1
|
Thanh LP, Phakachoed N, Suksombat W, Loor JJ, Hang TTT. Partial substitution of fish oil for linseed oil enhances beneficial fatty acids from rumen biohydrogenation but reduces ruminal fermentation and digestibility in growing goats. Transl Anim Sci 2021; 5:txab116. [PMID: 34377951 PMCID: PMC8345834 DOI: 10.1093/tas/txab116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/05/2021] [Indexed: 12/01/2022] Open
Abstract
This study was performed to investigate effects of partial replacement of fish oil (FO) for linseed oil (LO) on digestibility, ruminal fermentation and biohydrogenation in growing goats. Experiment 1 was carried out in four growing male goats aged 6 months in a 4 × 4 Latin square design. Goats were fed a basal diet supplemented with 25 g/kg dry matter either LO alone or in combination with tuna FO. Treatments were developed by replacing FO for LO at ratios of 0, 5, 10 and 15 g/kg DM corresponding to FO-0, FO-5, FO-10 and FO-15, respectively. Experiment 2 was carried out in an in vitro incubation system including 12 fermenters with the same four treatments. Each fermenter consisted of 40 mL goat ruminal fluid, 160 mL warm buffer, 2 g mixed substrates, and 50 mg FO-0, FO-5, FO-10 or FO-15. Fish oil inclusion reduced (P < 0.05) digestibility and nitrogen retention in Experiment 1. Increasing doses of FO in the diet induced a strong drop (P < 0.001) in ruminal total volatile fatty acid (VFA) concentration and protozoa population at 3 h post incubation, but did not affect individual VFA proportions. Substitution of FO for LO decreased mean concentrations of C18:0 (P = 0.057), c-9,c-12 C18:2 and C18:3n-3 (P < 0.001), but increased (P < 0.001) C20:5n-3 and C22:6n-3. Feeding FO-10 enhanced formation of ruminal c-9,t-11 conjugated linoleic acid (CLA) concentration compared with FO-0. Overall, combined data suggest that to improve ruminal concentrations of C20:5n-3, C22:6n-3, and c-9,t-11 CLA for deposition in tissues or milk with minimal risk of affecting digestibility and ruminal fermentation, a dietary supplementation of 15 g/kg LO and 10 g/kg FO would be suitable.
Collapse
Affiliation(s)
- Lam Phuoc Thanh
- Department of Animal Sciences, Can Tho University, Ninh Kieu, Can Tho 94000, Viet Nam
| | - Noppharat Phakachoed
- Department of Animal Production Technology, Kalasin University, Mueang, Kalasin 46000, Thailand
| | - Wisitiporn Suksombat
- Technopolis, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| | - Juan J Loor
- Department of Animal Sciences, University of Illinoi at Urbana Champaign, Urbana, IL 61801, USA
| | - Tran Thi Thuy Hang
- Department of Agricultural Technology, Can Tho University, Phung Hiep, Hau Giang 95000, Viet Nam
| |
Collapse
|
2
|
Wren SN, Donovan MG, Selmin OI, Doetschman TC, Romagnolo DF. A Villin-Driven Fxr Transgene Modulates Enterohepatic Bile Acid Homeostasis and Response to an n-6-Enriched High-Fat Diet. Int J Mol Sci 2020; 21:ijms21217829. [PMID: 33105708 PMCID: PMC7659968 DOI: 10.3390/ijms21217829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
A diet high in n-6 polyunsaturated fatty acids (PUFAs) may contribute to inflammation and tissue damage associated with obesity and pathologies of the colon and liver. One contributing factor may be dysregulation by n-6 fatty acids of enterohepatic bile acid (BA) metabolism. The farnesoid X receptor (FXR) is a nuclear receptor that regulates BA homeostasis in the liver and intestine. This study aims to compare the effects on FXR regulation and BA metabolism of a palm oil-based diet providing 28% energy (28%E) from fat and low n-6 linoleic acid (LA, 2.5%E) (CNTL) with those of a soybean oil-based diet providing 50%E from fat and high (28%E) in LA (n-6HFD). Wild-type (WT) littermates and a transgenic mouse line overexpressing the Fxrα1 isoform under the control of the intestine-specific Villin promoter (Fxrα1TG) were