1
|
Khojah A, Morgan G, Kadakia A, Klein-Gitelman MS, Pachman LM. Dyslipidemia in Juvenile Dermatomyositis. Sci Rep 2024; 14:26528. [PMID: 39489760 PMCID: PMC11532421 DOI: 10.1038/s41598-024-77985-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024] Open
Abstract
This study investigates the prevalence of dyslipidemia and its association with disease activity in children with Juvenile Dermatomyositis (JDM). A retrospective chart review of 142 JDM patients who had fasting lipid profiles was conducted. Clinical, and laboratory indicators of disease activity at the time of lipid assessment were obtained. JDM patients displayed a high prevalence (72%) of abnormal or borderline fasting lipid profiles, particularly involving HDL and triglycerides. Treatment-naïve patients exhibited the most significant dyslipidemia, with significantly lower median HDL levels compared to those on medication (30 vs. 49 mg/dL, p < 0.0001). HDL levels inversely correlated with various disease activity measures, including disease activity score (DAS) total (r= -0.38, p < 0.001), DAS muscle weakness (r= -0.5, p < 0.001), DAS skin (r= -0.25, p = 0.003), neopterin (r= -0.41, p < 0.001), ESR (r= -0.25, p = 0.006), and vWF Ag (r= -0.21, p = 0.02). In conclusion, JDM patients have a high prevalence of dyslipidemia, especially low HDL and elevated triglycerides. The severity of dyslipidemia (low HDL) correlates with disease activity, with treatment-naïve patients demonstrating the lowest HDL levels. These findings suggest the importance of annual lipid profile monitoring in JDM patients, potentially followed by early interventions such as dietary adjustments and exercise programs.
Collapse
Affiliation(s)
- Amer Khojah
- Department of Pediatrics, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Gabrielle Morgan
- Division of Rheumatology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Arya Kadakia
- Division of Rheumatology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Marisa S Klein-Gitelman
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Rheumatology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Lauren M Pachman
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Division of Rheumatology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.
- Division of Pediatric Rheumatology, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 East Chicago Avenue, Box 50, Chicago, IL, 60611, USA.
| |
Collapse
|
2
|
Shi J, Zhou S, Zhao J, Xu D, Huang H, Li M, Tian X, He L, Wu C, Wang Q, Zhao Y, Zeng X. Microarray analysis of microrna expression in peripheral blood mononuclear cells of patients with polymyositis and dermatomyositis. J Transl Int Med 2024; 12:170-176. [PMID: 38779122 PMCID: PMC11107181 DOI: 10.2478/jtim-2022-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Background and Objectives MicroRNAs (miRNAs) represent a new class of biomarkers in the context of connective tissue disorders. The miRNA expression profiles in peripheral blood mononuclear cells (PBMCs) of patients with polymyositis (PM) and dermatomyositis (DM) have not been fully elucidated. The objective is to investigate miRNAs expression profile in PBMCs of patients with PM/DM. Methods Microarray technology was used to identify differentially expressed miRNAs in PBMCs obtained from 6 untreated PM/DM patients and 3 healthy controls (HCs). TaqMan-based stem-loop real-time PCR detection was used for validation in a cohort of 34 PM/DM patients and 20 HCs. Results Microarray analysis revealed 38 differentially expressed miRNAs (24 up-regulated and 14 down-regulated) in PM/DM patients compared to HCs. Four miRNAs (miR-320a, miR-335-3p, miR-34a-5p and miR-454-3p) were chosen for real-time PCR validation. The expression of miR-34a-5p was significantly upregulated in PM/DM group (P < 0.05). In subgroup analysis, miR-34a-5p was significantly upregulated in interstitial lung disease (ILD) group and DM group (P < 0.001). The level of SIRT1, a validated target of miR-34a, was significantly lower in PBMCs of PM/DM patients compared with HCs. Conclusions MiR-34a-5p may potentially participate in the pathogenesis of PM/DM through SIRT1, and may serve as a potential new biomarker for PM/DM-ILD.
