1
|
Attia AA, Sorour JM, Mohamed NA, Mansour TT, Al-Eisa RA, El-Shenawy NS. Biochemical, Histological, and Ultrastructural Studies of the Protective Role of Vitamin E on Cyclophosphamide-Induced Cardiotoxicity in Male Rats. Biomedicines 2023; 11:biomedicines11020390. [PMID: 36830928 PMCID: PMC9952974 DOI: 10.3390/biomedicines11020390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Cyclophosphamide (CP) (Cytoxan or Endoxan) is an efficient anti-tumor agent, widely used for the treatment of various neoplastic diseases. The study aimed to investigate the protective role of vitamin E (vit E) in improving cardiotoxicity in rats induced by CP. MATERIALS AND METHODS Forty male Wistar rats were divided randomly into four experimental groups (each consisting of ten rats); the control group was treated with saline. The other three groups were treated with vit E, CP, and the combination of vit E and CP. Serum lipid profiles, enzyme cardiac biomarkers, and cardiac tissue antioxidants were evaluated, as well as histological and ultrastructure investigations. RESULTS CP-treated rats showed a significant increase in serum levels of cardiac markers (troponin, CK, LDH, AST, and ALT), lipid profiles, a reduction in the antioxidant enzyme activities (CAT, SOD, and GPx), and an elevation in the level of lipid peroxidation (LPO). The increase in the levels of troponin, LDH, AST, ALP, and triglycerides is a predominant indicator of cardiac damage due to the toxic effect of CP. The biochemical changes parallel cardiac injuries such as myocardial infarction, myocarditis, and heart failure. Vitamin E played a pivotal role, as it attenuated most of these changes because of its ability to scavenge free radicals and reduce LPO. In addition, vit E was found to improve the histopathological alterations caused by CP where no evidence of damage was observed in the cardiac architecture, and the cardiac fibers had regained their normal structure with minimal hemorrhage. CONCLUSIONS As a result of its antioxidant activity and its stabilizing impact on the cardiomyocyte membranes, vit E is recommended as a potential candidate in decreasing the damaging effects of CP.
Collapse
Affiliation(s)
- Azza A. Attia
- Zoology Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Jehan M. Sorour
- Zoology Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Neama A. Mohamed
- Zoology Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Tagreed T. Mansour
- Zoology Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Rasha A. Al-Eisa
- Biology Department, Main Campus, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Nahla S. El-Shenawy
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Correspondence:
| |
Collapse
|
2
|
Mirazi N, Shahabi Baher I, Izadi Z, Hosseini A. The protective effect of Rubus fruticosus L. on blood composition in cyclophosphamide treated male rats. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00273-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Some chemotherapy drugs such cyclophosphamide (CP) has destructive effects on hematopoietic cells in the bone marrow tissue. Due to antioxidant and anti-inflammatory features, medicinal herbs have protective effects on the bone marrow tissue. The aim of this experimental study is to examine the protective effects of Rubus fruticosus L. extract (RF) on blood parameters in male rats treated with CP.
Methods
In this experimental study, 35 male Wistar rats (220–250 g) were randomly divided into 5 groups (n = 7): Control (0.5 mL normal saline), CP (15 mg/kg), positive control (RF per se 200 mg/kg), treatment 1 (CP 15 mg/kg + RF 100 mg/kg), and treatment 2 (CP 15 mg/kg + RF 200 mg/kg). All drugs and extracts were given intraperitoneally for 15 consecutive days. At the end of the intervention, all animals were euthanized and their blood samples were collected by cardiac puncture in anti-coagulant tubes for blood parameters evaluation.
Results
The data analysis showed that CP has decreased significantly in RBC, WBC, Platelets number, hemoglobin and hematocrit in rats (p < 0.05). RF could protect hematopoiesis in CP-induced rats (p < 0.05).
Conclusion
The use of RF can protect the blood hematopoietic tissue in bone marrow and prevent CP toxic effects.
