superfamily.
Collapse
Affiliation(s)
- Leila Belén Guzmán
- Grupo de Investigación en Genética de Moluscos (GIGeMol), Instituto de Biología Subtropical (IBS), CONICET–UNaM, Posadas, Misiones, Argentina
- * E-mail: (LBG); (AAB)
| | - Roberto Eugenio Vogler
- Grupo de Investigación en Genética de Moluscos (GIGeMol), Instituto de Biología Subtropical (IBS), CONICET–UNaM, Posadas, Misiones, Argentina
| | - Ariel Aníbal Beltramino
- Grupo de Investigación en Genética de Moluscos (GIGeMol), Instituto de Biología Subtropical (IBS), CONICET–UNaM, Posadas, Misiones, Argentina
- * E-mail: (LBG); (AAB)
| |
Collapse
|
4
|
Doğan Ö, Schrödl M, Chen Z. The complete mitogenome of Arion vulgaris Moquin-Tandon, 1855 (Gastropoda: Stylommatophora): mitochondrial genome architecture, evolution and phylogenetic considerations within Stylommatophora. PeerJ 2020; 8:e8603. [PMID: 32117634 PMCID: PMC7039129 DOI: 10.7717/peerj.8603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/19/2020] [Indexed: 11/27/2022] Open
Abstract
Stylommatophora is one of the most speciose orders of Gastropoda, including terrestrial snails and slugs, some of which are economically important as human food, agricultural pests, vectors of parasites or due to invasiveness. Despite their great diversity and relevance, the internal phylogeny of Stylommatophora has been debated. To date, only 34 stylommatophoran mitogenomes were sequenced. Here, the complete mitogenome of an invasive pest slug, Arion vulgaris Moquin-Tandon, 1855 (Stylommatophora: Arionidae), was sequenced using next generation sequencing, analysed and compared with other stylommatophorans. The mitogenome of A. vulgaris measures 14,547 bp and contains 13 protein-coding, two rRNA, 22 tRNA genes, and one control region, with an A + T content of 70.20%. All protein coding genes (PCGs) are initiated with ATN codons except for COX1, ND5 and ATP8 and all are ended with TAR or T-stop codons. All tRNAs were folded into a clover-leaf secondary structure except for trnC and trnS1 (AGN). Phylogenetic analyses confirmed the position of A. vulgaris within the superfamily Arionoidea, recovered a sister group relationship between Arionoidea and Orthalicoidea, and supported monophyly of all currently recognized superfamilies within Stylommatophora except for the superfamily Helicoidea. Initial diversification time of the Stylommatophora was estimated as 138.55 million years ago corresponding to Early Cretaceous. The divergence time of A. vulgaris and Arion rufus (Linnaeus, 1758) was estimated as 15.24 million years ago corresponding to one of Earth's most recent, global warming events, the Mid-Miocene Climatic Optimum. Furthermore, selection analyses were performed to investigate the role of different selective forces shaping stylommatophoran mitogenomes. Although purifying selection is the predominant selective force shaping stylommatophoran mitogenomes, six genes (ATP8, COX1, COX3, ND3, ND4 and ND6) detected by the branch-specific aBSREL approach and three genes (ATP8, CYTB and ND4L) detected by codon-based BEB, FUBAR and MEME approaches were exposed to diversifying selection. The positively selected substitutions at the mitochondrial PCGs of stylommatophoran species seems to be adaptive to environmental conditions and affecting mitochondrial ATP production or protection from reactive oxygen species effects. Comparative analysis of stylommatophoran mitogenome rearrangements using MLGO revealed conservatism in Stylommatophora; exceptions refer to potential apomorphies for several clades including rearranged orders of trnW-trnY and of trnE-trnQ-rrnS-trnM-trnL2-ATP8-trnN-ATP6-trnR clusters for the genus Arion. Generally, tRNA genes tend to be rearranged and tandem duplication random loss, transitions and inversions are the most basic mechanisms shaping stylommatophoran mitogenomes.
