1
|
Duran GA. Bioinformatics Based Drug Repurposing Approach for Breast and Gynecological Cancers: RECQL4/FAM13C Genes Address Common Hub Genes and Drugs. Eur J Breast Health 2025; 21:63-73. [PMID: 39744927 PMCID: PMC11706122 DOI: 10.4274/ejbh.galenos.2024.2024-11-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/25/2024] [Indexed: 01/11/2025]
Abstract
Objective The prevalence of breast cancer and gynaecological cancers is high, and these cancer types can occur consecutively as secondary cancers. The aim of our study is to determine the genes commonly expressed in these cancers and to identify the common hub genes and drug components. Materials and Methods Gene intensity values of breast cancer, gynaecological cancers such as cervical, ovarian and endometrial cancers were used from the Gene Expression Omnibus database Affymetrix Human Genome U133 Plus 2.0 Array project. Using the linear modelling method included in the R LIMMA package, genes that differ between healthy individuals and cancer patients were identified. Hub genes were determined using cytoHubba in Cytoscape program. "ShinyGo 0.80" tool was used to determine the disease-specific biological KEGG pathways. Drug.MATADOR from the ShinyGo 0.80 tool was used to predict drug-target relationships. Results The RecQ Like Helicase 4 and Family with Sequence Similarity 13 Member C genes were found to be similarly expressed in breast cancer and gynaecological cancers. Upon KEGG pathway analyses with hub genes, Drug.MATADOR analysis with hub genes related to cancer related pathways was performed. We have determined these gene/drug interactions: NBN (targeted by Hydroxyurea), EP300 (targeted by Acetylcarnitine) and MAPK14 (targeted by Salicylate and Dibutyryl cyclic AMP). Conclusion The drugs associated with hub genes determined in our study are not routinely used in cancer treatment. Our study offers the opportunity to identify the target genes of drugs used in breast and gynaecological cancers with the drug repurposing approach.
Collapse
Affiliation(s)
- Gizem Ayna Duran
- Department of Biomedical Engineering Faculty of Engineering, İzmir University of Economics, İzmir, Turkey
| |
Collapse
|
2
|
Al-Eidan A, Draper B, Wang S, Coke B, Skipp P, Wang Y, Ewing RM. Knockdown Proteomics Reveals USP7 as a Regulator of Cell-Cell Adhesion in Colorectal Cancer via AJUBA. Mol Cell Proteomics 2024; 23:100878. [PMID: 39522755 PMCID: PMC11697772 DOI: 10.1016/j.mcpro.2024.100878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Ubiquitin-specific protease 7 (USP7) is implicated in many cancers including colorectal cancer in which it regulates cellular pathways such as Wnt signaling and the P53-MDM2 pathway. With the discovery of small-molecule inhibitors, USP7 has also become a promising target for cancer therapy and therefore systematically identifying USP7 deubiquitinase interaction partners and substrates has become an important goal. In this study, we selected a colorectal cancer cell model that is highly dependent on USP7 and in which USP7 knockdown significantly inhibited colorectal cancer cell viability, colony formation, and cell-cell adhesion. We then used inducible knockdown of USP7 followed by LC-MS/MS to quantify USP7-dependent proteins. We identified the Ajuba LIM domain protein as an interacting partner of USP7 through co-IP, its substantially reduced protein levels in response to USP7 knockdown, and its sensitivity to the specific USP7 inhibitor FT671. The Ajuba protein has been shown to have oncogenic functions in colorectal and other tumors, including regulation of cell-cell adhesion. We show that both knockdown of USP7 or Ajuba results in a substantial reduction of cell-cell adhesion, with concomitant effects on other proteins associated with adherens junctions. Our findings underlie the role of USP7 in colorectal cancer through its protein interaction networks and show that the Ajuba protein is a component of USP7 protein networks present in colorectal cancer.
