1
|
Yang Z, Zhang D, Jiang Z, Peng J, Wei H. The formidable guardian: Type 3 immunity in the intestine of pigs. Virulence 2024; 15:2424325. [PMID: 39497434 PMCID: PMC11552283 DOI: 10.1080/21505594.2024.2424325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/19/2024] [Accepted: 10/11/2024] [Indexed: 11/09/2024] Open
Abstract
Well-intestinal health is crucial for better growth performance in pigs. Type 3 immunity, which is one of the three types of immune responses in mammals, plays a vital role in maintaining intestinal homoeostasis. Therefore, we initially introduce the type 3 immune cells in the intestine of pigs, including their distribution, development, and function. We then discuss the type 3 immune response under infection, encompassing bacterial, fungal, and viral infections. It also covers two major stresses in pigs: heat stress and weaning stress. Lastly, we discuss the effects of various nutrients and feed additives on the regulation of the type 3 immune response in pigs under infection. This review aims to contribute to the understanding of the interaction between infection and type 3 immunity in pigs and to illustrate how various nutrients modulate the type 3 immune response in pigs under diverse infections.
Collapse
Affiliation(s)
- Zhipeng Yang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dou Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhoudan Jiang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
2
|
Modrackova N, Horvathova K, Mekadim C, Splichal I, Splichalova A, Amin A, Mrazek J, Vlkova E, Neuzil-Bunesova V. Defined Pig Microbiota Mixture as Promising Strategy against Salmonellosis in Gnotobiotic Piglets. Animals (Basel) 2024; 14:1779. [PMID: 38929398 PMCID: PMC11200913 DOI: 10.3390/ani14121779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Probiotics are a potential strategy for salmonellosis control. A defined pig microbiota (DPM) mixture of nine bacterial strains previously exhibited probiotic and anti-Salmonella properties in vitro. Therefore, we evaluated its gut colonization ability and protection effect against S. typhimurium LT2-induced infection in the gnotobiotic piglet model. The DPM mixture successfully colonized the piglet gut and was stable and safe until the end of the experiment. The colon was inhabited by about 9 log CFU g-1 with a significant representation of bifidobacteria and lactobacilli compared to ileal levels around 7-8 log CFU g-1. Spore-forming clostridia and bacilli seemed to inhabit the environment only temporarily. The bacterial consortium contributed to the colonization of the gut at an entire length. The amplicon profile analysis supported the cultivation trend with a considerable representation of lactobacilli with bacilli in the ileum and bifidobacteria with clostridia in the colon. Although there was no significant Salmonella-positive elimination, it seems that the administered bacteria conferred the protection of infected piglets because of the slowed delayed infection manifestation without translocations of Salmonella cells to the blood circulation. Due to its colonization stability and potential protective anti-Salmonella traits, the DPM mixture has promising potential in pig production applications. However, advanced immunological tests are needed.
Collapse
Affiliation(s)
- Nikol Modrackova
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (K.H.); (A.A.); (E.V.); (V.N.-B.)
| | - Kristyna Horvathova
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (K.H.); (A.A.); (E.V.); (V.N.-B.)
| | - Chahrazed Mekadim
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (C.M.); (J.M.)
| | - Igor Splichal
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Doly 183, 549 22 Novy Hradek, Czech Republic; (I.S.); (A.S.)
| | - Alla Splichalova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Doly 183, 549 22 Novy Hradek, Czech Republic; (I.S.); (A.S.)
| | - Ahmad Amin
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (K.H.); (A.A.); (E.V.); (V.N.-B.)
| | - Jakub Mrazek
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (C.M.); (J.M.)
| | - Eva Vlkova
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (K.H.); (A.A.); (E.V.); (V.N.-B.)
| | - Vera Neuzil-Bunesova
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (K.H.); (A.A.); (E.V.); (V.N.-B.)
