1
|
Hekmati Z, Solouki M, Emamjomeh A, Zahiri J, Mirzaie-Asl A. Transcriptomic Analysis of Cyclamen persicum to Identify Invovled Genes in Triterpene Secondary Metabolites Pathway. Biochem Genet 2025; 63:1509-1526. [PMID: 38578589 DOI: 10.1007/s10528-024-10745-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/16/2024] [Indexed: 04/06/2024]
Abstract
Saponins are considered as a diverse group of natural active compounds, which are widely found in crops. Mevalonate pathway (MVA) is regarded as the main pathway for synthesis of saponins in crops. This study aims to compare transcriptome of the leaf with tuber of crop including tubers and roots. First, more than 166 million reads were generated. The existence of 36,678 unigenes in the two samples out of 48,936 assembled ones showed a significant difference in expression. Finally, 310 and 290 highly up-regulated genes in leaf and tuber were selected for the next analysis. In addition, the expression profiles of 13 key genes in the MVA pathway were compared in RNA sequencing and reverse transcription-quantitative polymerase chain reaction analysis. The results indicated that cyclamen tuber has a higher level of expression of MVA pathway genes. The topological analysis for gene co-expression network involved in triterpenoid synthesis represented that the genes at the beginning of such pathway play a critical role so that the reduction of their expression challenges triterpenoid synthesis severely. The tuber of the cyclamen appears to be the major site of triterpene synthesis, and transfer of excess Isopentenyl pyrophosphate (IPP) from tuber to leaf activates downstream genes in leaf of crop.
Collapse
Affiliation(s)
- Zahra Hekmati
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Daneshgah Blvd., Zabol, Iran
| | - Mahmood Solouki
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Daneshgah Blvd., Zabol, Iran.
| | - Abbasali Emamjomeh
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Daneshgah Blvd., Zabol, Iran.
- Laboratory of Computational Biotechnology and Bioinformatics (CBB Lab), Department of Bioinformatics, University of Zabol, Zabol, Iran.
| | - Javad Zahiri
- Department of Neuroscience, University of California, San Diego, San Diego, CA, USA
| | - Asghar Mirzaie-Asl
- Department of Agricultural Biotechnology, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
2
|
Shang C, Sihui L, Li C, Hussain Q, Chen P, Hussain MA, Nkoh Nkoh J. SOS1 gene family in mangrove (Kandelia obovata): Genome-wide identification, characterization, and expression analyses under salt and copper stress. BMC PLANT BIOLOGY 2024; 24:805. [PMID: 39187766 PMCID: PMC11348747 DOI: 10.1186/s12870-024-05528-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Salt Overly Sensitive 1 (SOS1), a plasma membrane Na+/H+ exchanger, is essential for plant salt tolerance. Salt damage is a significant abiotic stress that impacts plant species globally. All living organisms require copper (Cu), a necessary micronutrient and a protein cofactor for many biological and physiological processes. High Cu concentrations, however, may result in pollution that inhibits the growth and development of plants. The function and production of mangrove ecosystems are significantly impacted by rising salinity and copper contamination. RESULTS A genome-wide analysis and bioinformatics techniques were used in this study to identify 20 SOS1 genes in the genome of Kandelia obovata. Most of the SOS1 genes were found on the plasma membrane and dispersed over 11 of the 18 chromosomes. Based on phylogenetic analysis, KoSOS1s can be categorized into four groups, similar to Solanum tuberosum. Kandelia obovata's SOS1 gene family expanded due to tandem and segmental duplication. These SOS1 homologs shared similar protein structures, according to the results of the conserved motif analysis. The coding regions of 20 KoSOS1 genes consist of amino acids ranging from 466 to 1221, while the exons include amino acids ranging from 3 to 23. In addition, we found that the 2.0 kb upstream promoter region of the KoSOS1s gene contains several cis-elements associated with phytohormones and stress responses. According to the expression experiments, seven randomly chosen genes experienced up- and down-regulation of their expression levels in response to copper (CuCl2) and salt stressors. CONCLUSIONS For the first time, this work systematically identified SOS1 genes in Kandelia obovata. Our investigations also encompassed physicochemical properties, evolution, and expression patterns, thereby furnishing a theoretical framework for subsequent research endeavours aimed at functionally characterizing the Kandelia obovata SOS1 genes throughout the life cycle of plants.
Collapse
Affiliation(s)
- Chenjing Shang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Li Sihui
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Chunyuan Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Quaid Hussain
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China.
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | - Pengyu Chen
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Muhammad Azhar Hussain
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Jackson Nkoh Nkoh
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| |
Collapse
|
3
|
Zhang C, Tang H, Li T, Wu H, Gu Y, Zhang J, Zhang Z, Zhao L, Li Y, Gu L, Zhang H. Integrating Physiological Features and Proteomic Analyses Provides New Insights in Blue/Red Light-Treated Moso Bamboo ( Phyllostachys edulis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12859-12870. [PMID: 38780458 DOI: 10.1021/acs.jafc.4c00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Bamboo is one of the most important nontimber forestry products in the world. Light is not only the most critical source of energy for plant photosynthesis but also involved in regulating the biological processes of plants. However, there are few reports on how blue/red light affects Moso bamboo. This study investigated the growth status and physiological responses of Moso bamboo (Phyllostachys edulis) to blue/red light treatments. The growth status of the bamboo plants was evaluated, revealing that both blue- and red-light treatments promoted plant height and overall growth. Gas exchange parameters, chlorophyll fluorescence, and enzyme activity were measured to assess the photosystem response of Moso bamboo to light treatments. Additionally, the blue light treatment led to a higher chlorophyll content and enzyme activities compared to the red light treatment. A tandem mass tag quantitative proteomics approach identified significant changes in protein abundance under different light conditions with specific response proteins associated with distinct pathways, such as photosynthesis and starch metabolism. Overall, this study provides valuable insights into the physiological and proteomic responses of Moso bamboo to blue/red light treatments, highlighting their potential impact on growth and development.