Collapse
Affiliation(s)
- Ahood Al-Eidan
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom; Department of Biology, College of Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ben Draper
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Siyuan Wang
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Brandon Coke
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Paul Skipp
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Yihua Wang
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Rob M Ewing
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
3
|
Wang L, Zhang Y, Yu T, Wu H. The Role and Mechanism of Deubiquitinase USP7 in Tumor-Associated Inflammation. Biomedicines 2024; 12:2734. [PMID: 39767641 PMCID: PMC11726842 DOI: 10.3390/biomedicines12122734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025] Open
Abstract
Deubiquitinating enzymes are a class of proteases that remove ubiquitin tags from proteins, thereby controlling protein stability and function. Tumor inflammation arises from interactions between tumor cells and their microenvironment, which trigger an inflammatory response. The deubiquitinating enzyme USP7 plays a central role in this process. Research suggests that USP7 may modulate various signaling pathways related to inflammatory responses through its deubiquitinating activity, thereby influencing tumor development and progression, including regulating T cell immune activity, improving macrophage anti-tumor activity, and regulating NF-κB signal pathways. Overall, describing the role and mechanism of USP7 in the tumor inflammatory response is of great importance for elucidating the regulatory mechanism of tumor inflammation and developing new therapeutic strategies. This article mainly reviews the structure, function, role, and mechanism of USP7 in the tumor inflammation response.
Collapse
Affiliation(s)
- Luhong Wang
- Cancer Hospital Affiliated to Dalian University of Technology, Shenyang 110042, China; (L.W.); (Y.Z.)
- Dalian Key Laboratory of Protein Modification and Disease, Faculty of Medicine, School of Biological Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yong Zhang
- Cancer Hospital Affiliated to Dalian University of Technology, Shenyang 110042, China; (L.W.); (Y.Z.)
| | - Tao Yu
- Cancer Hospital Affiliated to Dalian University of Technology, Shenyang 110042, China; (L.W.); (Y.Z.)
| | - Huijian Wu
- Dalian Key Laboratory of Protein Modification and Disease, Faculty of Medicine, School of Biological Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
4
|
Huang MY, Hu SY, Dong J, Deng L, Andriani L, Ma XY, Zhang YL, Zhang FL, Shao ZM, Li DQ. The DRAP1/DR1 Repressor Complex Increases mTOR Activity to Promote Progression and Confer Everolimus Sensitivity in Triple-Negative Breast Cancer. Cancer Res 2024; 84:2660-2673. [PMID: 38748783 DOI: 10.1158/0008-5472.can-23-2781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/18/2024] [Accepted: 05/08/2024] [Indexed: 08/16/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Transcriptional dysregulation is a hallmark of cancer, and several transcriptional regulators have been demonstrated to contribute to cancer progression. In this study, we identified an upregulation of the transcriptional corepressor downregulator of transcription 1-associated protein 1 (DRAP1) in TNBC, which was closely associated with poor recurrence-free survival in patients with TNBC. DRAP1 promoted TNBC proliferation, migration, and invasion in vitro and tumor growth and metastasis in vivo. Mechanistically, the downregulator of transcription 1 (DR1)/DRAP1 heterodimer complex inhibited expression of the cytosolic arginine sensor for mTORC1 subunit 1 (CASTOR1) and thereby increased activation of mTOR, which sensitized TNBC to treatment with the mTOR inhibitor everolimus. DRAP1 and DR1 also formed a positive feedback loop. DRAP1 enhanced the stability of DR1 by recruiting the deubiquitinase USP7 to inhibit its proteasomal degradation; in turn, DR1 directly promoted DRAP1 transcription. Collectively, this study uncovered a DRAP1-DR1 bidirectional regulatory pathway that promotes TNBC progression, suggesting that targeting the DRAP1/DR1 complex might be a potential therapeutic strategy to treat TNBC. Significance: DR1 and DRAP1 form a positive feedback loop and a repressor complex to cooperatively inhibit cytosolic arginine sensor for mTORC1 subunit 1 transcription and stimulate mTOR signaling, leading to progression and increased everolimus sensitivity in triple-negative breast cancer.
Collapse
Affiliation(s)
- Min-Ying Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shu-Yuan Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia Dong
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ling Deng
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lisa Andriani
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Yan Ma
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yin-Ling Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fang-Lin Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhi-Ming Shao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Da-Qiang Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Kong L, Jin X. Dysregulation of deubiquitination in breast cancer. Gene 2024; 902:148175. [PMID: 38242375 DOI: 10.1016/j.gene.2024.148175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Breast cancer (BC) is a highly frequent malignant tumor that poses a serious threat to women's health and has different molecular subtypes, histological subtypes, and biological features, which act by activating oncogenic factors and suppressing cancer inhibitors. The ubiquitin-proteasome system (UPS) is the main process contributing to protein degradation, and deubiquitinases (DUBs) are reverse enzymes that counteract this process. There is growing evidence that dysregulation of DUBs is involved in the occurrence of BC. Herein, we review recent research findings in BC-associated DUBs, describe their nature, classification, and functions, and discuss the potential mechanisms of DUB-related dysregulation in BC. Furthermore, we present the successful treatment of malignant cancer with DUB inhibitors, as well as analyzing the status of targeting aberrant DUBs in BC.