| |
Collapse
|
3
|
Barducci RS, Santos AAD, Pacheco LG, Putarov TC, Koch JFA, Callegari MA, Dias CP, de Carvalho RH, da Silva CA. Enhancing Weaned Piglet Health and Performance: The Role of Autolyzed Yeast ( Saccharomyces cerevisiae) and β-Glucans as a Blood Plasma Alternative in Diets. Animals (Basel) 2024; 14:631. [PMID: 38396599 PMCID: PMC10886371 DOI: 10.3390/ani14040631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The objective of this study was to evaluate the inclusion of the autolyzed yeast (AY) Saccharomyces cerevisiae with or without an immunomodulator (1,3/1,6 β-glucans) as a total/partial substitute for blood plasma (BP) in the diet of post-weaning piglets; zootechnical performance, intestinal health and microbiota, immune responses and energy metabolism were assessed. A total of 240 castrated male and female piglets, with a mean age of 22 days and mean initial weight of 5.24 ± 0.82 kg, were randomly divided into blocks of four treatments with 12 replicates. The dietary inclusions were blood plasma (BP), autolyzed yeast (AY), autolyzed yeast + immunomodulator (AYI) and 50% BP and 50% AY (BPAY). In pre-initial phase II (29-35 days), piglets fed AY showed better feed conversion (FCR = 1.358) than the piglets in the BP (1.484), AYI (1.379) and BPAY (1.442) groups, i.e., 8.49% (0.126), 1.52% (0.021) and 4.50% (0.084), respectively (p = 0.0293). In the total period (21-42 days), better FCR was observed in the AYI (1.458) group, i.e., 4.64% (0.071), 1.15% (0.017) and 4.58% (0.070), than in the BP (1.529), AY (1.475) and BPAY (1.528) groups, respectively (p = 0.0150). In piglets fed AY (n = 3) and BPAY (n = 2), there was a reduction in the number of medications, i.e., 82.35% (-14n) and 88.23% (-15n), respectively (p = 0.0001), compared with that in the BP group (n = 17). In the AY group (73.83 mg/dL), AYI group (69.92 mg/dL), and BPAY group (69.58 mg/dL), piglets exhibited increases in triglyceride levels of 79.32%, 69.83%, and 69.00%, respectively, in comparison to those in the BP group, which had triglyceride levels of 41.17 mg/dL (p = 0.0400). The beta-hydroxybutyrate concentration in the AY group (79.96 ng/μL) was lower by 31.95%, 22.64%, and 5.89% compared to the BP group (117.50 ng/μL), AYI group (103.36 ng/μL), and BPAY group (84.67 ng/μL), respectively (p = 0.0072). In the AYI group, there was modulation of the microbiota, with an increase in the relative abundance of bacteria of the genera Lactobacillus, Collinsella and Bulleidia. AY, associated or not associated with an immunomodulator, is a potential substitute for BP in diets for piglets in the nursery phase, with positive effects on immune, metabolic, and intestinal microbial performance.
Collapse
Affiliation(s)
- Robson Sfaciotti Barducci
- Biorigin, Lençóis Paulista 18680-900, SP, Brazil; (R.S.B.); (A.A.D.S.); (L.G.P.); (T.C.P.); (J.F.A.K.)
| | | | - Leticia Graziele Pacheco
- Biorigin, Lençóis Paulista 18680-900, SP, Brazil; (R.S.B.); (A.A.D.S.); (L.G.P.); (T.C.P.); (J.F.A.K.)
| | - Thaila Cristina Putarov
- Biorigin, Lençóis Paulista 18680-900, SP, Brazil; (R.S.B.); (A.A.D.S.); (L.G.P.); (T.C.P.); (J.F.A.K.)
| | - João Fernando Albers Koch
- Biorigin, Lençóis Paulista 18680-900, SP, Brazil; (R.S.B.); (A.A.D.S.); (L.G.P.); (T.C.P.); (J.F.A.K.)
| | | | | | - Rafael Humberto de Carvalho
- Akei Animal Research, Fartura 18870-970, SP, Brazil; (M.A.C.); (C.P.D.); (R.H.d.C.)