fed the CNTL or n-6HFD starting at weaning through 16 weeks of age. Compared to the CNTL diet, the n-6HFD supports higher weight gain in both WT and FxrαTG littermates; increases the expression of Fxrα1/2, and peroxisome proliferator-activated receptor-γ1 (Pparγ1) in the small intestine, Fxrα1/2 in the colon, and cytochrome P4507A1 (Cyp7a1) and small heterodimer protein (Shp) in the liver; and augments the levels of total BA in the liver, and primary chenodeoxycholic (CDCA), cholic (CA), and β-muricholic (βMCA) acid in the cecum. Intestinal overexpression of the Fxra1TG augments expression of Shp and ileal bile acid-binding protein (Ibabp) in the small intestine and Ibabp in the proximal colon. Conversely, it antagonizes n-6HFD-dependent accumulation of intestinal and hepatic CDCA and CA; hepatic levels of Cyp7a1; and expression of Pparγ in the small intestine. We conclude that intestinal Fxrα1 overexpression represses hepatic de novo BA synthesis and protects against n-6HFD-induced accumulation of human-specific primary bile acids in the cecum.
Collapse
Affiliation(s)
- Spencer N. Wren
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ 85721, USA; (S.N.W.); (O.I.S.)
| | - Micah G. Donovan
- Interdisciplinary Cancer Biology Graduate Program, The University of Arizona, Tucson, AZ 85724, USA;
| | - Ornella I. Selmin
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ 85721, USA; (S.N.W.); (O.I.S.)
- The University of Arizona Cancer Center, Tucson, AZ 85724, USA
| | - Tom C. Doetschman
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85724, USA;
| | - Donato F. Romagnolo
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ 85721, USA; (S.N.W.); (O.I.S.)
- The University of Arizona Cancer Center, Tucson, AZ 85724, USA
- Correspondence: ; Tel.: +1-520-626-9108
| |
Collapse
|
3
|
Senizza A, Callegari ML, Senizza B, Minuti A, Rocchetti G, Morelli L, Patrone V. Effects of Linoleic Acid on Gut-Derived Bifidobacterium breve DSM 20213: A Transcriptomic Approach. Microorganisms 2019; 7:microorganisms7120710. [PMID: 31861103 PMCID: PMC6955684 DOI: 10.3390/microorganisms7120710] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/12/2019] [Accepted: 12/16/2019] [Indexed: 02/08/2023] Open
Abstract
Bacterial production of conjugated linoleic acid (CLA) has recently received great attention because of the potential health benefits of this fatty acid. Linoleic acid (LA) can be converted to CLA by several microorganisms, including bifidobacteria, possibly as a detoxification mechanism to avoid the growth inhibition effect of LA. In the present in vitro study, we investigated the gene expression landscape of the intestinal strain Bifidobacterium breve DSM 20213 when exposed to LA. Transcriptomic analysis using RNA-seq revealed that LA induced a multifactorial stress response in the test strain, including upregulation of genes involved in iron uptake and downregulation of genes involved in sugar and oligopeptide transport. We also observed reduced transcription of genes involved in membrane and pili biosynthesis. The upregulation of iron uptake was not related to any putative ability of LA to chelate Fe2+, but was somewhat linked to stress response. Furthermore, we demonstrated that LA increased reactive oxygen species (ROS) production in bacterial cells, activating an oxidative stress response. This response was proved by thioredoxin reductase transcription, and was primarily evident among bacteria cultured in the absence of cysteine. This is the first report of the potential mechanisms involved in bacterial LA transport and stress response in B. breve.
Collapse
Affiliation(s)
- Alice Senizza
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy; (A.S.); (M.L.C.); (B.S.); (G.R.); (L.M.)
| | - Maria Luisa Callegari
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy; (A.S.); (M.L.C.); (B.S.); (G.R.); (L.M.)