Collapse
Affiliation(s)
- Jia Shi
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing100730, China
| | - Shuang Zhou
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing100730, China
| | - Jiuliang Zhao
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing100730, China
| | - Dong Xu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing100730, China
| | - Hui Huang
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100730, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing100730, China
| | - Xinping Tian
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing100730, China
| | - Linrong He
- China-Japan Friendship Hospital, Yinghua East Road, Chaoyang District, Beijing100029, China
| | - Chanyuan Wu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing100730, China
| | - Qian Wang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing100730, China
| | - Yan Zhao
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing100730, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing100730, China
| |
Collapse
|
3
|
Zhang Y, Maskan Bermudez N, Sa B, Maderal AD, Jimenez JJ. Epigenetic mechanisms driving the pathogenesis of systemic lupus erythematosus, systemic sclerosis and dermatomyositis. Exp Dermatol 2024; 33:e14986. [PMID: 38059632 DOI: 10.1111/exd.14986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/27/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
Autoimmune connective tissue disorders, including systemic lupus erythematosus, systemic sclerosis (SSc) and dermatomyositis (DM), often manifest with debilitating cutaneous lesions and can result in systemic organ damage that may be life-threatening. Despite recent therapeutic advancements, many patients still experience low rates of sustained remission and significant treatment toxicity. While genetic predisposition plays a role in these connective tissue disorders, the relatively low concordance rates among monozygotic twins (ranging from approximately 4% for SSc to about 11%-50% for SLE) have prompted increased scrutiny of the epigenetic factors contributing to these diseases. In this review, we explore some seminal studies and key findings to provide a comprehensive understanding of how dysregulated epigenetic mechanisms can contribute to the development of SLE, SSc and DM.
Collapse
Affiliation(s)
- Yusheng Zhang
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Narges Maskan Bermudez
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Brianna Sa
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Andrea D Maderal
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Joaquin J Jimenez
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
4
|
Honda M, Shimizu F, Sato R, Nakamori M. Contribution of Complement, Microangiopathy and Inflammation in Idiopathic Inflammatory Myopathies. J Neuromuscul Dis 2024; 11:5-16. [PMID: 38143369 PMCID: PMC10789353 DOI: 10.3233/jnd-230168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 12/26/2023]
Abstract
PURPOSE OF REVIEW Idiopathic inflammatory myopathies (IIMs) are a heterogeneous group characterized by muscle weakness and skin symptoms and are categorized into six subtypes: dermatomyositis (DM), polymyositis (PM), anti-synthetase syndrome (ASS), immune-mediated myopathy (IMNM), inclusion body myopathy (IBM), and overlap myositis. Myositis-specific autoantibodies were detected for the diagnosis and classification of IIM. This review highlights the pathogenic contributions of the complement system, microangiopathy, and inflammation in IIM. RECENT FINDINGS Deposition of complement around capillaries and/or the sarcolemma was observed in muscle biopsy specimens from patients with DM, ASS, and IMNM, suggesting the pathomechanism of complement-dependent muscle and endothelial cell injury. A recent study using human muscle microvascular endothelial cells showed that Jo-1 antibodies from ASS induce complement-dependent cellular cytotoxicity in vitro. Based on both clinical and pathological observations, antibody- and complement-mediated microangiopathy may contribute to the development of DM and anti-Jo-1 ASS. Juvenile DM is characterized by the loss of capillaries, perivascular inflammation, and small-vessel angiopathies, which may be related to microinfarction and perifascicular atrophy. Several serum biomarkers that reflect the IFN1 signature and microangiopathy are elevated in patients with DM. The pathological observation of myxovirus resistance protein A (MxA), which suggests a type 1 interferon (IFN1) signature in DM, supports the diagnosis and further understanding of the pathomechanism of IIM. A recent report showed that an increase in triggering receptor expressed on myeloid cells (TREM-1) around perimysial blood vessels and muscles in patients with IIM plays a role in triggering inflammation and promoting the migration of inflammatory cells by secreting proinflammatory cytokines, such as tumor necrosis factor α. SUMMARY The deposition of complement in muscles and capillaries is a characteristic feature of DM, ASS, and IMNM. Microangiopathy plays a pathogenic role in DM, possibly resulting in perifascicular atrophy. Further understanding of the detailed pathomechanism regarding complement, microangiopathy, and inflammation may lead to novel therapeutic approaches for IIM.
