1
|
Shah AB, Shim SH. Human microbiota peptides: important roles in human health. Nat Prod Rep 2025; 42:151-194. [PMID: 39545326 DOI: 10.1039/d4np00042k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Covering: 1974 to 2024Human microbiota consist of a diverse array of microorganisms, such as bacteria, Eukarya, archaea, and viruses, which populate various parts of the human body and live in a cooperatively beneficial relationship with the host. They play a crucial role in supporting the functional balance of the microbiome. The coevolutionary progression has led to the development of specialized metabolites that have the potential to substitute traditional antibiotics in combating global health challenges. Although there has been a lot of research on the human microbiota, there is a considerable lack of understanding regarding the wide range of peptides that these microbial populations produce. Particularly noteworthy are the antibiotics that are uniquely produced by the human microbiome, especially by bacteria, to protect against invasive infections. This review seeks to fill this knowledge gap by providing a thorough understanding of various peptides, along with their in-depth biological importance in terms of human disorders. Advancements in genomics and the understanding of molecular mechanisms that control the interactions between microbiota and hosts have made it easier to find peptides that come from the human microbiome. We hope that this review will serve as a basis for developing new therapeutic approaches and personalized healthcare strategies. Additionally, it emphasizes the significance of these microbiota in the field of natural product discovery and development.
Collapse
Affiliation(s)
- Abdul Bari Shah
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sang Hee Shim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Chatterjee B, Vittal RR. Surface Disinfection and Sanitizing Action of the Alcohol-Free Essential Oil-based Green Formulation. Curr Microbiol 2023; 80:170. [PMID: 37024624 DOI: 10.1007/s00284-023-03265-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 03/11/2023] [Indexed: 04/08/2023]
Abstract
The surface disinfectant property of a prepared formulation using potential and effective EO (Murraya koenigii), phytochemical (Geraniol), and an amino acid epsilon-L-Poly-Lysine (ɛ-PL) is examined in this present study. To investigate its potential as a surface disinfectant (SD) different tests using multiple bacterial strains were conducted. All tested bacterial strains were inhibited by the SD treatments, with a MIC range of (0.78-3.12%) v/v. Notably, Staphylococcus sp. was found to be more susceptible to the treatment than its gram-negative counterparts. In the test, sterile stainless-steel surfaces were used and externally contaminated with Escherichia sp. Cleaning the surface with the prepared formulation was more effective than the equal concentration of vinegar in terms of bacterial growth reduction. Vinegar was used as a mother solvent in the preparation of the SD due to its proven antibacterial effect. It is worth mentioning, this formulation is also proven to be effective on biofilm-embedded bacterial cells of Pseudomonas aeruginosa PAO1 as found in epifluorescence microscopy staining. Even though the impact of each constituent needs to be further explored, the effectiveness of this formulation may encourage large farms to seek out alternatives that are more environmentally friendly, safe, and effective than conventional products.
Collapse
Affiliation(s)
- Boudhyayan Chatterjee
- Department of Studies in Microbiology, University of Mysore, Mysore, Karnataka, 570006, India
| | - Ravishankar Rai Vittal
- Department of Studies in Microbiology, University of Mysore, Mysore, Karnataka, 570006, India.
| |
Collapse
|
3
|
Di Napoli M, Silvestri B, Castagliuolo G, Carpentieri A, Luciani G, Di Maro A, Sorbo S, Pezzella A, Zanfardino A, Varcamonti M. High density polyethylene (HDPE) biodegradation by the fungus Cladosporium halotolerans. FEMS Microbiol Ecol 2023; 99:6881716. [PMID: 36478021 DOI: 10.1093/femsec/fiac148] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022] Open
Abstract
Polyethylene (PE) is high molecular weight synthetic polymer, very hydrofobic and hardly biodegradable. To increase polyethylene bio-degradability it is very important to find microorganisms that improve the PE hydrophilic level and/or reduce the length of its polymeric chain by oxidation. In this study, we isolated Cladosporium halotolerans, a fungal species, from the gastric system of Galleria mellonella larvae. Here, we show that C. halotolerans grows in the presence of PE polymer, it is able to interact with plastic material through its hyphae and secretes enzymes involved in PE degradation.