- Biotechnology Research Centre (CRB), via Milano 24, 26100 Cremona, Italy
| | - Biancamaria Senizza
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy; (A.S.); (M.L.C.); (B.S.); (G.R.); (L.M.)
| | - Andrea Minuti
- Department of Animal Science, Food and Nutrition (DiANA), Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy;
- Nutrigenomics and Proteomics Research Center (PRONUTRIGEN), Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Gabriele Rocchetti
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy; (A.S.); (M.L.C.); (B.S.); (G.R.); (L.M.)
| | - Lorenzo Morelli
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy; (A.S.); (M.L.C.); (B.S.); (G.R.); (L.M.)
- Biotechnology Research Centre (CRB), via Milano 24, 26100 Cremona, Italy
| | - Vania Patrone
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy; (A.S.); (M.L.C.); (B.S.); (G.R.); (L.M.)
- Nutrigenomics and Proteomics Research Center (PRONUTRIGEN), Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
- Correspondence: ; Tel.: +39-0523-599247
| |
Collapse
|
4
|
Jezierska S, Claus S, Ledesma-Amaro R, Van Bogaert I. Redirecting the lipid metabolism of the yeast Starmerella bombicola from glycolipid to fatty acid production. ACTA ACUST UNITED AC 2019; 46:1697-1706. [DOI: 10.1007/s10295-019-02234-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/04/2019] [Indexed: 01/06/2023]
Abstract
Abstract
Free fatty acids are basic oleochemicals implemented in a range of applications including surfactants, lubricants, paints, plastics, and cosmetics. Microbial fatty acid biosynthesis has gained much attention as it provides a sustainable alternative for petrol- and plant oil-derived chemicals. The yeast Starmerella bombicola is a microbial cell factory that naturally employs its powerful lipid metabolism for the production of the biodetergents sophorolipids (> 300 g/L). However, in this study we exploit the lipidic potential of S. bombicola and convert it from the glycolipid production platform into a free fatty acid cell factory. We used several metabolic engineering strategies to promote extracellular fatty acid accumulation which include blocking competing pathways (sophorolipid biosynthesis and β-oxidation) and preventing free fatty acid activation. The best producing mutant (Δcyp52m1Δfaa1Δmfe2) secreted 0.933 g/L (± 0.04) free fatty acids with a majority of C18:1 (43.8%) followed by C18:0 and C16:0 (40.0 and 13.2%, respectively). Interestingly, deletion of SbFaa1 in a strain still producing sophorolipids also resulted in 25% increased de novo sophorolipid synthesis (P = 0.0089) and when oil was supplemented to the same strain, a 50% increase in sophorolipid production was observed compared to the wild type (P = 0.03). We believe that our work is pivotal for the further development and exploration of S. bombicola as a platform for synthesis of environmentally friendly oleochemicals.
Collapse
Affiliation(s)
- Sylwia Jezierska
- grid.5342.0 0000 0001 2069 7798 Centre for Synthetic Biology, Department of Biotechnology Ghent University Coupure Links 653 9000 Ghent Belgium
| | - Silke Claus
- grid.5342.0 0000 0001 2069 7798 Centre for Synthetic Biology, Department of Biotechnology Ghent University Coupure Links 653 9000 Ghent Belgium
| | - Rodrigo Ledesma-Amaro
- grid.7445.2 0000 0001 2113 8111 Imperial College Centre for Synthetic Biology and Department of Bioengineering Imperial College London South Kensington Campus SW7 2AZ London UK
| | - Inge Van Bogaert
- grid.5342.0 0000 0001 2069 7798 Centre for Synthetic Biology, Department of Biotechnology Ghent University Coupure Links 653 9000 Ghent Belgium
| |
Collapse
|
5
|
Etienne-Mesmin L, Chassaing B, Desvaux M, De Paepe K, Gresse R, Sauvaitre T, Forano E, de Wiele TV, Schüller S, Juge N, Blanquet-Diot S. Experimental models to study intestinal microbes–mucus interactions in health and disease. FEMS Microbiol Rev 2019; 43:457-489. [DOI: 10.1093/femsre/fuz013] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
A close symbiotic relationship exists between the intestinal microbiota and its host. A critical component of gut homeostasis is the presence of a mucus layer covering the gastrointestinal tract. Mucus is a viscoelastic gel at the interface between the luminal content and the host tissue that provides a habitat to the gut microbiota and protects the intestinal epithelium. The review starts by setting up the biological context underpinning the need for experimental models to study gut bacteria-mucus interactions in the digestive environment. We provide an overview of the structure and function of intestinal mucus and mucins, their interactions with intestinal bacteria (including commensal, probiotics and pathogenic microorganisms) and their role in modulating health and disease states. We then describe the characteristics and potentials of experimental models currently available to study the mechanisms underpinning the interaction of mucus with gut microbes, including in vitro, ex vivo and in vivo models. We then discuss the limitations and challenges facing this field of research.