Collapse
Affiliation(s)
- Masaya Honda
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Ryota Sato
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Masayuki Nakamori
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| |
Collapse
|
5
|
Gibbs E, Khojah A, Morgan G, Ehwerhemuepha L, Pachman LM. The von Willebrand Factor Antigen Reflects the Juvenile Dermatomyositis Disease Activity Score. Biomedicines 2023; 11:552. [PMID: 36831088 PMCID: PMC9953073 DOI: 10.3390/biomedicines11020552] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
OBJECTIVE This study determined if an accessible, serologic indicator of vascular disease activity, the von Willebrand factor antigen (vWF:Ag), was useful to assess disease activity in children with juvenile dermatomyositis (JDM), a rare disease, but the most common of the pediatric inflammatory myopathies. METHODS A total of 305 children, median age 10 years, 72.5% female, 76.5% white, with definite/probable JDM at diagnosis, were enrolled in the Ann & Robert H. Lurie Cure JM Juvenile Myositis Repository, a longitudinal database. Disease Activity Score (DAS) and vWF:Ag data were obtained at each visit. These data were analyzed using generalized estimating equation (GEE) models (both linear and logistic) to determine if vWF:Ag reflects disease severity in children with JDM. A secondary analysis was performed for untreated active JDM to exclude the effect of medications on vWF:Ag. RESULT The vWF:Ag test was elevated in 25% of untreated JDM. We found that patients with elevated vWF:Ag had a 2.55-fold higher DAS total (CI95: 1.83-3.27, p < 0.001). Patients with difficulty swallowing had 2.57 higher odds of elevated vWF:Ag (CI95: 1.5-4.38, p < 0.001); those with more generalized skin involvement had 2.58-fold higher odds of elevated vWF:Ag (CI95: 1.27-5.23, p = 0.006); and those with eyelid peripheral blood vessel dilation had 1.32-fold higher odds of elevated vWF:Ag (CI95: 1.01-1.72, p = 0.036). Untreated JDM with elevated vWF:Ag had more muscle weakness and higher muscle enzymes, neopterin and erythrocyte sedimentation rate compared to JDM patients with a normal vWF:Ag. CONCLUSION vWF:Ag elevation is a widely accessible concomitant of active disease in 25% of JDM.
Collapse
Affiliation(s)
- Ellie Gibbs
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA
| | - Amer Khojah
- Department of Pediatrics, College of Medicine, Umm Al-Qura University, Makkah 21421, Saudi Arabia
| | - Gabrielle Morgan
- Division of Pediatric Rheumatology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Cure-JM Center of Excellence in Juvenile Myositis Research and Care, Chicago, IL 60611, USA
| | - Louis Ehwerhemuepha
- Computational Research, Children’s Hospital of Orange County Research Institute, Orange, CA 92868, USA
| | - Lauren M. Pachman
- Division of Pediatric Rheumatology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Cure-JM Center of Excellence in Juvenile Myositis Research and Care, Chicago, IL 60611, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
6
|
Update on Biomarkers of Vasculopathy in Juvenile and Adult Myositis. Curr Rheumatol Rep 2022; 24:227-237. [PMID: 35680774 DOI: 10.1007/s11926-022-01076-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Although rare, idiopathic inflammatory myopathies (IIM) comprise a heterogeneous group of autoimmune conditions in adults and children. Increasingly, vasculopathy is recognised to be key in the underlying pathophysiology and plays a crucial role in some of the more challenging complications including calcinosis, gastrointestinal involvement and interstitial lung disease. The exciting prospect of development of biomarkers of vasculopathy would enable earlier detection and monitoring of these complications and possible prevention of their potentially devastating consequences. The purpose was to review the current literature on biomarkers of vasculopathy in IIM and offer insight as to the biomarkers most likely to have an impact on clinical care. RECENT FINDINGS Multiple candidate biomarkers have been studied including circulating endothelial cells (CEC), microparticles (MP), soluble adhesion markers (ICAM-1, ICAM-3, VCAM-1), selectin proteins (E-, L-, P-selectin), coagulation factors, angiogenic factors, cytokines (including (IL-6, IL-10, TNF-α, IL-18) and interferon (IFN)-related biomarkers (including IFNα, IFN-β, IFNγ, galectin-9, interferon signature and interferon-related chemokines (MCP-1, IP-10 and MIG). There is a growing body of evidence of the potential role of biomarkers in detecting and monitoring the vasculopathy in IIM, detecting disease activity and predicting disease flares and overall prognosis. Exciting progress has been made in the search for biomarkers of vasculopathy of IIM; however, none of the studies are validated and further research is required.
Collapse
|
7
|
Cytokines and inflammatory mediators as promising markers of polymyositis/dermatomyositis. Curr Opin Rheumatol 2021; 32:534-541. [PMID: 32941247 DOI: 10.1097/bor.0000000000000744] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Idiopathic inflammatory myopathies (IIMs), known also as myositis, represent challenging group of heterogeneous muscle disorders characterized by symmetric proximal muscle weakness and evidence of muscle inflammation. The purpose of this review is to provide important updates on cytokines and inflammatory mediators related to myositis. RECENT FINDINGS In the past 5 years, multiple studies brought a fresh insight into the pathogenesis of myositis by introducing new factors or further characterizing the role of the well established mediators in myositis. Among the mediators reviewed in this article, special attention was paid to interferons, C-X-C motif chemokine ligand 10, interleukin-18 and the IL23/Th17 axis. Some of the recent work has also focused on the nontraditional cytokines, such as adipokines, myokines, S100 proteins, High Mobility Group Box 1 or B-cell activating factor and on several anti-inflammatory mediators. Moreover, microRNAs and their potential to reflect the disease activity or to regulate the inflammatory processes in myositis have recently been subject of intensive investigation. Some of the above-mentioned mediators have been proposed as promising clinical biomarkers or therapeutic targets for myositis. SUMMARY Several recent studies contributed to a better understanding of the pathogenesis of myositis and highlighted the clinical significance of certain inflammatory mediators. Application of these new findings may help to develop innovative approaches for patients' phenotyping, disease activity monitoring and potentially novel therapies.