Collapse
Affiliation(s)
- Michela Di Napoli
- Department of Biology, University of Naples Federico II, Via Cintia, 80126 Naples, Italy
| | - Brigida Silvestri
- Department of Chemical, University of Naples Federico II, Materials and Production Engineering, Via Cintia, 80126 Naples, Italy
| | - Giusy Castagliuolo
- Department of Biology, University of Naples Federico II, Via Cintia, 80126 Naples, Italy
| | - Andrea Carpentieri
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy
| | - Giuseppina Luciani
- Department of Chemical, University of Naples Federico II, Materials and Production Engineering, Via Cintia, 80126 Naples, Italy
| | - Antimo Di Maro
- Department of Environmental, University of Campania 'Luigi Vanvitelli', Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Via Vivaldi, 81100 Caserta, Italy
| | - Sergio Sorbo
- University of Naples Federico II, CeSMA, Via Cintia, 80126 Naples, Italy
| | - Alessandro Pezzella
- Department of Physics "Ettore Pancini", University of Naples Federico II, Via Cintia, 80126 Naples, Italy
| | - Anna Zanfardino
- Department of Biology, University of Naples Federico II, Via Cintia, 80126 Naples, Italy
| | - Mario Varcamonti
- Department of Biology, University of Naples Federico II, Via Cintia, 80126 Naples, Italy
| |
Collapse
|
4
|
In Vitro and In Vivo Evaluation of Lacticaseibacillus rhamnosus GG and Bifidobacterium lactis Bb12 Against Avian Pathogenic Escherichia coli and Identification of Novel Probiotic-Derived Bioactive Peptides. Probiotics Antimicrob Proteins 2022; 14:1012-1028. [PMID: 34458959 DOI: 10.1007/s12602-021-09840-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 12/24/2022]
Abstract
Avian pathogenic E. coli (APEC), an extra-intestinal pathogenic E. coli (ExPEC), causes colibacillosis in poultry and is also a potential foodborne zoonotic pathogen. Currently, APEC infections in poultry are controlled by antibiotic medication; however, the emergence of multi-drug-resistant APEC strains and increased restrictions on the use of antibiotics in food-producing animals necessitate the development of new antibiotic alternative therapies. Here, we tested the anti-APEC activity of multiple commensal and probiotic bacteria in an agar-well diffusion assay and identified Lacticaseibacillus rhamnosus GG and Bifidobacterium lactis Bb12 producing strong zone of inhibition against APEC. In co-culture assay, L. rhamnosus GG and B. lactis Bb12 completely inhibited the APEC growth by 24 h. Further investigation revealed that antibacterial product(s) in the culture supernatants of L. rhamnosus GG and B. lactis Bb12 were responsible for the anti-APEC activity. The analysis of culture supernatants using LC-MS/MS identified multiple novel bioactive peptides (VQAAQAGDTKPIEV, AFDNTDTSLDSTFKSA, VTDTSGKAGTTKISNV, and AESSDTNLVNAKAA) in addition to the production of lactic acid. The oral administration (108 CFU/chicken) of L. rhamnosus GG significantly (P < 0.001) reduced the colonization (~ 1.6 logs) of APEC in the cecum of chickens. Cecal microbiota analysis revealed that L. rhamnosus GG moderated the APEC-induced alterations of the microbial community in the cecum of chickens. Further, L. rhamnosus GG decreased (P < 0.05) the abundance of phylum Proteobacteria, particularly those belonging to Enterobacteriaceae (Escherichia-Shigella) family. These studies indicate that L. rhamnosus GG is a promising probiotic to control APEC infections in chickens. Further studies are needed to optimize the delivery of L. rhamnosus GG in feed or water and in conditions simulating the field to facilitate its development for commercial applications.