Collapse
Affiliation(s)
- Lucie Etienne-Mesmin
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Benoit Chassaing
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303 , USA
- Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave, Atlanta, GA 30303 , USA
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Kim De Paepe
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Raphaële Gresse
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Thomas Sauvaitre
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Evelyne Forano
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Stephanie Schüller
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR7UQ, United Kingdom
| | - Nathalie Juge
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR7UQ, United Kingdom
| | - Stéphanie Blanquet-Diot
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| |
Collapse
|
6
|
Differential effects of coconut versus soy oil on gut microbiota composition and predicted metabolic function in adult mice. BMC Genomics 2018; 19:808. [PMID: 30404613 PMCID: PMC6223047 DOI: 10.1186/s12864-018-5202-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/25/2018] [Indexed: 12/20/2022] Open
Abstract
Background Animal studies show that high fat (HF) diet-induced gut microbiota contributes to the development of obesity. Oil composition of high-fat diet affects metabolic inflammation differently with deleterious effects by saturated fat. The aim of the present study was to examine the diversity and metabolic capacity of the cecal bacterial community in C57BL/6 N mice administered two different diets, enriched respectively with coconut oil (HFC, high in saturated fat) or soy oil (HFS, high in polyunsaturated fat). The relative impact of each hypercaloric diet was evaluated after 2 and 8 weeks of feeding, and compared with that of a low-fat, control diet (LF). Results The HFC diet induced the same body weight gain and fat storage as the HFS diet, but produced higher plasma cholesterol levels after 8 weeks of treatment. At the same time point, the cecal microbiota of HFC diet-fed mice was characterized by an increased relative abundance of Allobaculum, Anaerofustis, F16, Lactobacillus reuteri and Deltaproteobacteria, and a decreased relative abundance of Akkermansia muciniphila compared to HFS mice. Comparison of cecal microbiota of high-fat fed mice versus control mice indicated major changes that were shared between the HFC and the HFS diet, including the increase in Lactobacillus plantarum, Lutispora, and Syntrophomonas, while some other shifts were specifically associated to either coconut or soy oil. Prediction of bacterial gene functions showed that the cecal microbiota of HFC mice was depleted of pathways involved in fatty acid metabolism, amino acid metabolism, xenobiotic degradation and metabolism of terpenoids and polyketides compared to mice on HFS diet. Correlation analysis revealed remarkable relationships between compositional changes in the cecal microbiota and alterations in the metabolic and transcriptomic phenotypes of high-fat fed mice. Conclusions The study highlights significant differences in cecal microbiota composition and predictive functions of mice consuming a diet enriched in coconut vs soy oil. The correlations established between specific bacterial taxa and various traits linked to host lipid metabolism and energy storage give insights into the role and functioning of the gut microbiota that may contribute to diet-induced metabolic disorders. Electronic supplementary material The online version of this article (10.1186/s12864-018-5202-z) contains supplementary material, which is available to authorized users.