Collapse
Affiliation(s)
- Lili Kong
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
6
|
Şişli HB, Şenkal Turhan S, Bulut E, Şahin F, Doğan A. The Role of Aplnr Signaling in the Developmental Regulation of Mesenchymal Stem Cell Differentiation from Human Pluripotent Stem Cells. Adv Biol (Weinh) 2024; 8:e2300217. [PMID: 37840394 DOI: 10.1002/adbi.202300217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/01/2023] [Indexed: 10/17/2023]
Abstract
Stem cells are invaluable resources for personalized medicine. Mesenchymal stem cells (MSCs) have received great attention as therapeutic tools due to being a safe, ethical, and accessible option with immunomodulatory and controlled differentiation properties. Apelin receptor (Aplnr) signaling is reported to be involved in biological events, including gastrulation, mesoderm migration, proliferation of MSCs. However, the knowledge about the exact role and mechanism of Aplnr signaling during mesoderm and MSCs differentiation is still primitive. The current study aims to unveil the role of Aplnr signaling during mesoderm and MSC differentiation from pluripotent stem cells (PSCs) through peptide/small molecule activation, overexpression, knock down or CRISPR/Cas9 mediated knock out of the pathway components. Morphological changes, gene and protein expression analysis, including antibody array, LC/MS, mRNA/miRNA sequencing, reveal that Aplnr signaling promotes mesoderm commitment possibly via EGFR and TGF-beta signaling pathways and enhances migration of cells during mesoderm differentiation. Moreover, Aplnr signaling positively regulates MSCs differentiation from hPSCs and increases MSC characteristics and differentiation capacity by regulating pathways, such as EGFR, TGFβ, Wnt, PDGF, and FGF. Osteogenic, chondrogenic, adipogenic, and myogenic differentiations are significantly enhanced with Aplnr signaling activity. This study generates an important foundation to generate high potential MSCs from PSCs to be used in personalized cell therapy.
Collapse
Affiliation(s)
- Hatice Burcu Şişli
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, 34755, Turkey
| | - Selinay Şenkal Turhan
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, 34755, Turkey
| | - Ezgi Bulut
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, 34755, Turkey
| | - Fikrettin Şahin
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, 34755, Turkey
| | - Ayşegül Doğan
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, 34755, Turkey
| |
Collapse
|
7
|
Şişli HB, Hayal TB, Şenkal S, Bulut E, Kıratlı B, Asutay AB, Şahin F, Bayrak ÖF, Doğan A. Activation of Wnt Pathway Suppresses Growth of MUG-Chor1 Chordoma Cell Line. Cell Biochem Biophys 2023; 81:823-837. [PMID: 37751039 DOI: 10.1007/s12013-023-01178-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 09/27/2023]
Abstract
Chordoma as a malignant bone tumor, occurs along the axial skeleton and does not have an effective therapy. Brachyury, which is a crucial player for the formation of early embryonic notochord, is abundantly found in both sporadic and familial chordoma. During embryonic development, Brachyury expression was reported to be regulated by the Wnt pathway. The objective of the study is to investigate the role of Wnt signaling in a human chordoma cell line in terms of proliferation, survival, and invasiveness. We tried to elucidate the signaling events that regulate Chordoma cancer. In this regard, Wnt pathway was activated or inhibited using various strategies including small molecules, siRNA-based knockdown and overexpression applications. The results indicated the negative regulatory effect of Wnt signaling activity on proliferation and migration capacity of the chordoma cells. It was revealed that when GSK3β was inhibited, the Wnt pathway was activated and negatively regulated T/Bra expression. Activity of the Wnt pathway caused cell cycle arrest, reduced migration potential of the cells, and led to cell death. Therefore, the present study suggests that the Wnt pathway plays a key role in suppressing the proliferation and invasive characteristics of human chordoma cells and has a great potential as a therapeutic target in further clinical studies.