Collapse
|
5
|
Layús BI, Gerez CL, Rodriguez AV. Development of an ophthalmic formulation with a postbiotic of Lactiplantibacillus plantarum CRL 759. Benef Microbes 2022; 13:417-426. [PMID: 36377582 DOI: 10.3920/bm2022.0044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The term postbiotics has acquired great interest in recent years. Numerous studies have shown a potential beneficial effect of its use in many inflammatory pathologies. However, it has not been much explored in ocular inflammatory diseases. The aims of this study were to develop and characterise an ophthalmic formulation with a postbiotic of Lactiplantibacillus plantarum CRL 759, and to evaluate its anti-inflammatory actions on murine macrophage stimulated with lipopolysaccharides (LPS) in vitro. First, we evaluated the ability of L. plantarum CRL 759 to generate a supernatant with anti-inflammatory property using different buffers. Then, we studied the stability at different temperatures and storage times of the generated postbiotic. In vitro assays showed that incubation of L. plantarum CRL 759 in modified phosphate buffer according to Sorensen (called POF-759), generated a supernatant that significantly reduced the production of interleukin-6, tumour necrosis factor-α, and nitric oxide by RAW 264.7 cells stimulated with LPS. Furthermore, POF-759 maintained its anti-inflammatory activity at room temperature, 4 and -20 °C, up to 30 days of storage. From the studies reported here, a postbiotic product with anti-inflammatory properties and optimal characteristics for the formulation of eye drops was obtained.
Collapse
Affiliation(s)
- B I Layús
- Centro de Referencia para Lactobacilos (CERELA-CONICET). Chacabuco 145, San Miguel de Tucumán, Argentina
| | - C L Gerez
- Centro de Referencia para Lactobacilos (CERELA-CONICET). Chacabuco 145, San Miguel de Tucumán, Argentina
| | - A V Rodriguez
- Centro de Referencia para Lactobacilos (CERELA-CONICET). Chacabuco 145, San Miguel de Tucumán, Argentina
| |
Collapse
|
6
|
Napoli MD, Luccia BD, Vitiello G, D'Errico G, Carpentieri A, Pezzella A, Pizzo E, Notomista E, Varcamonti M, Zanfardino A. Characterisation of EFV12 a bio-active small peptide produced by the human intestinal isolate Lactobacillus gasseri SF1109. Benef Microbes 2020; 11:815-824. [PMID: 33245013 DOI: 10.3920/bm2020.0124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
EFV12 is a small bioactive peptide produced by Lactobacillus gasseri SF1109, a human intestinal isolate with probiotic features. In this study, EFV12 antimicrobial and anti-inflammatory properties are characterised. In particular, we propose a possible mechanism of action for EFV12 involving bacterial membranes targeting. Moreover, we show that this small peptide is able to bind lipopolysaccharides (LPS) and to counteract its inflammatory insult preventing LPS action on Toll-like receptor 4, thus interfering with extracellular signal-regulated kinase, p38 and Jun N-terminal kinase, mitogen-activated protein kinases signalling pathways. Altogether these observations suggest that the bioactive peptide EFV12 is a good candidate to promote L. gasseri induced gut homeostasis and counteracting intestinal pathogens.