Collapse
|
3
|
Su Y, Liu W, Dong G, Qian Z, Gurram N, Liu E, Cummings-Vaughn LA, Howard SW, Vaughn MG, Jansson DR, Zhang C, Wang J, Liu Y. Investigation of simple, objective, and effective indicators for predicting acute paraquat poisoning outcomes. Toxicol Ind Health 2020; 36:417-426. [PMID: 32787739 DOI: 10.1177/0748233720933522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Initial symptoms of paraquat (PQ) toxicity are often not obvious, and the lack of advanced testing equipment and medical conditions in the primary hospital make it difficult to provide early diagnosis and timely treatment. To explore simple, objective, and effective indicators of prognosis for primary clinicians, we retrospectively analyzed acute PQ poisoning in 190 patients admitted to our hospital from 2008 to 2017. Based on their condition at the time of discharge, patients were categorized into either the survival group (n = 71) or the mortality group (n = 119). Age, PQ ingested amount, urinary PQ, urinary protein, white blood cell (WBC), and serum creatinine (Cr) were the key factors associated with the prognosis for PQ poisoning. We identified specific diagnostic thresholds for these key indicators of PQ poisoning: PQ ingested amount (36.50 mL), urinary PQ (semiquantitative result "++"), urinary protein (semiquantitative result "±"), WBC (16.50 × 109/L), and serum Cr (102.10 µmol/L). Combining these five indicators to identify poisoning outcomes was considered objective, accurate, and convenient. When the combined score was <1, the predicted probability of patient death was 6%. When the combined score was ≥3, the predicted probability of patient death was 96%. These findings provide metrics to assist primary clinicians in predicting outcomes of acute PQ poisoning at earlier stages, a basis for administering treatment.
Collapse
Affiliation(s)
- Yiwei Su
- Guangzhou Twelfth People's Hospital, Guangzhou Occupational Disease Prevention and Treatment Hospital, Guangzhou Key Medical Disciplines and Specialties Program, Guangzhou Key Laboratories, Guangzhou, China
| | - Weiwei Liu
- Guangzhou Twelfth People's Hospital, Guangzhou Occupational Disease Prevention and Treatment Hospital, Guangzhou Key Medical Disciplines and Specialties Program, Guangzhou Key Laboratories, Guangzhou, China
| | - Guanghui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhengmin Qian
- Department of Epidemiology and Biostatistics, College for Public Health and Social Justice, 40272Saint Louis University, St. Louis, MO, USA
| | - Namratha Gurram
- Department of Epidemiology and Biostatistics, School of Public Health, 1084University at Albany, State University of New York, Albany, NY, USA
| | - Echu Liu
- Department of Health Management and Policy, College for Public Health and Social Justice, 40272Saint Louis University, Saint Louis, MO, USA
| | | | - Steven W Howard
- Department of Health Management and Policy, College for Public Health and Social Justice, 40272Saint Louis University, Saint Louis, MO, USA
| | - Michael G Vaughn
- School of Social Work, College for Public Health & Social Justice, 40272Saint Louis University, Tegeler Hall, St. Louis, MO, USA
| | - Daire R Jansson
- Department of Epidemiology and Biostatistics, College for Public Health and Social Justice, 40272Saint Louis University, St. Louis, MO, USA
| | - Chen Zhang
- Guangzhou Twelfth People's Hospital, Guangzhou Occupational Disease Prevention and Treatment Hospital, Guangzhou Key Medical Disciplines and Specialties Program, Guangzhou Key Laboratories, Guangzhou, China
| | - Jianyu Wang
- Guangzhou Twelfth People's Hospital, Guangzhou Occupational Disease Prevention and Treatment Hospital, Guangzhou Key Medical Disciplines and Specialties Program, Guangzhou Key Laboratories, Guangzhou, China
| | - Yimin Liu
- Guangzhou Twelfth People's Hospital, Guangzhou Occupational Disease Prevention and Treatment Hospital, Guangzhou Key Medical Disciplines and Specialties Program, Guangzhou Key Laboratories, Guangzhou, China
| |
Collapse
|
4
|
Osteonecrosis of Femoral Head, An Overlooked Long-Term Complication after Paraquat Intoxication: A Retrospective Cohort Study. Sci Rep 2020; 10:8827. [PMID: 32483235 PMCID: PMC7264308 DOI: 10.1038/s41598-020-65756-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 04/29/2020] [Indexed: 01/04/2023] Open
Abstract
With increasing numbers of patients surviving acute intoxication phase, long-term complication after paraquat intoxication is a topic worth exploring, such as osteonecrosis (ON) of femoral head. We reviewed 86 paraquat-intoxicated survivors between 2000 and 2012 in Chang Gung Memorial Hospital, a 3700-bed tertiary hospital in Taiwan. With all the patients underwent same detoxification protocol in the acute stage, 17.4% of paraquat poisoning survivors developed ON of femoral head requiring surgery during follow up. Most of ON episodes occurred within 2 to 4 years after paraquat intoxication and then plateau after 6 years. ON patients exhibited higher SOFA scores than non-ON patients (2.80 ± 2.14 vs. 1.76 ± 1.52, p = 0.028). Furthermore, AKIN scores are also higher in the ON patients than non-ON patients (0.87 ± 1.13 vs. 0.38 ± 0.74, p = 0.040). Multivariate logistic regression showed higher AKIN score and higher partial pressure of carbon dioxide in the blood 48 hours after admission significantly predicted ON of femoral head after paraquat intoxication (p = 0.002 and p = 0.006 respectively). Larger studies with longer follow-up durations are warranted to confirm our finding.