Collapse
|
8
|
Parkes JE, Thoma A, Lightfoot AP, Day PJ, Chinoy H, Lamb JA. MicroRNA and mRNA profiling in the idiopathic inflammatory myopathies. BMC Rheumatol 2020; 4:25. [PMID: 32529172 PMCID: PMC7285612 DOI: 10.1186/s41927-020-00125-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Background The idiopathic inflammatory myopathies (IIMs) are heterogeneous autoimmune conditions of skeletal muscle inflammation and weakness. MicroRNAs (miRNAs) are short, non-coding RNA which regulate gene expression of target mRNAs. The aim of this study was to profile miRNA and mRNA in IIM and identify miRNA-mRNA relationships which may be relevant to disease. Methods mRNA and miRNA in whole blood samples from 7 polymyositis (PM), 7 dermatomyositis (DM), 5 inclusion body myositis and 5 non-myositis controls was profiled using next generation RNA sequencing. Gene ontology and pathway analyses were performed using GOseq and Ingenuity Pathway Analysis. Dysregulation of miRNAs and opposite dysregulation of predicted target mRNAs in IIM subgroups was validated using RTqPCR and investigated by transfecting human skeletal muscle cells with miRNA mimic. Results Analysis of differentially expressed genes showed that interferon signalling, and anti-viral response pathways were upregulated in PM and DM compared to controls. An anti-Jo1 autoantibody positive subset of PM and DM (n = 5) had more significant upregulation and predicted activation of interferon signalling and highlighted T-helper (Th1 and Th2) cell pathways. In miRNA profiling miR-96-5p was significantly upregulated in PM, DM and the anti-Jo1 positive subset. RTqPCR replicated miR-96-5p upregulation and predicted mRNA target (ADK, CD28 and SLC4A10) downregulation. Transfection of a human skeletal muscle cell line with miR-96-5p mimic resulted in significant downregulation of ADK. Conclusion MiRNA and mRNA profiling identified dysregulation of interferon signalling, anti-viral response and T-helper cell pathways, and indicates a possible role for miR-96-5p regulation of ADK in pathogenesis of IIM.
Collapse
Affiliation(s)
- Joanna E Parkes
- Centre for Epidemiology, Division of Population Health, Health Services Research & Primary Care, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,Stopford Building, University of Manchester, Oxford Road M13 9PT, Manchester, UK
| | - Anastasia Thoma
- Musculoskeletal Science & Sports Medicine Research Centre, School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - Adam P Lightfoot
- Musculoskeletal Science & Sports Medicine Research Centre, School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - Philip J Day
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.,Division of Evolution & Genomic Sciences, University of Manchester, Manchester, UK
| | - Hector Chinoy
- Centre for Musculoskeletal Research, Division of Musculoskeletal & Dermatological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,Department of Rheumatology, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, UK
| | - Janine A Lamb
- Centre for Epidemiology, Division of Population Health, Health Services Research & Primary Care, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Identification of Potential Biomarkers and Biological Pathways in Juvenile Dermatomyositis Based on miRNA-mRNA Network. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7814287. [PMID: 31886250 PMCID: PMC6925816 DOI: 10.1155/2019/7814287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/14/2019] [Accepted: 11/08/2019] [Indexed: 01/09/2023]
Abstract
Objective The aim of this study is to explore the potential pathogenesis of juvenile dermatomyositis by bioinformatics analysis of gene chips, which would screen the hub genes, identify potential biomarkers, and reveal the development mechanism of juvenile dermatomyositis. Material and Methods We retrieved juvenile dermatomyositis's original expression microarray data of message RNAs (mRNAs) and microRNAs (miRNAs) from NCBI's Gene Expression Omnibus database (GEO, http://www.ncbi.nlm.nih.gov/geo/); through the R package of limma in Bioconductor, we can screen the differentially expressed miRNAs and mRNAs, and then we further analyzed the predicted target genes by the methods such as Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and miRNA-mRNA regulatory network construction and protein-protein interaction (PPI) network using Cytoscape 3.6.1. Results Compared with normal juvenile skin tissues, 6 upregulated microRNAs and 5 downregulated microRNAs were identified from 166 downregulated microRNAs and 58 upregulated microRNAs in juvenile dermatomyositis tissues. The enrichment pathways of differentially expressed microRNAs include cell adhesion molecules (CAMs), autoimmune thyroid disease, Type I diabetes mellitus, antigen and presentation, viral myocardium, graft-versus-host disease, and Kaposi sarcoma-associated herpes virus infection. By screening of microRNA-messenger RNA regulatory network and construction of PPI network map, three target miRNAs were identified, namely, miR-193b, miR-199b-5p, and miR-665. Conclusion We identified mir-193b, mir-199b-5p, and mir-6653 target miRNAs by exploring the miRNA-mRNA regulation network mechanism related to the pathogenesis of juvenile dermatomyositis, which will be of great significance for further study on the pathogenesis and targeted therapy of juvenile dermatomyositis.