Collapse
Affiliation(s)
- M Di Napoli
- Department of Biology, University of Naples Federico II, Via Cintia, 80126 Naples, Italy
| | - B Di Luccia
- Department of Pathology and immunology, Washington University in St. Louis, 425 Euclid Ave, St. Louis, MO 63110, USA
| | - G Vitiello
- Department of Chemical Engineering, Materials and Industrial Production, University of Naples Federico II, P.le Tecchio 80, 80125 Napels, Italy
| | - G D'Errico
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy
| | - A Carpentieri
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy
| | - A Pezzella
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy
| | - E Pizzo
- Department of Biology, University of Naples Federico II, Via Cintia, 80126 Naples, Italy
| | - E Notomista
- Department of Biology, University of Naples Federico II, Via Cintia, 80126 Naples, Italy
| | - M Varcamonti
- Department of Biology, University of Naples Federico II, Via Cintia, 80126 Naples, Italy
| | - A Zanfardino
- Department of Biology, University of Naples Federico II, Via Cintia, 80126 Naples, Italy
| |
Collapse
|
7
|
(+)-(E)-Chrysanthenyl Acetate: A Molecule with Interesting Biological Properties Contained in the Anthemis secundiramea (Asteraceae) Flowers. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196808] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Anthemis secundiramea is a perennial herb native widespread throughout the Mediterranean basin. The oil obtained from the flowers of this plant has antimicrobial properties against gram-positive and -negative bacteria, and inhibits the biofilm formation. The extract of A. secundiramea also has antioxidant activity—increasing the activity of different enzymes (SOD, CAT, and GPx). Surprisingly, in the oil extracted from the flowers, there is a single molecule, called (+)-(E)-chrysanthenyl acetate: This makes the A. secundiramea flowers extract extremely interesting for future topical, cosmetic, and nutraceutical applications.
Collapse
|
8
|
Atassi F, Pho Viet Ahn DL, Lievin-Le Moal V. Diverse Expression of Antimicrobial Activities Against Bacterial Vaginosis and Urinary Tract Infection Pathogens by Cervicovaginal Microbiota Strains of Lactobacillus gasseri and Lactobacillus crispatus. Front Microbiol 2019; 10:2900. [PMID: 31921075 PMCID: PMC6933176 DOI: 10.3389/fmicb.2019.02900] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/02/2019] [Indexed: 12/14/2022] Open
Abstract
We aimed to analyze the strain-by-strain expression of a large panel of antimicrobial activities counteracting the virulence mechanisms of bacterial vaginosis-associated Prevotella bivia CI-1 and Gardnerella vaginalis 594, pyelonephritis-associated Escherichia coli CFT073, and recurrent cystitis- and preterm labor-associated IH11128 E. coli by Lactobacillus gasseri and Lactobacillus crispatus clinical strains, and L. gasseri ATCC 9857 and KS 120.1, and L. crispatus CTV-05 strains isolated from the cervicovaginal microbiota of healthy women. All L. gasseri and L. crispatus strains exerted antimicrobial activity by secreted lactic acid, which killed the microbial pathogens by direct contact. Potent bactericidal activity was exerted by a very limited number of resident L. gasseri and L. crispatus strains showing the specific ability to a strain to produce and release antibiotic-like compounds. These compounds eradicated the microbial pathogens pre-associated with the surface of cervix epithelial cells, providing efficient protection of the cells against the deleterious effects triggered by toxin-producing G. vaginalis and uropathogenic E. coli. Furthermore, these compounds crossed the cell membrane to kill the pre-internalized microbial pathogens. In addition, all L. gasseri and L. crispatus cells exhibited another non-strain specific activity which inhibited the association of microbial pathogens with cervix epithelial cells with varying efficiency, partially protecting the cells against lysis and detachment triggered by toxin-producing G. vaginalis and uropathogenic E. coli. Our results provide evidence of strain-level specificity for certain antimicrobial properties among cervicovaginal L. gasseri and L. crispatus strains, indicating that the presence of a particular species in the vaginal microbiota is not sufficient to determine its benefit to the host. A full repertory of antimicrobial properties should be evaluated in choosing vaginal microbiota-associated Lactobacillus isolates for the development of live biotherapeutic strategies.