Collapse
|
7
|
Thanh LP, Phakachoed N, Meeprom C, Suksombat W. Replacement of fish oil for sunflower oil in growing goat diet induces shift of ruminal fermentation and fatty acid concentration without affecting intake and digestion. Small Rumin Res 2018. [DOI: 10.1016/j.smallrumres.2018.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Di Rienzi SC, Jacobson J, Kennedy EA, Bell ME, Shi Q, Waters JL, Lawrence P, Brenna JT, Britton RA, Walter J, Ley RE. Resilience of small intestinal beneficial bacteria to the toxicity of soybean oil fatty acids. eLife 2018; 7:e32581. [PMID: 29580380 PMCID: PMC5902164 DOI: 10.7554/elife.32581] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/14/2018] [Indexed: 12/15/2022] Open
Abstract
Over the past century, soybean oil (SBO) consumption in the United States increased dramatically. The main SBO fatty acid, linoleic acid (18:2), inhibits in vitro the growth of lactobacilli, beneficial members of the small intestinal microbiota. Human-associated lactobacilli have declined in prevalence in Western microbiomes, but how dietary changes may have impacted their ecology is unclear. Here, we compared the in vitro and in vivo effects of 18:2 on Lactobacillus reuteri and L. johnsonii. Directed evolution in vitro in both species led to strong 18:2 resistance with mutations in genes for lipid biosynthesis, acid stress, and the cell membrane or wall. Small-intestinal Lactobacillus populations in mice were unaffected by chronic and acute 18:2 exposure, yet harbored both 18:2- sensitive and resistant strains. This work shows that extant small intestinal lactobacilli are protected from toxic dietary components via the gut environment as well as their own capacity to evolve resistance.
Collapse
Affiliation(s)
- Sara C Di Rienzi
- Department of Microbiome ScienceMax Planck Institute for Developmental BiologyTübingenGermany
- Department of Molecular Biology and GeneticsCornell UniversityIthacaUnited States
| | - Juliet Jacobson
- Department of Molecular Biology and GeneticsCornell UniversityIthacaUnited States
| | - Elizabeth A Kennedy
- Department of Molecular Biology and GeneticsCornell UniversityIthacaUnited States
| | - Mary E Bell
- Department of Molecular Biology and GeneticsCornell UniversityIthacaUnited States
| | - Qiaojuan Shi
- Department of Molecular Biology and GeneticsCornell UniversityIthacaUnited States
| | - Jillian L Waters
- Department of Microbiome ScienceMax Planck Institute for Developmental BiologyTübingenGermany
- Department of Molecular Biology and GeneticsCornell UniversityIthacaUnited States
| | - Peter Lawrence
- Division of Nutritional SciencesCornell UniversityIthacaUnited States
| | - J Thomas Brenna
- Division of Nutritional SciencesCornell UniversityIthacaUnited States
- Dell Pediatric Research Institute, Dell Medical SchoolUniversity of Texas at AustinAustinUnited States
| | - Robert A Britton
- Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonUnited States
| | - Jens Walter
- Department of Agricultural, Food, and Nutritional ScienceUniversity of AlbertaEdmontonCanada
- Department of Biological SciencesUniversity of AlbertaEdmontonCanada
| | - Ruth E Ley
- Department of Microbiome ScienceMax Planck Institute for Developmental BiologyTübingenGermany
- Department of Molecular Biology and GeneticsCornell UniversityIthacaUnited States
| |
Collapse
|
9
|
Giuliani C, Marzorati M, Innocenti M, Vilchez-Vargas R, Vital M, Pieper DH, Van de Wiele T, Mulinacci N. Dietary supplement based on stilbenes: a focus on gut microbial metabolism by the in vitro simulator M-SHIME®. Food Funct 2018; 7:4564-4575. [PMID: 27713962 DOI: 10.1039/c6fo00784h] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polyphenols and intestinal microbiota can influence each other, modifying metabolism and gut wellness. Data on this mutual effect need to be improved. Several studies on the biological activities of resveratrol and derivatives have been carried out, but the effects of a continuous administration of stilbenes on gut microbiota have not yet been investigated. This study evaluated the effects of an extract from Vitis vinifera, containing a combination of t-resveratrol and ε-viniferin, on intestinal microbiota, using the advanced gastrointestinal simulator M-SHIME®. A triple M-SHIME® experiment was performed using two concentrations of the extract (i.e. 1 and 2 g L-1), simulating a continuous daily intake. The effects were evaluated in terms of microbial functionality (SCFA and NH4+) and composition (DGGE and Illumina sequencing), since the microbiological aspect has been less considered so far. The treatment induced changes in microbial functionality and composition. In fact, the levels of SCFA and NH4+ suffered a strong decrease (i.e. inhibition of the saccharolytic and proteolytic activity), while DGGE and Illumina showed important modifications of the microbiota composition, associated with an imbalance of the colonic microbiota (i.e. increase in the relative abundance of Enterobacteriaceae). HPLC-DAD-TOF-MS analyses demonstrated that the metabolism of t-resveratrol and other stilbenes was inhibited by continuous administration. Our results suggest M-SHIME® as an explorative tool to define the dosage of food supplements, in particular to simulate effective continuous administration in humans.
