1
|
Khanna M, Sharma K, Saxena SK, Sharma JG, Rajput R, Kumar B. Unravelling the interaction between Influenza virus and the nuclear pore complex: insights into viral replication and host immune response. Virusdisease 2024; 35:231-242. [PMID: 39071870 PMCID: PMC11269558 DOI: 10.1007/s13337-024-00879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024] Open
Abstract
Influenza viruses are known to cause severe respiratory infections in humans, often associated with significant morbidity and mortality rates. Virus replication relies on various host factors and pathways, which also determine the virus's infectious potential. Nonetheless, achieving a comprehensive understanding of how the virus interacts with host cellular components is essential for developing effective therapeutic strategies. One of the key components among host factors, the nuclear pore complex (NPC), profoundly affects both the Influenza virus life cycle and the host's antiviral defenses. Serving as the sole gateway connecting the cytoplasm and nucleoplasm, the NPC plays a vital role as a mediator in nucleocytoplasmic trafficking. Upon infection, the virus hijacks and alters the nuclear pore complex and the nuclear receptors. This enables the virus to infiltrate the nucleus and promotes the movement of viral components between the nucleus and cytoplasm. While the nucleus and cytoplasm play pivotal roles in cellular functions, the nuclear pore complex serves as a crucial component in the host's innate immune system, acting as a defense mechanism against virus infection. This review provides a comprehensive overview of the intricate relationship between the Influenza virus and the nuclear pore complex. Furthermore, we emphasize their mutual influence on viral replication and the host's immune responses.
Collapse
Affiliation(s)
- Madhu Khanna
- Department of Virology, V.P Chest Institute, University of Delhi, Delhi, India
| | - Kajal Sharma
- Department of Virology, V.P Chest Institute, University of Delhi, Delhi, India
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Shailendra K. Saxena
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George’s Medical University (KGMU), Lucknow, India
| | - Jai Gopal Sharma
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Roopali Rajput
- Department of Virology, V.P Chest Institute, University of Delhi, Delhi, India
| | - Binod Kumar
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala India
| |
Collapse
|
2
|
Huang X, Yin G, Zhou B, Cai Y, Hu J, Huang J, Chen Z, Liu Q, Feng X. KRT10 plays an important role in the release of viral genome from endosomes during H9N2 subtype AIV replication in HeLa cells. Vet Microbiol 2023; 284:109824. [PMID: 37406407 DOI: 10.1016/j.vetmic.2023.109824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
The infection and replication of avian influenza virus (AIV) in host cells is a complex biological process that involves the transport of viral genes through the host cell's transport systems. Actin, microtubules and vimentin are known to facilitate transport of endosomes to the perinuclear region, but the biological role of Keratin, another intermediate filament, in viral transport during AIV replication is not well understood. In this study, the viral NS2 protein was used as the target protein to identify the potential interacting proteins following GST-Pulldown method and protein mass spectrometry. It was discovered that Keratin10 interacted with NS2. Subsequently, it was found AIV infection did not affect the gene level or protein level of keratin10 in HeLa cells, but when Keratin10 was knocked down, the expressions of viral NP mRNA and protein were reduced, and the generation of offspring virus also was also decreased. Furthermore, in early viral infection, Keratin10 could aggregate and co-localize with NP proteins, suggesting that Keratin10 might be connected to early viral transport. Additionally, it was demonstrated that Keratin10 co-localized with Lamp1 and that AIV particles were trapped in late endosomes/Lysosomes after Keratin10 was knocked down. Finally, it was discovered that the knocking down Keratin10 in HeLa cells led to an increase in the acidic pH of endosomes and lysosomes, which prevented AIV from undergoing fusion and uncoating, and then inhibited the process of the viral infection. Overall, the results suggested that Keratin10 might play the critical role in the release of vRNPs from LEs/Ls and can affect the generation of offspring virus. The study provides the novel insights into the role of Keratin10 in the process of AIV infection and transmission, which may have implications for developing new strategies to against AIV infections.