Collapse
|
10
|
|
11
|
Tay SH, Yaung KN, Leong JY, Yeo JG, Arkachaisri T, Albani S. Immunomics in Pediatric Rheumatic Diseases. Front Med (Lausanne) 2019; 6:111. [PMID: 31231652 PMCID: PMC6558393 DOI: 10.3389/fmed.2019.00111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/03/2019] [Indexed: 02/04/2023] Open
Abstract
The inherent complexity in the immune landscape of pediatric rheumatic disease necessitates a holistic system approach. Uncertainty in the mechanistic workings and etiological driving forces presents difficulty in personalized treatments. The development and progression of immunomics are well suited to deal with this complexity. Immunomics encompasses a spectrum of biological processes that entail genomics, transcriptomics, epigenomics, proteomics, and cytomics. In this review, we will discuss how various high dimensional technologies in immunomics have helped to grow a wealth of data that provide salient clues and biological insights into the pathogenesis of autoimmunity. Interfaced with critical unresolved clinical questions and unmet medical needs, these platforms have helped to identify candidate immune targets, refine patient stratification, and understand treatment response or resistance. Yet the unprecedented growth in data has presented both opportunities and challenges. Researchers are now facing huge heterogeneous data sets from different origins that need to be integrated and exploited for further data mining. We believe that the utilization and integration of these platforms will help unravel the complexities and expedite both discovery and validation of clinical targets.
Collapse
Affiliation(s)
| | | | - Jing Yao Leong
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Joo Guan Yeo
- Duke-NUS Medical School, Singapore, Singapore.,Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.,Rheumatology and Immunology Service, Department of Pediatric Subspecialties, KK Women's and Children's Hospital, Singapore, Singapore
| | - Thaschawee Arkachaisri
- Duke-NUS Medical School, Singapore, Singapore.,Rheumatology and Immunology Service, Department of Pediatric Subspecialties, KK Women's and Children's Hospital, Singapore, Singapore
| | - Salvatore Albani
- Duke-NUS Medical School, Singapore, Singapore.,Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.,Rheumatology and Immunology Service, Department of Pediatric Subspecialties, KK Women's and Children's Hospital, Singapore, Singapore
| |
Collapse
|
12
|
Abstract
Rheumatic diseases are a group of chronic heterogeneous autoimmune disorders characterized by abnormal regulation of the innate and adaptive immune systems. Despite extensive efforts, the full spectrum of molecular factors that contribute to the pathogenesis of rheumatic diseases remains unclear. ncRNAs can govern gene expression at the transcriptional and post-transcriptional levels in multiple diseases. Recent studies have demonstrated an important role for ncRNAs, such as miRNAs and lncRNAs, in the development of immune cells and rheumatic diseases. Here, we focus on the epigenetic regulatory roles of ncRNAs in the pathogenesis of rheumatic diseases and as biomarkers of disease state.