Collapse
|
5
|
Abedi F, Hayes AW, Reiter R, Karimi G. Acute lung injury: The therapeutic role of Rho kinase inhibitors. Pharmacol Res 2020; 155:104736. [PMID: 32135249 DOI: 10.1016/j.phrs.2020.104736] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/18/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023]
Abstract
Acute lung injury (ALI) is a pulmonary illness with high rates of mortality and morbidity. Rho GTPase and its downstream effector, Rho kinase (ROCK), have been demonstrated to be involved in cell adhesion, motility, and contraction which can play a role in ALI. The electronic databases of Google Scholar, Scopus, PubMed, and Web of Science were searched to obtain relevant studies regarding the role of the Rho/ROCK signaling pathway in the pathophysiology of ALI and the effects of specific Rho kinase inhibitors in prevention and treatment of ALI. Upregulation of the RhoA/ROCK signaling pathway causes an increase of inflammation, immune cell migration, apoptosis, coagulation, contraction, and cell adhesion in pulmonary endothelial cells. These effects are involved in endothelium barrier dysfunction and edema, hallmarks of ALI. These effects were significantly reversed by Rho kinase inhibitors. Rho kinase inhibition offers a promising approach in ALI [ARDS] treatment.
Collapse
Affiliation(s)
- Farshad Abedi
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida, Tampa, FL, USA; Michigan State University, East Lansing, MI, USA
| | - Russel Reiter
- University of Texas, Health Science Center at San Antonio, Department of Cellular and Structural Biology, USA
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Gao J, Feng S, Li Y. Prolonged low-dose cyclophosphamide treatment after pulse therapy attenuates lung injury in rats with paraquat intoxication. Korean J Intern Med 2018; 33:1137-1142. [PMID: 29843494 PMCID: PMC6234390 DOI: 10.3904/kjim.2017.334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 02/02/2018] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/AIMS This study tested the hypothesis that prolonged low-dose cyclophosphamide (CTX) treatment after pulse therapy attenuate paraquat (PQ)-induced lung injury in rats. METHODS PQ (25 mg/kg) was administered intraperitoneally to induce PQ-intoxicated rat model. The rats were randomly divided into four groups: control group (1 mL/day saline solution for 14 days), PQ group (1 mL/day saline solution for 14 days after PQ exposure), pulse group (15 mg/kg/day CTX in 1 mL of saline solution for 2 days and subsequent 1 mL/day saline solution for 12 days), and prolonged low-dose group (15 mg/kg/day CTX in 1 mL of saline solution for 2 days and subsequent 1.5 mg/kg/day CTX in 1 mL of saline solution for 12 days). A 14-day follow-up was conducted to determine the survival rat, and lung hydroxyproline (HYP), wet-to-dry weight ratios (W/Dc) and histopathological changes were evaluated. RESULTS Results showed similar survival rate (55% vs. 50%, p > 0.05) between prolonged low-dose and pulse groups. Lung W/Dc (4.94 ± 0.38 vs. 5.47 ± 0.28, p < 0.01), HYP (3.34 ± 0.29 µg/mg vs. 3.65 ± 0.19 µg/mg, p < 0.001), and fibrosis score (2.69 ± 0.84 vs. 3.13 ± 0.63, p < 0.05) were lower in prolonged low-dose group than those in the pulse group. CONCLUSION These findings suggested prolonged low-dose CTX treatment after pulse therapy could attenuate PQ-induced lung injury in rats.