Collapse
Affiliation(s)
- Xiangyu Huang
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Guihu Yin
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Zhou
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiqin Cai
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianing Hu
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingwen Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zili Chen
- Agricultural Comprehensive Law Enforcement Brigade of Rudong, Rudong Agriculture and Rural Affairs Bureau, Rudong 226400, China
| | - Qingtao Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiuli Feng
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Madhu P, Davey NE, Ivarsson Y. How viral proteins bind short linear motifs and intrinsically disordered domains. Essays Biochem 2022; 66:EBC20220047. [PMID: 36504386 DOI: 10.1042/ebc20220047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 02/11/2024]
Abstract
Viruses are the obligate intracellular parasites that exploit the host cellular machinery to replicate their genome. During the viral life cycle viruses manipulate the host cell through interactions with host proteins. Many of these protein-protein interactions are mediated through the recognition of host globular domains by short linear motifs (SLiMs), or longer intrinsically disordered domains (IDD), in the disordered regions of viral proteins. However, viruses also employ their own globular domains for binding to SLiMs and IDDs present in host proteins or virus proteins. In this review, we focus on the different strategies adopted by viruses to utilize proteins or protein domains for binding to the disordered regions of human or/and viral ligands. With a set of examples, we describe viral domains that bind human SLiMs. We also provide examples of viral proteins that bind to SLiMs, or IDDs, of viral proteins as a part of complex assembly and regulation of protein functions. The protein-protein interactions are often crucial for viral replication, and may thus offer possibilities for innovative inhibitor design.
Collapse
Affiliation(s)
- Priyanka Madhu
- Department of Chemistry, BMC, Uppsala University, Uppsala, Sweden
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, London, U.K
| | - Ylva Ivarsson
- Department of Chemistry, BMC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Ling YH, Wang H, Han MQ, Wang D, Hu YX, Zhou K, Li Y. Nucleoporin 85 interacts with influenza A virus PB1 and PB2 to promote its replication by facilitating nuclear import of ribonucleoprotein. Front Microbiol 2022; 13:895779. [PMID: 36051755 PMCID: PMC9426659 DOI: 10.3389/fmicb.2022.895779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022] Open
Abstract
Transcription and replication of the influenza A virus (IAV) genome take place in the nucleus of infected cells, which rely on host factors to aid viral ribonucleoprotein (vRNP) to cross the nuclear pore complex (NPC) and complete the bidirectional nucleocytoplasmic trafficking. Here, we showed that nucleoporin 85 (NUP85), a component of NPC, interacted with RNP subunits polymerase basic 1 (PB1) and polymerase basic 2 (PB2) in an RNA-dependent manner during IAV infection. Knockdown of NUP85 delayed the nuclear import of vRNP, PB1 and PB2, inhibiting polymerase activity and ultimately suppressing viral replication. Further analysis revealed that NUP85 assisted the binding of PB1 to nuclear transport factor Ran-binding protein 5 (RanBP5) and the binding of PB2 to nuclear transport factor importin α1 and importin α7. We also found that NUP85 expression was downregulated upon IAV infection. Together, our study demonstrated that NUP85 positively regulated IAV infection by interacting with viral PB1 and PB2, which may provide new insight into the process of vRNP nuclear import and a novel target for effective antivirals.