- Animal Science Program, Center of Agrarian Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil
| | - Caio Abércio da Silva
- Animal Science Program, Center of Agrarian Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil
| |
Collapse
|
4
|
Sun H, Chen J, Xiong D, Long M. Detoxification of Selenium Yeast on Mycotoxins and Heavy Metals: a Review. Biol Trace Elem Res 2023; 201:5441-5454. [PMID: 36662349 PMCID: PMC9854417 DOI: 10.1007/s12011-023-03576-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Mycotoxins are secondary metabolites produced by specific fungi. More than 400 different mycotoxins are known in the world, and the concentration of these toxins in food and feed often exceeds the acceptable limit, thus causing serious harm to animals and human body. At the same time, modern industrial agriculture will also bring a lot of environmental pollution in the development process, including the increase of heavy metal content, and often the clinical symptoms of low/medium level chronic heavy metal poisoning are not obvious, thus delaying the best treatment opportunity. However, the traditional ways of detoxification cannot completely eliminate the adverse effects of these toxins on the body, and sometimes bring some side effects, so it is essential to find a new type of safe antidote. Trace element selenium is among the essential mineral nutrient elements of human and animal bodies, which can effectively remove excessive free radicals and reactive oxygen species in the body, and has the effects of antioxidant, resisting stress, and improving body immunity. Selenium is common in nature in inorganic selenium and organic selenium. In previous studies, it was found that the use of inorganic selenium (sodium selenite) can play a certain protective role against mycotoxins and heavy metal poisoning. However, while it plays the role of antioxidant, it will also have adverse effects on the body. Therefore, it was found in the latest study that selenium yeast could not only replace the protective effect of sodium selenite on mycotoxins and heavy metal poisoning, but also improve the immunity of the body. Selenium yeast is an organic selenium source with high activity and low toxicity, which is produced by selenium relying on the cell protein structure of growing yeast. It not only has high absorption rate, but also can be stored in the body after meeting the physiological needs of the body for selenium, so as to avoid selenium deficiency again in the short term. However, few of these studies can clearly reveal the protective mechanism of yeast selenium. In this paper, the detoxification mechanism of selenium yeast on mycotoxins and heavy metal poisoning was reviewed, which provided some theoretical support for further understanding of the biological function of selenium yeast and its replacement for inorganic selenium. The conclusions suggest that selenium yeast can effectively alleviate the oxidative damage by regulating different signaling pathways, improving the activity of antioxidant enzymes, reversing the content of inflammatory factors, regulating the protein expression of apoptosis-related genes, and reducing the accumulation of mycotoxins and heavy metals in the body.
Collapse
Affiliation(s)
- Huiying Sun
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Jia Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Dongwei Xiong
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| |
Collapse
|
5
|
Ruan H, Huang Y, Yue B, Zhang Y, Lv J, Miao K, Zhang D, Luo J, Yang M. Insights into the intestinal toxicity of foodborne mycotoxins through gut microbiota: A comprehensive review. Compr Rev Food Sci Food Saf 2023; 22:4758-4785. [PMID: 37755064 DOI: 10.1111/1541-4337.13242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023]
Abstract
Mycotoxins, which are fungal metabolites, pose a significant global food safety concern by extensively contaminating food and feed, thereby seriously threatening public health and economic development. Many foodborne mycotoxins exhibit potent intestinal toxicity. However, the mechanisms underlying mycotoxin-induced intestinal toxicity are diverse and complex, and effective prevention or treatment methods for this condition have not yet been established in clinical and animal husbandry practices. In recent years, there has been increasing attention to the role of gut microbiota in the occurrence and development of intestinal diseases. Hence, this review aims to provide a comprehensive summary of the intestinal toxicity mechanisms of six common foodborne mycotoxins. It also explores novel toxicity mechanisms through the "key gut microbiota-key metabolites-key targets" axis, utilizing multiomics and precision toxicology studies with a specific focus on gut microbiota. Additionally, we examine the potential beneficial effects of probiotic supplementation on mycotoxin-induced toxicity based on initial gut microbiota-mediated mycotoxicity. This review offers a systematic description of how mycotoxins impact gut microbiota, metabolites, and genes or proteins, providing valuable insights for subsequent toxicity studies of mycotoxins. Furthermore, it lays a theoretical foundation for preventing and treating intestinal toxicity caused by mycotoxins and advancing food safety practices.