Collapse
Affiliation(s)
| | | | - Yong Li
- Department of Emergency, Cangzhou Central Hospital, Cangzhou, China
- Correspondence to Yong Li, M.D. Department of Emergency, Cangzhou Central Hospital, No. 16 Xinhua Rd, Yunhe Dist, Cangzhou 061000, China Tel: +86-133-3336-7871 Fax: +86-317-207-5685 E-mail:
| |
Collapse
|
7
|
Yang C, Song HW, Liu W, Dong XS, Liu Z. Protective Effects of Chymostatin on Paraquat-Induced Acute Lung Injury in Mice. Inflammation 2018; 41:122-133. [PMID: 28940034 DOI: 10.1007/s10753-017-0670-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study aims to evaluate the role of chymostatin in paraquat-induced acute lung injury. Institute of Cancer Research mice were randomly distributed into the NS, DMSO, chymostatin, paraquat or chymostatin treatment groups. Six mice from each group were intraperitoneally injected with chloral hydrate at 0, 1, 2, 4, 8, 12, 24 and 48 h after treatment administration. Blood samples were collected through cardiac puncture. Lung tissues were stained with haematoxylin and eosin for the observation of lung histology. The degree of pulmonary oedema was determined on the basis of lung wet-to-dry ratio (W/D). The serum activity of cathepsin G was determined through substrate fluorescence assay. The serum levels of endothelial cell-specific molecule-1 (endocan), tumour necrosis factor-a (TNF-a), interleukin-1β (IL-1β), IL-6 and high-mobility group box protein 1 (HMGB1) were determined through enzyme-linked immunosorbent assay. The expression levels of endocan and nuclear NF-κBp65 in the lung were quantified through Western blot. Chymostatin alleviated the pathological changes associated with acute alveolitis in mice; decreased the lung W/D ratio, the activity of cathepsin G and the serum concentrations of TNF-a, IL-1β, IL-6 and HMGB1; and increased the serum concentration of endocan. Western blot results revealed that chymostatin up-regulated endocan expression and down-regulated nuclear NF-κBp65 expression in the lung. Chymostatin reversed the inflammatory effects of paraquat-induced lung injury by inhibiting cathepsin G activity to up-regulate endocan expression and indirectly inhibit NF-κBp65 activity.
Collapse
Affiliation(s)
- Chen Yang
- Department of Emergency, the First Affiliated Hospital of China Medical University, 155 Nanjing Street, Heping District, Shenyang, 110001, P. R. China
| | - Hong-Wei Song
- Department of Emergency, the First Affiliated Hospital of China Medical University, 155 Nanjing Street, Heping District, Shenyang, 110001, P. R. China
| | - Wei Liu
- Department of Emergency, the First Affiliated Hospital of China Medical University, 155 Nanjing Street, Heping District, Shenyang, 110001, P. R. China
| | - Xue-Song Dong
- Department of Emergency, the First Affiliated Hospital of China Medical University, 155 Nanjing Street, Heping District, Shenyang, 110001, P. R. China
| | - Zhi Liu
- Department of Emergency, the First Affiliated Hospital of China Medical University, 155 Nanjing Street, Heping District, Shenyang, 110001, P. R. China.
| |
Collapse
|
8
|
Wang Y, Wu H, Niu W, Chen J, Liu M, Sun X, Li Z. Tanshinone IIA attenuates paraquat‑induced acute lung injury by modulating angiotensin‑converting enzyme 2/angiotensin‑(1‑7) in rats. Mol Med Rep 2018; 18:2955-2962. [PMID: 30015919 DOI: 10.3892/mmr.2018.9281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/20/2018] [Indexed: 11/06/2022] Open
Abstract
Tanshinone IIA (TIIA) is an active compound that can be isolated from the Chinese herb, Salvia miltiorrhizae Bunge, also known as danshen. Previous studies have demonstrated that TIIA can effectively attenuate bleomycin‑induced pulmonary fibrosis in rats. However, it has not been determined whether TIIA can attenuate paraquat (PQ)‑induced acute lung injury (ALI). In the present study, the protective effects exhibited by TIIA on PQ‑induced ALI, as well as its underlying mechanisms, were investigated using Sprague‑Dawley (SD) rats. ALI animal models using rats were established via administration of PQ. Adult male SD rats were randomly divided into three groups: A control group, a PQ group and a PQ + TIIA group. Total cell count, total protein levels and lactic dehydrogenase (LDH) levels in bronchoalveolar lavage fluid (BALF), as well as myeloperoxidase (MPO) activity in lung tissues were determined. Lung histological alterations were also investigated. Angiotensin converting enzyme 2 (ACE2) and Angiotensin 1‑7 [Ang‑(1‑7)] expression levels in the lung were also analyzed. The results demonstrated that administration of PQ induced marked histological alterations, and markedly increased neutrophil infiltration, lung wet/dry weight ratio, total cell count, protein content and LDH levels in BALF. In addition, PQ was revealed to significantly decrease ACE2 and Ang‑(1‑7) expression levels in lung tissues. However, it was demonstrated that TIIA attenuated these effects. Therefore, the results of the present study suggest that that TIIA may exhibit a therapeutic effect regarding PQ‑induced ALI in rats, and that ACE2 and Ang‑(1‑7) may be involved in the underlying mechanisms of this effect.