Collapse
Affiliation(s)
- Camilla Giuliani
- Department of Neurofarba- Pharmaceutical and Nutraceutical Division, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, FI, Italy.
| | - Massimo Marzorati
- Center of Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Marzia Innocenti
- Department of Neurofarba- Pharmaceutical and Nutraceutical Division, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, FI, Italy.
| | - Ramiro Vilchez-Vargas
- Center of Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Marius Vital
- Microbial Interactions and Processes Research Group, Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, D-38124, Braunschweig, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, D-38124, Braunschweig, Germany
| | - Tom Van de Wiele
- Center of Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Nadia Mulinacci
- Department of Neurofarba- Pharmaceutical and Nutraceutical Division, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, FI, Italy.
| |
Collapse
|
10
|
Karaffová V, Csank T, Mudroňová D, Király J, Revajová V, Gancarčíková S, Nemcová R, Pistl J, Vilček Š, Levkut M. Influence of Lactobacillus reuteri L26 Biocenol™ on immune response against porcine circovirus type 2 infection in germ-free mice. Benef Microbes 2017; 8:367-378. [PMID: 28504566 DOI: 10.3920/bm2016.0114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Probiotic bacteria are frequently used for prevention of bacterial infections of the gastrointestinal tract, but there are only limited studies on their efficacy against viral gut infections in animals. The aim of this study was to investigate the effect of probiotic Lactobacillus reuteri L26 BiocenolTM on the innate and adaptive immune responses in germ-free Balb/c mice, experimentally infected by porcine circovirus type 2 (PCV2), which confers immunosuppressive effect. A total of 30 six-week-old female mice were divided into 3 groups and animals in experimental group LPCV (n=10) were inoculated with L. reuteri L26, animals in the control group (C; n=10) and experimental group PCV (n=10) received sterile De Man-Rogosa-Sharpe broth for 7 days. Subsequently, mice from both experimental groups were infected with PCV2; however, mice in the control group received virus cultivation medium (mock). Virus load in faeces, ileum and mesenteric lymph nodes (MLN); as well as gene expression of selected cytokines, immunoglobulin A (IgA) and polymeric Ig receptor (PIgR) in the ileum, and percentage of CD8+, CD19+ and CD49b+CD8- cells in the MLN were evaluated. Our results showed that L. reuteri significantly decreased the amount of PCV2 in faeces and in the ileum, and up-regulated the gene expression of chemokines, interferon (IFN)-γ, IgA and PIgR in the ileum. Increased IFN-γ mRNA level was accompanied by higher proportion of natural killer cells and up-regulated IgA and PIgR gene expressions were in accordance with significantly higher percentage of CD19+ lymphocytes in the MLN. These findings indicate that probiotic L. reuteri has an antiviral effect on PCV2 in the intestine which is mediated by stimulation of local gut immune response.