Collapse
Affiliation(s)
- Yue-Huan Ling
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
| | - Hao Wang
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
| | - Mei-Qing Han
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
| | - Di Wang
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
| | - Yi-Xiang Hu
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Hainan Institute, Zhejiang University, Sanya, Hainan, China
| | - Kun Zhou
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
| | - Yan Li
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Hainan Institute, Zhejiang University, Sanya, Hainan, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
- *Correspondence: Yan Li,
| |
Collapse
|
5
|
Chauhan RP, Gordon ML. An overview of influenza A virus genes, protein functions, and replication cycle highlighting important updates. Virus Genes 2022; 58:255-269. [PMID: 35471490 DOI: 10.1007/s11262-022-01904-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
The recent research findings on influenza A virus (IAV) genome biology prompted us to present a comprehensive overview of IAV genes, protein functions, and replication cycle. The eight gene segments of the IAV genome encode 17 proteins, each having unique functions contributing to virus fitness in the host. The polymerase genes are essential determinants of IAV pathogenicity and virulence; however, other viral components also play crucial roles in the IAV replication, transmission, and adaptation. Specific adaptive mutations within polymerase (PB2, PB1, and PA) and glycoprotein-hemagglutinin (HA) and neuraminidase (NA) genes, may facilitate interspecies transmission and adaptation of IAV. The HA-NA interplay is essential for establishing the IAV infection; the low pH triggers the inactivation of HA-receptor binding, leading to significantly lower NA activities, indicating that the enzymatic function of NA is dependent on HA binding. While the HA and NA glycoproteins are required to initiate infection, M1, M2, NS1, and NEP proteins are essential for cytoplasmic trafficking of viral ribonucleoproteins (vRNPs) and the assembly of the IAV virions. The mechanisms that enable IAV to exploit the host cell resources to advance the infection are discussed. A comprehensive understanding of IAV genome biology is essential for developing antivirals to combat the IAV disease burden.
Collapse
Affiliation(s)
- Ravendra P Chauhan
- School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, 719 Umbilo Road, Durban, 4001, South Africa
| | - Michelle L Gordon
- School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, 719 Umbilo Road, Durban, 4001, South Africa.
| |
Collapse
|
6
|
Koçmar T, Çağlayan E, Rayaman E, Nagata K, Turan K. Human sorting nexin 2 protein interacts with Influenza A virus PA protein and has a negative regulatory effect on the virus replication. Mol Biol Rep 2021; 49:497-510. [PMID: 34817777 PMCID: PMC8611637 DOI: 10.1007/s11033-021-06906-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/29/2021] [Indexed: 11/03/2022]
Abstract
Background Replication of the influenza A viruses occurs in the cells through the viral RdRP consisting of PB1, PB2, and PA. Several cellular proteins are involved in these processes. This study aims to reveal the interaction between human SNX2 protein and the PA protein and the effects of the SNX2 on the virus replication. Results To identify potential host interacting proteins to the PA, yeast two-hybrid assay was carried out with HEK293 cell cDNA library and the PA as a bait. We focused on SNX2 protein, which interacts with the PA in the yeast cells. By using the co-immunoprecipitation assays, it has been demonstrated that the amino-terminal part of the PA was important for binding to the SNX2. Immunolocalization of the proteins in HeLa cells supported this interaction. Knockdown of the SNX2 with siRNA in the cells resulted in a significant increase in both viral transcripts and virus growth. However, the increase of SNX2 in transfected cells didn’t cause a significant change in the viral RdRP activity in minireplicon assay. This may suggest that the negative effect of SNX2 on the virus replication could be saturated with its authentic intra-cellular amount. Conclusions This study revealed that the SNX2 and PA protein interact with each other in both yeast and HEK293 cells, and the SNX2 has a negative regulatory function on the virus replication. However, more knowledge is required to elucidate the action mechanism of the SNX2 on the influenza A virus replication at the molecular level. Supplementary Information The online version contains supplementary material available at 10.1007/s11033-021-06906-9.
Collapse
Affiliation(s)
- Tuğba Koçmar
- Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - Elif Çağlayan
- University of Health Sciences Kartal Koşuyolu High Speciality Educational and Research Hospital, Istanbul, Turkey
| | - Erkan Rayaman
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Kyosuke Nagata
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kadir Turan
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Marmara University, Istanbul, Turkey.