Collapse
Affiliation(s)
- Chuanyu Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haohao Tang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tuhe Li
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongwei Wu
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuying Gu
- School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jun Zhang
- College of Life Science, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zeyu Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liangzhen Zhao
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yaxing Li
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lianfeng Gu
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hangxiao Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Ma L, Yang S. Growth and physiological response of Kandelia obovata and Bruguiera sexangula seedlings to aluminum stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43251-43266. [PMID: 35091926 PMCID: PMC9148292 DOI: 10.1007/s11356-021-17926-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
The role of mangroves as a biogeochemical buffer for heavy metal pollutants in coastal wetlands has been demonstrated, but knowledge gaps still exist on the tolerant capacity of mangroves to aluminum (Al). This study assessed the growth and physiological response of viviparous mangroves Kandelia obovata and Bruguiera sexangula to Al stress. The two mangrove seedlings were treated with AlCl3 at concentrations of 0 (as control) to 100 mmol L-1, and the impact of Al on their growth and antioxidant parameters were determined. Additionally, the accumulation and translocation of metal elements were estimated in B. sexangula seedlings under relative long-term Al stress. K. obovata appeared to survive with a tolerance potential of 10 mmol L-1 AlCl3, whereas B. sexangula had a higher tolerant ability of 50 mmol L-1 AlCl3. Both root elongation and seedling growth were inhibited by Al stress. The exposure to 25-100 mmol L-1 AlCl3 induced increases in membrane lipid peroxidation and osmoprotectant molecule (proline) in mangrove seedlings. Both mangrove seedlings revealed significant changes in antioxidant enzyme activities that were attributed to Al stress-induced oxidative damages. The activities of superoxide dismutase, catalase, peroxidase, and/or ascorbate peroxidase were differently impacted by the treatment time (7 days for short term versus 60 days for long term) and AlCl3 concentrations in K. obovata and B. sexangula seedlings. For B. sexangula seedlings, Al accumulation was in an order root > leaf > stem, whereas the translocation of metal elements in the aboveground tissues (leaf and stem) was differently impacted by Al stress. In conclusion, this study provides insights into different Al-tolerant abilities operated in two mangrove species that are widespread in coastal wetlands of China.
Collapse
Affiliation(s)
- Li Ma
- Key Laboratory of the Coastal and Wetland Ecosystem (Ministry of Education), College of the Environment and Ecology, Xiamen University, Xiamen, China
- Department of Chemical Engineering, Chengde Petroleum College, Chengde, China
| | - Shengchang Yang
- Key Laboratory of the Coastal and Wetland Ecosystem (Ministry of Education), College of the Environment and Ecology, Xiamen University, Xiamen, China.
| |
Collapse
|
5
|
Arif Y, Singh P, Siddiqui H, Bajguz A, Hayat S. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:64-77. [PMID: 32906023 DOI: 10.1016/j.plaphy.2020.08.042] [Citation(s) in RCA: 309] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/28/2020] [Accepted: 08/23/2020] [Indexed: 05/18/2023]
Abstract
Salinity is one of the major threats to sustainable agriculture that globally decreases plant production by impairing various physiological, biochemical, and molecular function. In particular, salinity hampers germination, growth, photosynthesis, transpiration, and stomatal conductance. Salinity decreases leaf water potential and turgor pressure and generates osmotic stress. Salinity enhances reactive oxygen species (ROS) content in the plant cell as a result of ion toxicity and disturbs ion homeostasis. Thus, it imbalances nutrient uptake, disintegrates membrane, and various ultrastructure. Consequently, salinity leads to osmotic and ionic stress. Plants respond to salinity by modulating various morpho-physiological, anatomical, and biochemical traits by regulating ion homeostasis and compartmentalization, antioxidant machinery, and biosynthesis of osmoprotectants and phytohormones, i. e, auxins, abscisic acid, brassinosteroids, cytokinins, ethylene, gibberellins, salicylic acid, jasmonic acid, and polyamines. Thus, this further modulates plant osmoticum, decreases ion toxicity, and scavenges ROS. Plants upregulate various genes and proteins that participate in salinity tolerance. They also promote the production of various phytohormones and metabolites that mitigate the toxic effect of salinity. Based on recent papers, the deleterious effect of salinity on plant physiology is discussed. Furthermore, it evaluates the physiological and biochemical responses of the plant to salinity along with phytohormone response. This review paper also highlights omics (genomics, transcriptomics, proteomics, and metabolomics) approach to understand salt stress tolerance.
Collapse
Affiliation(s)
- Yamshi Arif
- Aligarh Muslim University, Faculty of Life Sciences, Department of Botany, Plant Physiology Section, Aligarh, 202002, India
| | - Priyanka Singh
- Aligarh Muslim University, Faculty of Life Sciences, Department of Botany, Plant Physiology Section, Aligarh, 202002, India
| | - Husna Siddiqui
- Aligarh Muslim University, Faculty of Life Sciences, Department of Botany, Plant Physiology Section, Aligarh, 202002, India
| | - Andrzej Bajguz
- University of Bialystok, Faculty of Biology, Department of Biology and Plant Ecology, Konstantego Ciolkowskiego 1J, 15-245, Bialystok, Poland.
| | - Shamsul Hayat
- Aligarh Muslim University, Faculty of Life Sciences, Department of Botany, Plant Physiology Section, Aligarh, 202002, India
| |
Collapse
|