Collapse
Affiliation(s)
- Haonan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Ying Huang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Binyang Yue
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuanyuan Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianxin Lv
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kun Miao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Di Giácomo AL, Azcurra LN, García GR, Dogi CA, González Pereyra ML. Safety assessment of surfactin-producing Bacillus strains and their lipopeptides extracts in vitro and in vivo. J Basic Microbiol 2023. [PMID: 37154196 DOI: 10.1002/jobm.202300008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/14/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
Beneficial Bacillus strains can be administered to livestock as probiotics to improve animal health. Cyclic lipopeptides produced by Bacillus such as surfactins may be responsible for some of the beneficial effects due to their anti-inflammatory and immunomodulatory activity. The aim of the present study was to isolate and evaluate the biocompatibility of native Bacillus spp. strains and their surfactin-like lipopeptides in vitro and in vivo to determine their potential to be used on animals. Biocompatibility of endospore suspensions (108 UFC/mL), and different dilutions (1:10; 1:50; 1:100; 1:500, and 1:1000) of Bacillus lipopeptide extracts containing surfactin was tested on Caco-2 cells by microculture tetrazolium-based colorimetric assay. Genotoxicity was tested on BALB/c mice (n = 6) administered 0.2 mL of endospore suspensions by the bone marrow erythrocyte micronuclei assay. All the isolates tested produced between 26.96 and 239.97 µg mL- 1 of surfactin. The lipopeptide extract (LPE) from isolate MFF1.11 demonstrated significant cytotoxicity in vitro. In contrast, LPE from MFF 2.2; MFF 2.7, TL1.11, TL 2.5, and TC12 had no cytotoxic effect (V% > 70%) on Caco-2 cells, not affecting cell viability signifficantly in most treatments. Similarly, none of the endospore suspensions affected cell viability (V% > 80%). Likewise, endospores did not cause genotoxicity on BALB/c mice. This study was elementary as a first step for a new line of research, since it allowed us to choose the safest isolates to keep working on the search of new potentially probiotic strains destined to production animals to improve their performance and health.
Collapse
Affiliation(s)
- Ana L Di Giácomo
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
- Departamento de Microbiología e Inmunología, Instituto de Ciencias Veterinarias (INCIVET-CONICET-UNRC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto, Córdoba, Argentina
| | - Lorena N Azcurra
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Gisela R García
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
- Departamento de Microbiología e Inmunología, Instituto de Ciencias Veterinarias (INCIVET-CONICET-UNRC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto, Córdoba, Argentina
| | - Cecilia A Dogi
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
- Departamento de Microbiología e Inmunología, Instituto de Ciencias Veterinarias (INCIVET-CONICET-UNRC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto, Córdoba, Argentina
| | - María L González Pereyra
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
- Departamento de Microbiología e Inmunología, Instituto de Ciencias Veterinarias (INCIVET-CONICET-UNRC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto, Córdoba, Argentina
| |
Collapse
|
7
|