| |
Collapse
|
7
|
De Jesús-González LA, Palacios-Rápalo S, Reyes-Ruiz JM, Osuna-Ramos JF, Cordero-Rivera CD, Farfan-Morales CN, Gutiérrez-Escolano AL, del Ángel RM. The Nuclear Pore Complex Is a Key Target of Viral Proteases to Promote Viral Replication. Viruses 2021; 13:v13040706. [PMID: 33921849 PMCID: PMC8073804 DOI: 10.3390/v13040706] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
Various viruses alter nuclear pore complex (NPC) integrity to access the nuclear content favoring their replication. Alteration of the nuclear pore complex has been observed not only in viruses that replicate in the nucleus but also in viruses with a cytoplasmic replicative cycle. In this last case, the alteration of the NPC can reduce the transport of transcription factors involved in the immune response or mRNA maturation, or inhibit the transport of mRNA from the nucleus to the cytoplasm, favoring the translation of viral mRNAs or allowing access to nuclear factors necessary for viral replication. In most cases, the alteration of the NPC is mediated by viral proteins, being the viral proteases, one of the most critical groups of viral proteins that regulate these nucleus–cytoplasmic transport changes. This review focuses on the description and discussion of the role of viral proteases in the modification of nucleus–cytoplasmic transport in viruses with cytoplasmic replicative cycles and its repercussions in viral replication.
Collapse
|
8
|
Pirinçal A, Turan K. Human DDX56 protein interacts with influenza A virus NS1 protein and stimulates the virus replication. Genet Mol Biol 2021; 44:e20200158. [PMID: 33749700 PMCID: PMC7983190 DOI: 10.1590/1678-4685-gmb-2020-0158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 02/08/2021] [Indexed: 11/21/2022] Open
Abstract
Influenza A viruses (IAV) are enveloped viruses carrying a single-stranded negative-sense RNA genome. Detection of host proteins having a relationship with IAV and revealing of the role of these proteins in the viral replication are of great importance in keeping IAV infections under control. Consequently, the importance of human DDX56, which is determined to be associated with a viral NS1 with a yeast two-hybrid assay, was investigated for IAV replication. The viral replication in knocked down cells for the DDX56 gene was evaluated. The NS1 was co-precipitated with the DDX56 protein in lysates of cells transiently expressing DDX56 and NS1 or infected with the viruses, showing that NS1 and DDX56 interact in mammalian cells. Viral NS1 showed a tendency to co-localize with DDX56 in the cells, transiently expressing both of these proteins, which supports the IP and two-hybrid assays results. The data obtained with in silico predictions supported the in vitro protein interaction results. The viral replication was significantly reduced in the DDX56-knockdown cells comparing with that in the control cells. In conclusion, human DDX56 protein interacts with the IAV NS1 protein in both yeast and mammalian cells and has a positive regulatory effect on IAV replication. However, the mechanism of DDX56 on IAV replication requires further elucidation.
Collapse
Affiliation(s)
- Ayşegül Pirinçal
- Marmara University, Institute of Health Sciences, Istanbul, Turkey
| | - Kadir Turan
- Marmara University, Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Istanbul, Turkey
| |
Collapse
|
9
|
Ghildiyal R, Gabrani R. Computational approach to decipher cellular interactors and drug targets during co-infection of SARS-CoV-2, Dengue, and Chikungunya virus. Virusdisease 2021; 32:55-64. [PMID: 33723515 PMCID: PMC7945596 DOI: 10.1007/s13337-021-00665-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
The world is reeling under severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, and it will be frightening if compounded by other co-existing infections. The co-occurrence of the Dengue virus (DENV) and Chikungunya virus (CHIKV) has been into existence, but recently the co-infection of DENV and SARS-CoV-2 has been reported. Thus, the possibility of DENV, CHIKV, and SARS-CoV-2 co-infection could be predicted in the future with enhanced vulnerability. It is essential to elucidate the host interactors and the connected pathways to understand the biological insights. The in silico approach using Cytoscape was exploited to elucidate the common human proteins interacting with DENV, CHIKV, and SARS-CoV-2 during their probable co-infection. In total, 17 interacting host proteins were identified showing association with envelope, structural, non-structural, and accessory proteins. Investigating the functional and biological behaviour using PANTHER, UniProtKB, and KEGG databases uncovered their association with several cellular pathways including, signaling pathways, RNA processing and transport, cell cycle, ubiquitination, and protein trafficking. Withal, exploring the DrugBank and Therapeutic Target Database, total seven druggable host proteins were predicted. Among all integrin beta-1, histone deacetylase-2 (HDAC2) and microtubule affinity-regulating kinase-3 were targeted by FDA approved molecules/ drugs. Furthermore, HDAC2 was predicted to be the most significant target, and some approved drugs are available against it. The predicted druggable targets and approved drugs could be investigated to obliterate the identified interactions that could assist in inhibiting viral infection.