Collapse
Affiliation(s)
- Fabrice Atassi
- ISNERM UMR-S 1166, Sorbonne University, Paris, France.,INSERM, UMR-S 1166, CHU Pitié-Salpêtrière, Faculty of Medicine, Paris, France
| | - Diane L Pho Viet Ahn
- INSERM UMR-S 996, University of Paris-Sud, Orsay, France.,INSERM UMR-S 996, Paris-Saclay University, Saint-Aubin, France.,INSERM, UMR-S 996, Clamart, France
| | - Vanessa Lievin-Le Moal
- INSERM UMR-S 996, University of Paris-Sud, Orsay, France.,INSERM UMR-S 996, Paris-Saclay University, Saint-Aubin, France.,INSERM, UMR-S 996, Clamart, France
| |
Collapse
|
9
|
Vitiello G, Melone P, Silvestri B, Pezzella A, Di Donato P, D’Errico G, Di Napoli M, Zanfardino A, Varcamonti M, Luciani G. Titanium based complexes with melanin precursors as a tool for directing melanogenic pathways. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2018-1210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Bioinspired melanin based hybrid materials hold huge promise for developing multifunctional systems for a considerable set of applications. Yet, control of melanogenic pathway is a big challenge to allow rational design of nanostructured systems with tuned structures and improved properties. This study proves the ability of titanium ions interactions with melanin precursors in directing melanogenic pathway. To this purpose complementary spectroscopic evidences were collected to reveal that in the presence of a TiO2-sol, amino-acid complex of Ti(IV) ions and DOPA actually inhibits its cyclization, during oxidative process, thus leading to DOPA-based polyphenols, stable even in oxidative environment, rather than eumelanin. This hugely impacts on the biological properties of the final hybrid systems which, discloses relevant and durable antioxidant behavior but poor antimicrobial activity differently from DHICA-based hybrid nanostructures. Overall this study, discloses the high potential of ceramic templated approach in combination with the selection of melanin precursor in achieving a fine tuning of physico-chemical as well as bioactivity of melanin-TiO2 nanostructures, opening new scenarios towards the design of cutting-edge biomaterials with tailored biological properties.
Collapse
Affiliation(s)
- Giuseppe Vitiello
- Department of Chemical, Materials and Production Engineering , University of Naples “Federico II” , p.le V. Tecchio 80 , 80125 Naples , Italy
- CSGI, Consorzio interuniversitario per lo sviluppo dei Sistemi a Grande Interfase, Sesto Fiorentino , via della Lastruccia 3 , Firenze , Italy
| | - Pietro Melone
- Department of Chemical, Materials and Production Engineering , University of Naples “Federico II” , p.le V. Tecchio 80 , 80125 Naples , Italy
| | - Brigida Silvestri
- Department of Chemical, Materials and Production Engineering , University of Naples “Federico II” , p.le V. Tecchio 80 , 80125 Naples , Italy
| | - Alessandro Pezzella
- National Interuniversity Consortium of Materials Science and Technology (INSTM) , Florence , Italy
- Institute for Polymers, Composites and Biomaterials (IPCB), CNR , Via Campi Flegrei 34 , I-80078 Pozzuoli (NA) , Italy
- Department of Chemical Sciences , University of Naples “Federico II” Via Cintia 4 , I-80126 Naples , Italy
| | - Paola Di Donato
- Institute for Polymers, Composites and Biomaterials (IPCB), CNR , Via Campi Flegrei 34 , I-80078 Pozzuoli (NA) , Italy
- Department of Science and Technology , University of Naples “Parthenope” , Centro Direzionale, Isola C4 , 80143 Naples , Italy
| | - Gerardino D’Errico
- Department of Chemical Sciences , University of Naples “Federico II” Via Cintia 4 , I-80126 Naples , Italy
| | - Michela Di Napoli
- Department of Biology , University of Naples “Federico II” Via Cintia 4 , I-80126 Naples , Italy
| | - Anna Zanfardino
- Department of Biology , University of Naples “Federico II” Via Cintia 4 , I-80126 Naples , Italy
| | - Mario Varcamonti
- Department of Biology , University of Naples “Federico II” Via Cintia 4 , I-80126 Naples , Italy
| | - Giuseppina Luciani