Collapse
Affiliation(s)
- Weilin Chen
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China
| | - Di Liu
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China
| | - Quan-Zhen Li
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China
| | - Honglin Zhu
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China
| |
Collapse
|
13
|
Wienke J, Deakin CT, Wedderburn LR, van Wijk F, van Royen-Kerkhof A. Systemic and Tissue Inflammation in Juvenile Dermatomyositis: From Pathogenesis to the Quest for Monitoring Tools. Front Immunol 2018; 9:2951. [PMID: 30619311 PMCID: PMC6305419 DOI: 10.3389/fimmu.2018.02951] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/30/2018] [Indexed: 12/26/2022] Open
Abstract
Juvenile Dermatomyositis (JDM) is a systemic immune-mediated disease of childhood, characterized by muscle weakness, and a typical skin rash. Other organ systems and tissues such as the lungs, heart, and intestines can be involved, but may be under-evaluated. The inflammatory process in JDM is characterized by an interferon signature and infiltration of immune cells such as T cells and plasmacytoid dendritic cells into the affected tissues. Vasculopathy due to loss and dysfunction of endothelial cells as a result of the inflammation is thought to underlie the symptoms in most organs and tissues. JDM is a heterogeneous disease, and several disease phenotypes, each with a varying combination of affected tissues and organs, are linked to the presence of myositis autoantibodies. These autoantibodies have therefore been extensively studied as biomarkers for the disease phenotype and its associated prognosis. Next to identifying the JDM phenotype, monitoring of disease activity and disease-inflicted damage not only in muscle and skin, but also in other organs and tissues, is an important part of clinical follow-up, as these are key determinants for the long-term outcomes of patients. Various monitoring tools are currently available, among which clinical assessment, histopathological investigation of muscle and skin biopsies, and laboratory testing of blood for specific biomarkers. These investigations also give novel insights into the underlying immunological processes that drive inflammation in JDM and suggest a strong link between the interferon signature and vasculopathy. New tools are being developed in the quest for minimally invasive, but sensitive and specific diagnostic methods that correlate well with clinical symptoms or reflect local, low-grade inflammation. In this review we will discuss the types of (extra)muscular tissue inflammation in JDM and their relation to vasculopathic changes, critically assess the available diagnostic methods including myositis autoantibodies and newly identified biomarkers, and reflect on the immunopathogenic implications of identified markers.
Collapse
Affiliation(s)
- Judith Wienke
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Claire T Deakin
- UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,NHR Biomedical Research Center at Great Ormond Hospital, London, United Kingdom.,Arthritis Research UK Center for Adolescent Rheumatology, UCL, UCLH and GOSH, London, United Kingdom
| | - Lucy R Wedderburn
- UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,NHR Biomedical Research Center at Great Ormond Hospital, London, United Kingdom.,Arthritis Research UK Center for Adolescent Rheumatology, UCL, UCLH and GOSH, London, United Kingdom
| | - Femke van Wijk
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Annet van Royen-Kerkhof
- Pediatric Rheumatology and Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
14
|
Xu C, Zhang H, Gu W, Wu H, Chen Y, Zhou W, Sun B, Shen X, Zhang Z, Wang Y, Liu Y, Yuan W. The microRNA-10a/ID3/RUNX2 axis modulates the development of Ossification of Posterior Longitudinal Ligament. Sci Rep 2018; 8:9225. [PMID: 29907859 PMCID: PMC6003989 DOI: 10.1038/s41598-018-27514-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 05/31/2018] [Indexed: 01/07/2023] Open
Abstract
Ossification of the posterior longitudinal ligament (OPLL) presents as pathological heterotopic ossification of the spinal ligaments. However, its underlying molecular mechanism is still unclear. Our previous findings suggested that altered microRNA regulatory network are critical for the development of OPLL. Here, we set out to unveiling the detailed mechanism of those altered OPLL-specific microRNAs. We screened a set of differentially expressed OPLL-specific microRNAs from the previous sequencing data and showed that microRNA-10a actively modulates the ossification of posterior ligament cells in vitro. Using a tissue-engineered scaffold grown from 4-week-old BALB/c homozygous nude mice, we found that altered microRNA-10a expression in posterior ligament cells indeed affected the heterotopic bone formation in vivo. Furthermore, computational analysis showed that the negative ossification regulator ID3 is a functional target gene of microRNA-10a, and its expression was also significantly altered during microRNA-10a modulation both in vitro and in vivo. Also, we have demonstrated that the ossification promoting function of microRNA-10a requires ID3, as ID3 actively inhibits RUNX2. Thus, we identified a critical role for highly altered OPLL-specific microRNA-10a in regulating the development of OPLL by modulating the ID3/RUNX2 axis.
Collapse
Affiliation(s)
- Chen Xu
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, P.R. China
| | - Hao Zhang
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, P.R. China
| | - Wei Gu
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, P.R. China
| | - Huiqiao Wu
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, P.R. China
| | - Yuanyuan Chen
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, P.R. China.,Department of Orthopedic Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, 800th Yi Shan Road, Shanghai, 200233, P.R. China
| | - Wenchao Zhou
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, P.R. China
| | - Baifeng Sun
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, P.R. China
| | - Xiaolong Shen
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, P.R. China
| | - Zicheng Zhang
- Administration Office for Graduate Students, Changhai Hospital, Second Military Medical University, 168th Chang Hai Road, Shanghai, 200433, P.R. China
| | - Yue Wang
- Research Center of Developmental Biology, Second Military Medical University, 800th Xiang Yin Road, Shanghai, 200433, P.R. China.