Collapse
Affiliation(s)
- Özgül Doğan
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
- SNSB-Bavarian State Collection of Zoology, Munich, Germany
| | - Michael Schrödl
- SNSB-Bavarian State Collection of Zoology, Munich, Germany
- Department Biology II, Ludwig-Maximilians-Universität, Munich, Germany
- GeoBio-Center LMU, Munich, Germany
| | - Zeyuan Chen
- SNSB-Bavarian State Collection of Zoology, Munich, Germany
- Department Biology II, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
5
|
Xie GL, Köhler F, Huang XC, Wu RW, Zhou CH, Ouyang S, Wu XP. A novel gene arrangement among the Stylommatophora by the complete mitochondrial genome of the terrestrial slug Meghimatium bilineatum (Gastropoda, Arionoidea). Mol Phylogenet Evol 2019; 135:177-184. [PMID: 30858078 DOI: 10.1016/j.ympev.2019.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/12/2018] [Accepted: 03/05/2019] [Indexed: 12/20/2022]
Abstract
Stylommatophora is a main clade of Gastropoda that encompasses approximately 112 gastropod families and may exceed a total of 30,000 species. Twenty-four complete stylommatophoran mitogenomes have been sequenced to date, yet our understanding of mitochondrial evolution in stylommatophorans is still in its infancy. To further expand the set of available mitogenomes, we sequenced the mitogenome of Meghimatium bilineatum (Arionoidea: Philomycidae), a widespread land slug in East Asia. This is the first report on a mitogenome of the superfamily Arionoidea, and indeed on a terrestrial slug. The mitogenome of Meghimatium bilineatum comprises 13,972 bp and exhibits a novel, highly distinctive gene arrangement among the Stylommatophora. Phylogenetic reconstructions based on the sequences of all protein-coding genes consistently recovered Meghimatium bilineatum as sister-group of the Succineidae. A phylogenetic reconstruction based on gene order, however, suggested a highly divergent tree topology, which is less credible when taking into account prior knowledge of stylommatophoran relationships. Our CREx (Common interval Rearrangement Explorer) analysis suggested that three successive events of tandem duplication random loss (TDRL) best explain the evolutionary process of gene order rearrangement in Meghimatium bilineatum from an ancestral stylommatophoran mitogenome. The present example offers new insights into the mechanisms of mitogenome rearrangements in gastropods at large and into the usefulness of mitogenomic gene order as a phylogenetic marker.
Collapse
Affiliation(s)
- Guang-Long Xie
- School of Life Sciences, Nanchang University, Nanchang 330031, China; Australian Museum, 1 William Street, Sydney, NSW 2010, Australia
| | - Frank Köhler
- Australian Museum, 1 William Street, Sydney, NSW 2010, Australia
| | - Xiao-Chen Huang
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Rui-Wen Wu
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Chun-Hua Zhou
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Shan Ouyang
- School of Life Sciences, Nanchang University, Nanchang 330031, China.
| | - Xiao-Ping Wu
- School of Life Sciences, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
6
|
Orábek O, Petrusek A, Rovatsos M. The complete mitogenome of Helixpomatia and the basal phylogeny of Helicinae (Gastropoda, Stylommatophora, Helicidae). Zookeys 2019; 827:19-30. [PMID: 31114424 PMCID: PMC6472302 DOI: 10.3897/zookeys.827.33057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/27/2019] [Indexed: 11/23/2022] Open
Abstract
A complete mitochondrial genome of the Roman snail Helixpomatia Linnaeus, 1758 has been sequenced. The length and gene order correspond to that of other available helicid mitogenomes. We used the mitogenome sequence to reappraise the relationships among the four presumed principal groups of the helicid subfamily Helicinae. The results support the idea that the subfamily is divided between two western Palaearctic diversification centres: Iberian Peninsula and western Maghreb in the west, and Anatolia, the Aegean and Caucasus in the east. One group, the tribe Helicini, diversified in the east and the remaining three currently recognised tribes in the west. However, the exact relationships among lineages of the non-Helicini tribes could not be resolved.
Collapse
Affiliation(s)
- Ondřej Orábek
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, CZ-12844 Prague 2, Czechia Charles University Prague Czech Republic
| | - Adam Petrusek
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, CZ-12844 Prague 2, Czechia Charles University Prague Czech Republic
| | - Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, CZ-12844 Prague 2, Czechia Charles University Prague Czech Republic
| |
Collapse
|