- Department of Chemical, Materials and Production Engineering , University of Naples “Federico II” , p.le V. Tecchio 80 , 80125 Naples , Italy , Tel.: +390817682433, Fax: +390817682595
| |
Collapse
|
10
|
Cheng S, Tu M, Liu H, Zhao G, Du M. Food-derived antithrombotic peptides: Preparation, identification, and interactions with thrombin. Crit Rev Food Sci Nutr 2019; 59:S81-S95. [PMID: 30740983 DOI: 10.1080/10408398.2018.1524363] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thromboembolism and its sequelae have been the leading causes of morbidity and mortality throughout the world. Food-derived antithrombotic peptides, as potential ingredients in health-promoting functional foods targeting thrombus, have attracted increasing attention because of their high biological activities, low toxicity, and ease of metabolism in the human body. This review presents the conventional workflow of preparation, isolation and identification of antithrombotic peptides from various kinds of food materials. More importantly, to analyze the antithrombotic effects and mechanism of antithrombotic peptides, methods for interaction of anticoagulant peptides and thrombin, the main participant in thrombosis, were analyzed from biochemistry, solution chemistry and crystal chemistry. The present study is intended to highlight the recent advances in research of food-derived antithrombotic peptide as a novel vehicle in the field of food science and nutrition. Future outlooks are highlighted with the aim to suggest a research line to be followed in further studies with the introduced research approach.
Collapse
Affiliation(s)
- Shuzheng Cheng
- a School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian , Liaoning , China.,b Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing , China
| | - Maolin Tu
- c Department of Food Science and Engineering , Harbin Institute of Technology , Harbin , Heilongjiang , China
| | - Hanxiong Liu
- a School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian , Liaoning , China
| | - Guanghua Zhao
- b Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing , China
| | - Ming Du
- a School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian , Liaoning , China
| |
Collapse
|
11
|
Vitiello G, Zanfardino A, Tammaro O, Di Napoli M, Caso MF, Pezzella A, Varcamonti M, Silvestri B, D'Errico G, Costantini A, Luciani G. Bioinspired hybrid eumelanin–TiO2 antimicrobial nanostructures: the key role of organo–inorganic frameworks in tuning eumelanin's biocide action mechanism through membrane interaction. RSC Adv 2018; 8:28275-28283. [PMID: 35542468 PMCID: PMC9084248 DOI: 10.1039/c8ra04315a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/27/2018] [Indexed: 11/21/2022] Open
Abstract
Intrinsic biocide efficacy of eumelanins can be markedly enhanced through a templated formation in the presence of a TiO2-sol, leading to hybrid TiO2–melanin nanostructures. However, mechanisms and processes behind biocide activity still remain poorly understood. This paper discloses the fundamental mechanism of action of these systems providing mechanistic information on their peculiar interaction with Escherichia coli strains. To this purpose biocide characterization is combined with Electron Paramagnetic Resonance (EPR) spectroscopy to investigate radical species produced by the hybrids as well as their interactions with Gram(−) external bacterial membranes. Experimental results indicate that TiO2 mediated eumelanin polymerization leads to a peculiar mechanism of action of hybrid nanostructures, whose strong interactions with bacterial membranes enhance the action of reactive oxygen species (ROS) produced by eumelanin degradation itself, also concurring with the final biocide action. These findings provide strategic information for the development of eumelanin-based systems with enhanced activity against drug-resistant strains. Hybrid TiO2/eumelanin nanostructures showed a peculiar biocide mechanism against Gram(−) bacteria, based on the ROS action, produced by eumelanin degradation under visible light irradiation, and the interactions with external bacterial membranes.![]()
Collapse
|