| | - Yang Liu
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, P.R. China.
| | - Wen Yuan
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, P.R. China.
| |
Collapse
|
15
|
Long H, Wang X, Chen Y, Wang L, Zhao M, Lu Q. Dysregulation of microRNAs in autoimmune diseases: Pathogenesis, biomarkers and potential therapeutic targets. Cancer Lett 2018; 428:90-103. [PMID: 29680223 DOI: 10.1016/j.canlet.2018.04.016] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/08/2018] [Accepted: 04/13/2018] [Indexed: 01/12/2023]
Abstract
MicroRNAs (miRNAs) are small, single-stranded, endogenous non-coding RNAs that repress the expression of target genes via post-transcriptional mechanisms. Due to their broad regulatory effects, the precisely regulated, spatial-specific and temporal-specific expression of miRNAs is fundamentally important to various biological processes including the immune homeostasis and normal function of both innate and adaptive immune response. Aberrance of miRNAs is implicated in the development of various human diseases, especially cancers. Increasing evidence has revealed a dysregulated expression pattern of miRNAs in autoimmune diseases, among which many play key roles in the pathogenesis. In this review we summarize these findings on miRNA dysregulation implicated in autoimmune diseases, focusing on four representative systemic autoimmune diseases, i.e. systemic lupus erythematosus, rheumatoid arthritis, systemic sclerosis and dermatomyositis. The causes of the dysregulation of miRNA expression in autoimmune diseases may include genetic and epigenetic variants, and various environmental factors. Further understanding of miRNA dysregulation and its mechanisms during the development of different autoimmune diseases holds enormous potential to bring about novel therapeutic targets or strategies for these complex human disorders, as well as novel circulating or exosomal miRNA biomarkers.
Collapse
Affiliation(s)
- Hai Long
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Xin Wang
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Yongjian Chen
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Ling Wang
- Department of Stomatology, The Third Hospital of Changsha, 176 Laodong West Road, Changsha, Hunan, 410015, China
| | - Ming Zhao
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China.
| |
Collapse
|
16
|
Yang WM, Chen JJ. Advances in biomarkers for dermatomyositis. Clin Chim Acta 2018; 482:172-177. [PMID: 29614309 DOI: 10.1016/j.cca.2018.03.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 11/29/2022]
Abstract
Dermatomyositis (DM) and polymyositis (PM) are heterogeneous complex autoimmune diseases involving muscle damage. Patients with DM and PM display a wide spectrum of clinical manifestations and serological biomarkers, which may mislead and delay the proper diagnosis. Therefore, specific biomarkers or indicators for diagnosing DM and PM and monitoring disease activity are essential. Significant progress has been made through identifying novel serological biomarkers for DM and PM in recent years. Our aim is to focus on novel biomarkers for diagnosing and monitoring disease activity in DM and PM to highlight their predictive value and applicability in clinical practice.
Collapse
Affiliation(s)
- Wei-Ming Yang
- Department of Clinical Laboratory,The Second Affiliated Hospital of Nanchang University, Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang 330006, Jiangxi, China
| | - Juan-Juan Chen
- Department of Clinical Laboratory,The Second Affiliated Hospital of Nanchang University, Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
17
|
Pachman LM, Khojah AM. Advances in Juvenile Dermatomyositis: Myositis Specific Antibodies Aid in Understanding Disease Heterogeneity. J Pediatr 2018; 195:16-27. [PMID: 29576174 PMCID: PMC5881602 DOI: 10.1016/j.jpeds.2017.12.053] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/27/2017] [Accepted: 12/18/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Lauren M Pachman
- Department of Pediatrics , Northwestern University Feinberg School of Medicine, Chicago, IL; Stanley Manne Children's Research Institute, Cure JM Center of Excellence in Juvenile Myositis (JM) Research, Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Amer M Khojah
- Department of Pediatrics, Division of Pediatric Rheumatology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| |
Collapse
|
18
|
Xu D, Kacha-Ochana A, Morgan GA, Huang CC, Pachman LM. Endothelial progenitor cell number is not decreased in 34 children with Juvenile Dermatomyositis: a pilot study. Pediatr Rheumatol Online J 2017; 15:42. [PMID: 28514969 PMCID: PMC5436461 DOI: 10.1186/s12969-017-0171-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/09/2017] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE A pilot study to determine endothelial progenitor cells (EPC) number in children with Juvenile Dermatomyositis (JDM). METHODS After obtaining informed consent, the EPC number from 34 fasting children with definite/probable JDM at various stages of therapy-initially untreated, active disease on medication and clinically inactive, off medication-was compared with 13 healthy fasting pediatric controls. The EPC number was determined by fluorescence activated cell sorting (FACS), CD34+/VEGFR2+/CD45dim-, and assessed in conjunction with clinical variables: disease activity scores (DAS), duration of untreated disease (DUD), TNF-α allelic polymorphism (A/G) at the promoter region of -308, number of nailfold capillary end row loop (ERL) and von Willebrand factor antigen (vWF:Ag). Correlations of the EPC numbers with the clinical and demographic variables, including DAS Skin (DAS SK), DAS Weakness (DAS WK), DAS Total Score, DUD, Cholesterol, triglycerides, High-Density Lipoprotein (HDL) and Low-Density Lipoprotein (LDL), and ERL were calculated using the Pearson correlation coefficient. Tests of associations of EPC with gender (boy vs girl), TNF-α-308A allele (GA/AA vs GG), vWF:Ag (categorized by specific ABO type) as normal/abnormal were performed, using two-sample T- tests. RESULTS The EPC number for JDM was not significantly different from the healthy controls and was not associated with any of the clinical or cardiovascular risk factors tested. CONCLUSION The EPC for JDM were in the normal range, similar to adults with DM. These data support the concept that the normal EPC numbers in DM/JDM, irrespective of age, differs from adult PM, where they are decreased, perhaps reflecting a different pathophysiology.