Collapse
Affiliation(s)
- V Karaffová
- 1 Department of Pathological Anatomy and Pathological Physiology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - T Csank
- 2 Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - D Mudroňová
- 2 Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - J Király
- 2 Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - V Revajová
- 1 Department of Pathological Anatomy and Pathological Physiology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - S Gancarčíková
- 2 Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - R Nemcová
- 2 Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - J Pistl
- 2 Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - Š Vilček
- 3 Department of Epizootiology and Parasitology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - M Levkut
- 1 Department of Pathological Anatomy and Pathological Physiology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| |
Collapse
|
11
|
De Weirdt R, Hernandez-Sanabria E, Fievez V, Mees E, Geirnaert A, Van Herreweghen F, Vilchez-Vargas R, Van den Abbeele P, Jauregui R, Pieper DH, Vlaeminck B, Van de Wiele T. Mucosa-associated biohydrogenating microbes protect the simulated colon microbiome from stress associated with high concentrations of poly-unsaturated fat. Environ Microbiol 2017; 19:722-739. [DOI: 10.1111/1462-2920.13622] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Rosemarie De Weirdt
- Center for Microbial Ecology and Technology (CMET), Ghent University; Coupure Links 653 Ghent BE-9000 Belgium
| | - Emma Hernandez-Sanabria
- Center for Microbial Ecology and Technology (CMET), Ghent University; Coupure Links 653 Ghent BE-9000 Belgium
| | - Veerle Fievez
- Laboratory for Animal Nutrition and Product Quality (Lanupro); Ghent University; Proefhoevestraat 10 Melle BE-9090 Belgium
| | - Eva Mees
- Center for Microbial Ecology and Technology (CMET), Ghent University; Coupure Links 653 Ghent BE-9000 Belgium
| | - Annelies Geirnaert
- Center for Microbial Ecology and Technology (CMET), Ghent University; Coupure Links 653 Ghent BE-9000 Belgium
| | - Florence Van Herreweghen
- Center for Microbial Ecology and Technology (CMET), Ghent University; Coupure Links 653 Ghent BE-9000 Belgium
| | - Ramiro Vilchez-Vargas
- Center for Microbial Ecology and Technology (CMET), Ghent University; Coupure Links 653 Ghent BE-9000 Belgium
| | - Pieter Van den Abbeele
- Center for Microbial Ecology and Technology (CMET), Ghent University; Coupure Links 653 Ghent BE-9000 Belgium
| | - Ruy Jauregui
- Microbial Interactions and Processes Research Group, Department of Molecular Infection Biology; Helmholtz Centre for Infection Research; Inhoffenstraβe 7 Braunschweig D-38124 Germany
| | - Dietmar H. Pieper
- Microbial Interactions and Processes Research Group, Department of Molecular Infection Biology; Helmholtz Centre for Infection Research; Inhoffenstraβe 7 Braunschweig D-38124 Germany
| | - Bruno Vlaeminck
- Laboratory for Animal Nutrition and Product Quality (Lanupro); Ghent University; Proefhoevestraat 10 Melle BE-9090 Belgium
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Ghent University; Coupure Links 653 Ghent BE-9000 Belgium
| |
Collapse
|
12
|
Xu M, Zhong F, Zhu J. Evaluating metabolic response to light exposure in Lactobacillus species via targeted metabolic profiling. J Microbiol Methods 2016; 133:14-19. [PMID: 27974228 DOI: 10.1016/j.mimet.2016.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 01/27/2023]
Abstract
This study reported metabolic profiles of three representative strains from Lactobacillus species, and explored their metabolic response to visible light exposure. We utilized strains from three Lactobacillus species, Lactobacillus acidophilus, Lactobacillus fermentum and Lactobacillus delbrueckii as our model bacteria and applied mass spectrometry base targeted metabolomics to specifically investigate 221 metabolites within multiple metabolic pathways. Similar and diverse metabolome from three tested strains were discovered. Furthermore, all three Lactobacillus strains demonstrated different metabolic profiles in comparison between light expose verse control. In all three strains, 12 metabolites were detected to have significant differences (p-value<0.01) in light exposure culture compared to the control samples (culture grown without light exposure). Principal components analysis using these significantly changed metabolites clearly separated the exposure and control groups in all three studied Lactobacillus strains. Additionally, metabolic pathway impact analysis indicated that several commonly impacted pathways can be observed.