Collapse
Affiliation(s)
- Ritu Ghildiyal
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, UP 201309 India
| | - Reema Gabrani
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, UP 201309 India
| |
Collapse
|
10
|
Koriem KMM. Lipidome is lipids regulator in gastrointestinal tract and it is a life collar in COVID-19: A review. World J Gastroenterol 2021; 27:37-54. [PMID: 33505149 PMCID: PMC7789067 DOI: 10.3748/wjg.v27.i1.37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/02/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
The term lipidome is mentioned to the total amount of the lipids inside the biological cells. The lipid enters the human gastrointestinal tract through external source and internal source. The absorption pathway of lipids in the gastrointestinal tract has many ways; the 1st way, the lipid molecules are digested in the lumen before go through the enterocytes, digested products are re-esterified into complex lipid molecules. The 2nd way, the intracellular lipids are accumulated into lipoproteins (chylomicrons) which transport lipids throughout the whole body. The lipids are re-synthesis again inside the human body where the gastrointestinal lipids are: (1) Transferred into the endoplasmic reticulum; (2) Collected as lipoproteins such as chylomicrons; or (3) Stored as lipid droplets in the cytosol. The lipids play an important role in many stages of the viral replication cycle. The specific lipid change occurs during viral infection in advanced viral replication cycle. There are 47 lipids within 11 lipid classes were significantly disturbed after viral infection. The virus connects with blood-borne lipoproteins and apolipoprotein E to change viral infectivity. The viral interest is cholesterol- and lipid raft-dependent molecules. In conclusion, lipidome is important in gastrointestinal fat absorption and coronavirus disease 2019 (COVID-19) infection so lipidome is basic in gut metabolism and in COVID-19 infection success.
Collapse
|
11
|
Gales JP, Kubina J, Geldreich A, Dimitrova M. Strength in Diversity: Nuclear Export of Viral RNAs. Viruses 2020; 12:E1014. [PMID: 32932882 PMCID: PMC7551171 DOI: 10.3390/v12091014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
The nuclear export of cellular mRNAs is a complex process that requires the orchestrated participation of many proteins that are recruited during the early steps of mRNA synthesis and processing. This strategy allows the cell to guarantee the conformity of the messengers accessing the cytoplasm and the translation machinery. Most transcripts are exported by the exportin dimer Nuclear RNA export factor 1 (NXF1)-NTF2-related export protein 1 (NXT1) and the transcription-export complex 1 (TREX1). Some mRNAs that do not possess all the common messenger characteristics use either variants of the NXF1-NXT1 pathway or CRM1, a different exportin. Viruses whose mRNAs are synthesized in the nucleus (retroviruses, the vast majority of DNA viruses, and influenza viruses) exploit both these cellular export pathways. Viral mRNAs hijack the cellular export machinery via complex secondary structures recognized by cellular export factors and/or viral adapter proteins. This way, the viral transcripts succeed in escaping the host surveillance system and are efficiently exported for translation, allowing the infectious cycle to proceed. This review gives an overview of the cellular mRNA nuclear export mechanisms and presents detailed insights into the most important strategies that viruses use to export the different forms of their RNAs from the nucleus to the cytoplasm.
Collapse
Affiliation(s)
- Jón Pol Gales
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
| | - Julie Kubina
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
- SVQV UMR-A 1131, INRAE, Université de Strasbourg, F-68000 Colmar, France
| | - Angèle Geldreich
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
| | - Maria Dimitrova
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
| |
Collapse
|