Collapse
Affiliation(s)
- Yanxia Wang
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Huajie Wu
- Department of Pediatrics of Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wen Niu
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jian Chen
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Manlin Liu
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xin Sun
- Department of Pediatrics of Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhichao Li
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
9
|
Jin Y, Liu W, Liu X, Ma T, Yang C, Cai Q, Liu Z. Transplantation of endothelial progenitor cells attenuated paraquat-induced acute lung injury via miR-141-3p-Notch-Nrf2 axis. Cell Biosci 2018; 8:21. [PMID: 29568483 PMCID: PMC5859660 DOI: 10.1186/s13578-018-0219-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 03/02/2018] [Indexed: 12/21/2022] Open
Abstract
Background Paraquat (PQ) presents with high toxicity for humans and animals, and the lungs become the main target organ by the poisoning of PQ leading to acute lung injury. Endothelial progenitor cells (EPCs) were proved to have the repair function on acute lung injury (ALI). We aimed to invatigate the underlying mechanism of EPCs in PQ-induced ALI involving miR-141-3p. Methods Endothelial progenitor cells were isolated from peripheral blood of C57BL/6J mice and identified by flow cytometry. Lung wet-to-dry (W/D) weight ratios, lung injury score and the number of total leukocyte and the number of neutrophils in BALF were used to analyze the degree of lung injury. The transfection was performed with Lipofectamine 2000. The levels of miRNA and mRNA were determined by qRT-PCR, and the protein levels were detected by Western blot assay. Results Endothelial progenitor cells alleviated lung wet-to-dry (W/D) weight ratios, lung injury score and the number of total leukocyte and the number of neutrophils in BALF in PQ-induced ALI mice. EPCs inhibited miR-141-3p expression, and enhanced the levels of Notch-Nrf2 axis in PQ-induced ALI mice. MiR-141-3p knockdown reversed the PQ induced-inhibition on Notch-1 and Hesr1 expression. MiR-141-3p over-expression could inhibit the expression of Notch-1 pathway significantly in the pulmonary epithelial cell line MLE-12. Both miR-141-3p over-expression and si-Notch-1 abolished the protection effect of EPCs on lung injury induced by PQ in vivo. Conclusions Endothelial progenitor cells could provide therapeutic effect on PQ-induced ALI via miR-141-3p-Notch-Nrf2 Axis.