Collapse
Affiliation(s)
- Dong Xu
- 0000 0004 0388 2248grid.413808.6Cure JM Program of Excellence in Juvenile Myositis Research at Stanley Manne Children’s Research Institute of Ann and Robert H., Lurie Children’s Hospital of Chicago, Chicago, IL USA ,0000 0004 0388 2248grid.413808.6Department of Pediatrics, Division of Rheumatology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Akadia Kacha-Ochana
- 0000 0004 0388 2248grid.413808.6Cure JM Program of Excellence in Juvenile Myositis Research at Stanley Manne Children’s Research Institute of Ann and Robert H., Lurie Children’s Hospital of Chicago, Chicago, IL USA
| | - Gabrielle A. Morgan
- 0000 0004 0388 2248grid.413808.6Cure JM Program of Excellence in Juvenile Myositis Research at Stanley Manne Children’s Research Institute of Ann and Robert H., Lurie Children’s Hospital of Chicago, Chicago, IL USA
| | - Chiang-Ching Huang
- 0000 0001 0695 7223grid.267468.9Zilber School of Public Health, University of Wisconsin at Milwaukee, Milwaukee, WI USA
| | - Lauren M. Pachman
- 0000 0004 0388 2248grid.413808.6Cure JM Program of Excellence in Juvenile Myositis Research at Stanley Manne Children’s Research Institute of Ann and Robert H., Lurie Children’s Hospital of Chicago, Chicago, IL USA ,0000 0004 0388 2248grid.413808.6Department of Pediatrics, Division of Rheumatology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| |
Collapse
|
19
|
Xiang Z, Yang Y, Chang C, Lu Q. The epigenetic mechanism for discordance of autoimmunity in monozygotic twins. J Autoimmun 2017; 83:43-50. [PMID: 28412046 DOI: 10.1016/j.jaut.2017.04.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 04/05/2017] [Indexed: 12/12/2022]
Abstract
Monozygotic twins share an identical DNA sequence but are not truly "identical". In fact, when it comes to health and disease, they may often display some level of phenotypic discordance. The cause of this discordance is often unknown. Epigenetic modifications such as DNA methylation, histone modification, and microRNAs-mediated regulation regulate gene expression and are sensitive to external stimuli. These modifications may be seen to bridge the gap between genetics and the environment. Over the years, the importance of epigenetics as a primary mechanism for the role that the environment plays in defining phenotype has been increasingly appreciated. Mechanisms of epigenetics include DNA methylation, histone modifications and microRNAs. Discordance rates in monozygotic twins vary depending on the specific condition, from 11% in SLE to 64% in psoriasis and 77% in PBC. Other autoimmune diseases in which discordance is found among monozygotic twins has also been studied include type 1 diabetes, multiple sclerosis, rheumatoid arthritis, dermatomyositis and systemic sclerosis. In some cases, the differences in various epigenetic modifications is slight, even though the concordance rate is low, suggesting that epigenetics is not the only factor that needs to be considered. Nonetheless, the study of phenotypic discordance in monozygotic twins may shed light on the pathogenesis of autoimmune diseases and contribute to the development of new methodologies for the diagnosis and treatment of these diseases.
Collapse
Affiliation(s)
- Zhongyuan Xiang
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yuanqing Yang
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, 451 Health Sciences Drive, Suite 6510, Davis, CA 95616, United States
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.
| |
Collapse
|