Collapse
Affiliation(s)
- Hatice Burcu Şişli
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, 34755, Turkey
| | - Taha Bartu Hayal
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, 34755, Turkey
| | - Selinay Şenkal
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, 34755, Turkey
| | - Ezgi Bulut
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, 34755, Turkey
| | - Binnur Kıratlı
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, 34755, Turkey
| | - Ayla Burçin Asutay
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, 34755, Turkey
| | - Fikrettin Şahin
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, 34755, Turkey
| | - Ömer Faruk Bayrak
- Department of Medical Genetics, School of Medicine, Yeditepe University, İstanbul, 34755, Turkey
| | - Ayşegül Doğan
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, 34755, Turkey.
| |
Collapse
|
8
|
Regulatory role of apelin receptor signaling in migration and differentiation of mouse embryonic stem cell-derived mesoderm cells and mesenchymal stem/stromal cells. Hum Cell 2023; 36:612-630. [PMID: 36692671 DOI: 10.1007/s13577-023-00861-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
Mesoderm-derived cells, including bone, muscle, and mesenchymal stem/stromal cells (MSCs), constitute various parts of vertebrate body. Cell therapy with mesoderm specification in vitro may be a promising treatment for diseases affecting organs of mesodermal origin. Repair and regeneration of damaged organs with in vitro generation of mesoderm-derived tissues and MSCs hold a great potential for regenerative therapy. Therefore, understanding the signaling pathways involving mesoderm and mesoderm-derived cellular differentiation is important. Previous findings indicated the importance of Apelin receptor (Aplnr) signaling, during embryonic development, in gastrulation, cell migration, and differentiation. Nevertheless, regulatory role of Aplnr pathway in differentiation of mesoderm and mesoderm-derived MSCs remains unclear. In the current study, we tried to elucidate the role of Aplnr signaling during mesoderm cell migration and differentiation from mouse embryonic stem cells (mESCs). By activating and suppressing Aplnr signaling pathway via peptide, small molecule, and genetic modifications including siRNA- and shRNA-mediated knockdown and CRISPR-Cas9-mediated knockout (KO), we revealed that Aplnr signaling not only induces migration of cells during germ layer formation but also enhances mesoderm differentiation through FGF/MAPK pathway. Antibody array and LC/MS protein profiling data demonstrated that Apelin-13 treatment enhanced cell cycle, EGFR, FGF, Wnt, and Integrin signaling pathway proteins. Furthermore, Aplelin-13 treatment improved MSC characteristics, with mesenchymal phenotype and high expression of MSC markers, and silencing Aplnr signaling components resulted in significantly reduced expression of MSC markers. Also, Aplnr signaling activity enhanced proliferation and survival of the cells during MSC derivation from mesoderm.
Collapse
|
9
|
Huang ML, Shen GT, Li NL. Emerging potential of ubiquitin-specific proteases and ubiquitin-specific proteases inhibitors in breast cancer treatment. World J Clin Cases 2022; 10:11690-11701. [PMID: 36405275 PMCID: PMC9669866 DOI: 10.12998/wjcc.v10.i32.11690] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/30/2022] [Accepted: 10/17/2022] [Indexed: 02/05/2023] Open
Abstract
Breast cancer is the most frequently diagnosed cancer in women, accounting for 30% of new diagnosing female cancers. Emerging evidence suggests that ubiquitin and ubiquitination played a role in a number of breast cancer etiology and progression processes. As the primary deubiquitinases in the family, ubiquitin-specific peptidases (USPs) are thought to represent potential therapeutic targets. The role of ubiquitin and ubiquitination in breast cancer, as well as the classification and involvement of USPs are discussed in this review, such as USP1, USP4, USP7, USP9X, USP14, USP18, USP20, USP22, USP25, USP37, and USP39. The reported USPs inhibitors investigated in breast cancer were also summarized, along with the signaling pathways involved in the investigation and its study phase. Despite no USP inhibitor has yet been approved for clinical use, the biological efficacy indicated their potential in breast cancer treatment. With the improvements in phenotypic discovery, we will know more about USPs and USPs inhibitors, developing more potent and selective clinical candidates for breast cancer.