Collapse
Affiliation(s)
- Yan Jin
- Department of Emergency, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001 People's Republic of China
| | - Wei Liu
- Department of Emergency, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001 People's Republic of China
| | - Xiaowei Liu
- Department of Emergency, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001 People's Republic of China
| | - Tao Ma
- Department of Emergency, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001 People's Republic of China
| | - Chen Yang
- Department of Emergency, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001 People's Republic of China
| | - Quan Cai
- Department of Emergency, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001 People's Republic of China
| | - Zhi Liu
- Department of Emergency, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001 People's Republic of China
| |
Collapse
|
10
|
Pourgholamhossein F, Rasooli R, Pournamdari M, Pourgholi L, Samareh-Fekri M, Ghazi-Khansari M, Iranpour M, Poursalehi HR, Heidari MR, Mandegary A. Pirfenidone protects against paraquat-induced lung injury and fibrosis in mice by modulation of inflammation, oxidative stress, and gene expression. Food Chem Toxicol 2017; 112:39-46. [PMID: 29273418 DOI: 10.1016/j.fct.2017.12.034] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/09/2017] [Accepted: 12/18/2017] [Indexed: 01/11/2023]
Abstract
In this study we investigated the protective effects and possible mechanisms of pirfenidone (PF) in paraquat (PQ)-induced lung injury and fibrosis in mice. Lung injury was induced by injection of PQ (20 mg/kg). Thereafter, mice orally received water and PF (100 and 200 mg/kg) for four weeks. After 28 days, the inflammation and fibrosis were determined in the lungs by analysis of histopathology, bronchoalveolar lavage fluid (BALF) cell count, lung wet/dry weight ratio, hydroxyproline content, and oxidative stress biomarkers. Expression of several genes involved in fibrogenesis and modulation of reactive oxygen species (ROS) production, such as TGF-β1, α-SMA, collagen Iα and IV, NOX1, NOX4, iNOS, and GPX1 were determined using RT-qPCR. PF significantly decreased the lung fibrosis and edema, inflammatory cells infiltration, TGF-β1 concentration, and amount of hydroxyproline in the lung tissue. PF dose-dependently improved the expression level of the studied genes to the near normal. Decreasing of lung lipid peroxidation and catalase activity, and increasing of SOD activity in the treated mice were significant compared to the control group. Pirfenidone ameliorate paraquat induced lung injury and fibrosis partly through inhibition of inflammation and oxidative stress, and downregulation of genes encoding for profibrotic cytokines and enzymatic systems for ROS production.
Collapse
Affiliation(s)
- Fateme Pourgholamhossein
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| | - Rokhsana Rasooli
- Department of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran; Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mostafa Pournamdari
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Leyla Pourgholi
- Department of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mitra Samareh-Fekri
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mahmoud Ghazi-Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maryam Iranpour
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Hamid-Reza Poursalehi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mahmoud-Reza Heidari
- Department of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran; Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Ali Mandegary
- Department of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran; Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
11
|
Şengül E, Gelen V, Gedikli S, Özkanlar S, Gür C, Çelebi F, Çınar A. The protective effect of quercetin on cyclophosphamide-Induced lung toxicity in rats. Biomed Pharmacother 2017; 92:303-307. [DOI: 10.1016/j.biopha.2017.05.047] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/07/2017] [Accepted: 05/09/2017] [Indexed: 11/30/2022] Open
|
12
|
Chen T, Wang R, Jiang W, Wang H, Xu A, Lu G, Ren Y, Xu Y, Song Y, Yong S, Ji H, Ma Z. Protective Effect of Astragaloside IV Against Paraquat-Induced Lung Injury in Mice by Suppressing Rho Signaling. Inflammation 2016; 39:483-492. [PMID: 26452991 DOI: 10.1007/s10753-015-0272-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The purpose of the present study was to evaluate the protective effects of astragaloside IV (AS IV) against paraquat (PQ)-induced pulmonary injury in vivo. Fifty BALB/C mice were randomized into five groups: (1) control, (2) PQ, (3) PQ + dexamethasone (Dex, 5 mg/kg), (4) PQ + AS IV (50 mg/kg), and (5) PQ + AS IV (100 mg/kg). A single dose of PQ (50 mg/kg, i.p.) was intraperitoneally given to induced acute lung injury. Then, mice were treated with AS IV (50 and 100 mg/kg/day, orally) for 5 days. At the end of the experiment, animals were euthanized; then, the bronchoalveolar lavage fluid (BALF) and lung tissues were collected for histological observation, biochemical assay, and Western blot analysis. Malondialdehyde (MDA), myeloperoxidase (MPO), catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) in lung tissues, and interleukin-6 (IL-6), IL-1β, tumor necrosis factor-α (TNF-α) levels in BALF were determined. Histological examination indicated that AS IV attenuated lung damage caused by PQ. Biochemical results showed that AS IV treatment significantly reduced the levels of MDA, MPO, and inflammatory cytokines while increased the levels of SOD, CAT, and GSH-Px compared with those in PQ group. Western blot results revealed that AS IV attenuated the Txnip/Trx expressions and inhibited Rho/ROCK/nuclear factor kappaB (NF-κB) signaling pathway in PQ-challenged mice. These findings suggested the protective effect of AS IV as a natural product on PQ-induced pulmonary injury.