Collapse
Affiliation(s)
- Mengyang Xu
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH 45056, USA
| | - Fanyi Zhong
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH 45056, USA
| | - Jiangjiang Zhu
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH 45056, USA.
| |
Collapse
|
13
|
Effect of adsorbants on in vitro biohydrogenation of 22:6n-3 by mixed cultures of rumen microorganisms. Animal 2016; 10:1439-47. [DOI: 10.1017/s1751731116000367] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
14
|
Diet-Gene Interactions in the Pathogenesis of Crohn’s Disease: the Polyunsaturated Fatty Acids (PUFA) Metabolic Pathway as a Prototype. Curr Nutr Rep 2015. [DOI: 10.1007/s13668-015-0128-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Truchado P, Van den Abbeele P, Rivière A, Possemiers S, De Vuyst L, Van de Wiele T. Bifidobacterium longum D2 enhances microbial degradation of long-chain arabinoxylans in an in vitro model of the proximal colon. Benef Microbes 2015; 6:849-60. [PMID: 26193074 DOI: 10.3920/bm2015.0023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Long-chain arabinoxylans (LC-AX) are degraded in the colon by intestinal bacteria possessing AX-degrading enzymes, such as bifidobacteria. Enzymatic activity of intestinal bacterial might vary depending on the composition of the gut microbiota. To compare the enzymatic activities of the bacterial gut communities of two healthy individuals (donors D1 and D2), these bacterial communities were inoculated into in vitro model M-SHIME(®). Differences in xylanase activities and denaturing gradient gel electrophoresis profiles, in particular a DNA-band corresponding with Bifidobacterium longum, were found in the proximal colon vessel. 16S rRNA gene sequencing analysis demonstrated the presence of two different B. longum species in these bacterial communities, showing 99% gene sequence similarity with B. longum NCC2705 and B. longum. subsp. longum KACC 91563, respectively, further referred to as B. longum D1 and B. longum D2. When grown on LC-AX as the sole added energy source, B. longum D2 displayed significantly higher activities of β-xylanase (5.3-fold), β-xylosidase (2.9-fold), and α-arabinofuranosidase (1.5-fold), respectively, compared to B. longum D1. When B. longum D2 was inoculated in the M-SHIME, inoculated with the bacterial gut communities of the individual with low AX-degrading enzyme activities, the β-xylanase activity increased (1.5-fold) in the proximal vessel. We demonstrated the presence of differences in LC-AX degrading enzyme activities of the bacterial gut communities of two individuals in the in vitro M-SHIME model, which could be linked to the presence of a potent AX-degrading B. longum (D2) strain.
Collapse
Affiliation(s)
- P Truchado
- 1 Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - P Van den Abbeele
- 1 Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - A Rivière
- 2 Research Group of Industrial Microbiology and Food Biotechnology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - S Possemiers
- 1 Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - L De Vuyst
- 2 Research Group of Industrial Microbiology and Food Biotechnology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - T Van de Wiele
- 1 Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
16
|
Vlaeminck B, Braeckman T, Fievez V. Rumen Metabolism of 22:6n-3 In Vitro is Dependent on its Concentration and Inoculum Size, but Less Dependent on Substrate Carbohydrate Composition. Lipids 2014; 49:517-25. [DOI: 10.1007/s11745-014-3905-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 04/06/2014] [Indexed: 01/08/2023]
Affiliation(s)
- B. Vlaeminck
- ; Laboratory for Animal Nutrition and Animal Product Quality; Ghent University; Proefhoevestraat 10 Melle 9090 Belgium
| | - T. Braeckman
- ; Laboratory for Animal Nutrition and Animal Product Quality; Ghent University; Proefhoevestraat 10 Melle 9090 Belgium
| | - V. Fievez
- ; Laboratory for Animal Nutrition and Animal Product Quality; Ghent University; Proefhoevestraat 10 Melle 9090 Belgium
| |
Collapse
|