Collapse
Affiliation(s)
- Mei-Ling Huang
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Guang-Tai Shen
- Department of Breast Surgery, Xing'an League People's Hospital, Ulanhot 137400, Inner Mongolia Autonomous Region, China
| | - Nan-Lin Li
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| |
Collapse
|
10
|
Hölzen L, Syré K, Mitschke J, Brummer T, Miething C, Reinheckel T. Degradome-focused RNA interference screens to identify proteases important for breast cancer cell growth. Front Oncol 2022; 12:960109. [PMID: 36313646 PMCID: PMC9598039 DOI: 10.3389/fonc.2022.960109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Proteases are known to promote or impair breast cancer progression and metastasis. However, while a small number of the 588 human and 672 murine protease genes have been extensively studied, others were neglected. For an unbiased functional analysis of all genome-encoded proteases, i.e., the degradome, in breast cancer cell growth, we applied an inducible RNA interference library for protease-focused genetic screens. Importantly, these functional screens were performed in two phenotypically different murine breast cancer cell lines, including one stem cell-like cell line that showed phenotypic plasticity under changed nutrient and oxygen availability. Our unbiased genetic screens identified 252 protease genes involved in breast cancer cell growth that were further restricted to 100 hits by a selection process. Many of those hits were supported by literature, but some proteases were novel in their functional link to breast cancer. Interestingly, we discovered that the environmental conditions influence the degree of breast cancer cell dependency on certain proteases. For example, breast cancer stem cell-like cells were less susceptible to depletion of several mitochondrial proteases in hypoxic conditions. From the 100 hits, nine proteases were functionally validated in murine breast cancer cell lines using individual knockdown constructs, highlighting the high reliability of our screens. Specifically, we focused on mitochondrial processing peptidase (MPP) subunits alpha (Pmpca) and beta (Pmpcb) and discovered that MPP depletion led to a disadvantage in cell growth, which was linked to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Lena Hölzen
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
- German Cancer Research Center, Heidelberg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Kerstin Syré
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan Mitschke
- Center for Translational Cell Research, Department of Internal Medicine I - Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
- German Cancer Research Center, Heidelberg, Germany
- Center for Biological Signaling Studies BIOSS, University of Freiburg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), University Medical Center, University of Freiburg, Freiburg, Germany
| | - Cornelius Miething
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
- German Cancer Research Center, Heidelberg, Germany
- Center for Translational Cell Research, Department of Internal Medicine I - Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), University Medical Center, University of Freiburg, Freiburg, Germany
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
- German Cancer Research Center, Heidelberg, Germany
- Center for Biological Signaling Studies BIOSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Hayal TB, Kırbaş OK, Bozkurt BT, Taşlı PN, Bülbül B, Beyaz S, Şahin F. Lead Borate Nanoparticles Induce Apoptotic Gene Activity in P53 Mutant Cancer Cells. Biol Trace Elem Res 2022; 200:574-581. [PMID: 33834390 DOI: 10.1007/s12011-021-02696-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/28/2021] [Indexed: 12/21/2022]
Abstract
Cancer is a complex and multistage disease that causes suffering worldwide. Several mutations in tumor suppressor proteins are mostly responsible for tumorigenic development. Thus, determination of the mutations and developing a mutation targeted therapy are crucial in order to cure cancer. Moreover, since healthy cells do not have mutations in their tumor suppressor genes, mutation-specific treatment is responsible for selective treatment without harming a healthy tissue in the body. In this current study, lead borate nanoparticles (LB-Np) have been synthesized, and their effects on P53 mutant cancer cells were investigated. The synthesis method includes steps of mixing a borate buffer solution with the lead nitrate solution, washing the resulting precipitate with distilled water and eventually preparing stable LB-Np solutions. Cell viability analysis was conducted to identify the toxicity of LB-Np in HaCaT, A549, MCF7, and T47D cell lines. The changes in morphologies of breast cancer cell lines were demonstrated by using microscopical analysis. Additionally, alterations in gene expressions were determined in breast cancer cell lines after LB-Np treatment. This multidisciplinary study also identified the selective effect of LB-Np in cancer cell lines, in vitro. MTS and quantitative polymerase chain reaction assays demonstrated the effect of LB-Np were specific for p53 mutation cell line, T47D. Breast cancer cell line T47D has 580 C/T mutation which affects the activation of p53 tumor suppressor protein. However, LB-Np treatment effectively killed T47D cell lines and did not affect any other cell lines that have no p53 mutations such as MCF7, A549, and healthy HaCaT. Overall, synthesized LB-Np were found to be effective in p53-mutated cell lines and showed a remarkable selective anti-cancer activity.