Collapse
Affiliation(s)
- Tong Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ruoning Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Wenjiao Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Huimin Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ang Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Guo Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yi Ren
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yangmei Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yangyang Song
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Shoulei Yong
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hui Ji
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| | - Zhanqiang Ma
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China. .,Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
13
|
Activating Peroxisome Proliferator-Activated Receptors (PPARs): a New Sight for Chrysophanol to Treat Paraquat-Induced Lung Injury. Inflammation 2016; 39:928-37. [DOI: 10.1007/s10753-016-0326-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Chen JL, Dai L, Zhang P, Chen W, Cai GS, Qi XW, Hu MZ, Du B, Pang QF. Methylene blue attenuates acute liver injury induced by paraquat in rats. Int Immunopharmacol 2015; 28:808-12. [DOI: 10.1016/j.intimp.2015.04.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/16/2015] [Accepted: 04/21/2015] [Indexed: 12/28/2022]
|
15
|
Zhao F, Shi D, Li T, Li L, Zhao M. Silymarin attenuates paraquat-induced lung injury via Nrf2-mediated pathway in vivo and in vitro. Clin Exp Pharmacol Physiol 2015; 42:988-998. [PMID: 26173462 DOI: 10.1111/1440-1681.12448] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/11/2015] [Accepted: 07/01/2015] [Indexed: 02/07/2023]
Abstract
The present study aims to investigate the impacts and mechanisms of silymarin on paraquat (PQ)-induced lung injury in vivo and in vitro. In in vivo experiments, a total of 32 male Sprague-Dawley (SD) rats were randomly divided into four groups. The rats were killed on day 3. Histopathological changes in lung tissue were examined using HE and Masson's trichrome staining. Biomarkers of neutrophil activation, pulmonary oedema, pulmonary fibrosis, lung permeability and oxidative stress were detected. Several proinflammatory mediators and antioxidant related proteins were measured. In in vitro experiments, A549 cells were transfected with Nrf2 special siRNA to investigate the roles of Nrf2. The results show that silymarin administration abated PQ-induced lung histopathologic changes, decreased inflammatory cell infiltration and lung wet weight/dry weight (W/D) ratio, suppressed myeloperoxidase (MPO) activity and nitric oxide (NO)/inducible nitric oxide synthases (iNOS) expression, downregulated hydroxyproline (HYP) levels, reduced total protein concentration and proinflammatory mediator release, and improved oxidative stress (malondialdehyde, MDA; superoxide dismutase, SOD; catalase, CAT; and glutathione peroxidase, GSH-Px) in lung tissue and serum. Meanwhile, treatment with silymarin upregulated the levels of nuclear factor-erythroid-2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase-1(NQO1). However, the addition of Nrf2 siRNA reduced the expression of Nrf2-mediated antioxidant protein HO-1 and thus reversed the protective effects of silymarin against oxidative stress and inflammatory response. These results suggest that silymarin may exert protective effects against PQ-induced lung injury. Its mechanisms were associated with the Nrf2-mediated pathway. Therefore, silymarin may be a potential therapeutic drug for lung injury.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Danyang Shi
- Blood Purification Centre, Shenyang Fourth People's Hospital, Shenyang, China
| | - Tiegang Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lizhuo Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Min Zhao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Yin Y, Zhang J, Song D. Effects of lysine aspirin on lung AQP5 expression and lymphocyte apoptosis in paraquat-poisoned rats. TOXIN REV 2015. [DOI: 10.3109/15569543.2015.1015036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Liu MW, Su MX, Zhang W, Wang YQ, Chen M, Wang L, Qian CY. Protective effect of Xuebijing injection on paraquat-induced pulmonary injury via down-regulating the expression of p38 MAPK in rats. Altern Ther Health Med 2014; 14:498. [PMID: 25511395 PMCID: PMC4301062 DOI: 10.1186/1472-6882-14-498] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 12/10/2014] [Indexed: 01/08/2023]
Abstract