Collapse
Affiliation(s)
- Taha Bartu Hayal
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, 26 Ağustos Campus, Kayisdagi cad., Kayisdagi, TR-34755, Istanbul, Turkey
| | - Oğuz Kaan Kırbaş
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, 26 Ağustos Campus, Kayisdagi cad., Kayisdagi, TR-34755, Istanbul, Turkey
| | - Batuhan Turhan Bozkurt
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, 26 Ağustos Campus, Kayisdagi cad., Kayisdagi, TR-34755, Istanbul, Turkey
| | - Pakize Neslihan Taşlı
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, 26 Ağustos Campus, Kayisdagi cad., Kayisdagi, TR-34755, Istanbul, Turkey
| | - Berna Bülbül
- Department of Chemistry, Faculty of Science and Letters, Balikesir University, Cagis Campus, TR-10145, Balıkesir, Turkey
| | - Seda Beyaz
- Department of Chemistry, Faculty of Science and Letters, Balikesir University, Cagis Campus, TR-10145, Balıkesir, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, 26 Ağustos Campus, Kayisdagi cad., Kayisdagi, TR-34755, Istanbul, Turkey.
| |
Collapse
|
12
|
CircRNA CORO1C Regulates miR-654-3p/USP7 Axis to Mediate Laryngeal Squamous Cell Carcinoma Progression. Biochem Genet 2022; 60:1615-1629. [DOI: 10.1007/s10528-021-10169-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/06/2021] [Indexed: 12/21/2022]
|
13
|
Guo JN, Xia BR, Deng SH, Yang C, Pi YN, Cui BB, Jin WL. Deubiquitinating Enzymes Orchestrate the Cancer Stem Cell-Immunosuppressive Niche Dialogue: New Perspectives and Therapeutic Potential. Front Cell Dev Biol 2021; 9:680100. [PMID: 34179009 PMCID: PMC8220152 DOI: 10.3389/fcell.2021.680100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Cancer stem cells (CSCs) are sparks for igniting tumor recurrence and the instigators of low response to immunotherapy and drug resistance. As one of the important components of tumor microenvironment, the tumor associated immune microenvironment (TAIM) is driving force for the heterogeneity, plasticity and evolution of CSCs. CSCs create the inhibitory TAIM (ITAIM) mainly through four stemness-related signals (SRSs), including Notch-nuclear factor-κB axis, Hedgehog, Wnt and signal transducer and activator of transcription. Ubiquitination and deubiquitination in proteins related to the specific stemness of the CSCs have a profound impact on the regulation of ITAIM. In regulating the balance between ubiquitination and deubiquitination, it is crucial for deubiquitinating enzymes (DUBs) to cleave ubiquitin chains from substrates. Ubiquitin-specific peptidases (USPs) comprise the largest family of DUBs. Growing evidence suggests that they play novel functions in contribution of ITAIM, including regulating tumor immunogenicity, activating stem cell factors, upregulating the SRSs, stabilizing anti-inflammatory receptors, and regulating anti-inflammatory cytokines. These overactive or abnormal signaling may dampen antitumor immune responses. The inhibition of USPs could play a regulatory role in SRSs and reversing ITAIM, and also have great potential in improving immune killing ability against tumor cells, including CSCs. In this review, we focus on the USPs involved in CSCs signaling pathways and regulating ITAIM, which are promising therapeutic targets in antitumor therapy.
Collapse
Affiliation(s)
- Jun-Nan Guo
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bai-Rong Xia
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Anhui Provincial Cancer Hospital, University of Science and Technology of China, Hefei, China
| | - Shen-Hui Deng
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chang Yang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ya-Nan Pi
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bin-Bin Cui
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wei-Lin Jin
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Institute of Cancer Neuroscience, The First Clinical Medical College of Lanzhou University, Lanzhou, China
| |
Collapse
|