Background Exposure to paraquat results in acute lung injury. A systemic inflammatory response has been widely established as a contributor to paraquat-induced acute lung injury. Recent studies have reported that consumption of Xuebijing prevents inflammatory response-induced diseases. This study investigated whether consumption of Xuebijing protected rats against paraquat-induced acute lung injury. Methods Adult male Sprague Dawley rats were randomly divided into four groups: control group; paraquat group; paraquat + Xuebijing group; and paraquat + dexamethasone group. Rats in the paraquat, paraquat + Xuebijing and paraquat + dexamethasone groups were intraperitoneally injected with paraquat (30 mg/kg) or administered paraquat and Xuebijing at 8 mL/kg or dexamethasone at 5 mg/kg, respectively, via an injection into the tail vein. Lung p38 MAPK, NF-κB65, IkB, p-IκB-α, HIF-1α, Nrf2 and TGF-β1 expression were essayed using western blotting. IL-6, TNF-α, IL-1β, IL-10, TGF-β1 and PIIIP were measured using ELISA. ROS, oxidised glutathione and glutathione activity were measured. Results After inducing acute lung injury with paraquat for 24 h, Xuebijing was observed to block lung p-p38 MAPK, NF-κB65, HIF-1α, p-IκB-α and TGF-β1 expression, and increased Nrf2 and IkB expression. The numbers of neutrophils and lymphocytes and total number of cells were significantly lower in the Xuebijing group compared with the control group. IL-6, TNF-α, IL-1β, TGF-β1 and PIIIP levels were significantly decreased in the Xuebijing group. ROS and oxidised glutathione activity were markedly inhibited by Xuebijing. Histological evaluation showed attenuation of the effects of Xuebijing on paraquat-induced lung injury. Compared with the paraquat + dexamethasone group, the Xuebijing + paraquat group showed no significant differences. Conclusions Inhibiting the expression of p38 MAPK and NF-κB65 was crucial for the protective effects of Xuebijing on paraquat-induced acute lung injury. The findings suggest that Xuebijing could effectively ameliorate paraquat-induced acute lung injury in rats. Xuebijing was as effective as dexamethasone at improving paraquat-induced lung injury by regulating lung inflammation, lung function and oxidative stress responses.
Collapse
|
18
|
Tyagi N, Kumari A, Dash D, Singh R. Protective effects of intranasal curcumin on paraquot induced acute lung injury (ALI) in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:913-921. [PMID: 25461551 DOI: 10.1016/j.etap.2014.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 10/06/2014] [Accepted: 10/10/2014] [Indexed: 06/04/2023]
Abstract
Paraquot (PQ) is widely and commonly used as herbicide and has been reported to be hazardous as it causes lung injury. However, molecular mechanism underlying lung toxicity caused by PQ has not been elucidated. Curcumin, a known anti-inflammatory molecule derived from rhizomes of Curcuma longa has variety of pharmacological activities including free-radical scavenging properties but the protective effects of curcumin on PQ-induced acute lung injury (ALI) have not been studied. In this study, we aimed to study the effects of curcumin on ALI caused by PQ in male parke's strain mice which were challenged acutely by PQ (50mg/kg, i.p.) with or without curcumin an hour before (5mg/kg, i.n.) PQ intoxication. Lung specimens and the bronchoalveolar lavage fluid (BALF) were isolated for pathological and biochemical analysis after 48h of PQ exposure. Curcumin administration has significantly enhanced superoxide dismutase (SOD) and catalase activities. Lung wet/dry weight ratio, malondialdehyde (MDA) and lactate dehydrogenase (LDH) content, total cell number and myeloperoxidase (MPO) levels in BALF as well as neutrophil infiltration were attenuated by curcumin. Pathological studies also revealed that intranasal curcumin alleviate PQ-induced pulmonary damage and pro-inflammatory cytokine levels like tumor necrosis factor-α (TNF-α) and nitric oxide (NO). These results suggest that intranasal curcumin may directly target lungs and curcumin inhalers may prove to be effective in PQ-induced ALI treatment in near future.
Collapse
Affiliation(s)
- Namitosh Tyagi
- Department of Zoology, MMV, Banaras Hindu University, Varanasi, 221005, India
| | - Asha Kumari
- Department of Zoology, MMV, Banaras Hindu University, Varanasi, 221005, India
| | - D Dash
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Rashmi Singh
- Department of Zoology, MMV, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
19
|
Sun IO, Lee KY. Cyclophosphamide dose: how much is needed to win the war against paraquat poisoning? Korean J Intern Med 2013; 28:410-2. [PMID: 23864798 PMCID: PMC3712148 DOI: 10.3904/kjim.2013.28.4.410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 05/09/2013] [Indexed: 01/20/2023] Open
Affiliation(s)
- In O Sun
- Division of Nephrology and Toxicology, Department of Internal Medicine, Presbyterian Medical Center, Jeonju, Korea
| | - Kwang Young Lee
- Division of Nephrology and Toxicology, Department of Internal Medicine, Presbyterian Medical Center, Jeonju, Korea
| |
Collapse
|