Hu J, Chen J, Hou Q, Xu X, Ren J, Ma L, Yan X. Core-predominant gut fungus Kazachstania slooffiae promotes intestinal epithelial glycolysis via lysine desuccinylation in pigs. MICROBIOME 2023; 11:31. [PMID: 36814349 PMCID: PMC9948344 DOI: 10.1186/s40168-023-01468-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Gut fungi are increasingly recognized as important contributors to host physiology, although most studies have focused on gut bacteria. Post-translational modifications (PTMs) of proteins play vital roles in cell metabolism. However, the contribution of gut fungi to host protein PTMs remains unclear. Mining gut fungi that mediate host protein PTMs and dissecting their mechanism are urgently needed. RESULTS We studied the gut fungal communities of 56 weaned piglets and 56 finishing pigs from seven pig breeds using internal transcribed spacer (ITS) gene amplicon sequencing and metagenomics. The results showed that Kazachstania slooffiae was the most abundant gut fungal species in the seven breeds of weaned piglets. K. slooffiae decreased intestinal epithelial lysine succinylation levels, and these proteins were especially enriched in the glycolysis pathway. We demonstrated that K. slooffiae promoted intestinal epithelial glycolysis by decreasing lysine succinylation by activating sirtuin 5 (SIRT5). Furthermore, K. slooffiae-derived 5'-methylthioadenosine metabolite promoted the SIRT5 activity. CONCLUSIONS These findings provide a landscape of gut fungal communities of pigs and suggest that K. slooffiae plays a crucial role in intestinal glycolysis metabolism through lysine desuccinylation. Our data also suggest a potential protective strategy for pigs with an insufficient intestinal energy supply. Video Abstract.
Collapse
Affiliation(s)
- Jun Hu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, 430070, Hubei, China
| | - Jianwei Chen
- BGI Research-Qingdao, BGI, Qingdao, 266555, China
| | - Qiliang Hou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, 430070, Hubei, China
| | - Xiaojian Xu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, 430070, Hubei, China
| | - Jing Ren
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, 430070, Hubei, China
| | - Libao Ma
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, 430070, Hubei, China
| | - Xianghua Yan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, 430070, Hubei, China.
| |
Collapse
|
8
|
Sun W, Chen W, Meng K, Cai L, Li G, Li X, Jiang X. Dietary Supplementation with Probiotic Bacillus licheniformis S6 Improves Intestinal Integrity via Modulating Intestinal Barrier Function and Microbial Diversity in Weaned Piglets. BIOLOGY 2023; 12:biology12020238. [PMID: 36829515 PMCID: PMC9953057 DOI: 10.3390/biology12020238] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Bacillus licheniformis (B. Licheniformis) has been considered to be an effective probiotic to maintain gut health and boost productivity in the pig industry, but there is no complete understanding of its mechanisms. We determined whether weaned piglets exposed to BL-S6 (probiotic) had altered intestinal barrier function or microbiota composition. In our study, 108 weaned piglets (54 barrows and 54 gilts) were divided equally into three groups, each with six pens and six piglets/pen, and fed a basal diet supplemented without or with antibiotic (40 g/t of Virginiamycin and 500 g/t of Chlortetracycline) or probiotic (1000 g/t of B. Licheniformis) for a 14-day trial. On day 14, one piglet was chosen from each pen to collect blood and intestinal samples. Compared with the control group, dietary supplementation with a probiotic promoted body weight (BW) gain and average daily gains (ADG) while reducing diarrhea incidence (p < 0.05). Probiotics enhanced superoxidase dismutase (SOD) activity and decreased malondialdehyde (MDA) levels in serum (p < 0.05), and increased the level of mRNA expression of SOD1, Nrf2, and HO-1 (p < 0.05) in the jejunum mucosa. Moreover, supplementation with probiotics improved intestinal mucosal integrity as evidenced by higher villus heights and a higher ratio of villus heights to crypt depths (duodenum and jejunum) and higher mRNA and protein levels of occludin and ZO-1 in jejunum mucosa (p < 0.05). The intestinal sIgA levels (p < 0.05) were elevated in the probiotic group, and that of serum immunoglobulin A (IgA) tended to be higher (p = 0.09). Furthermore, weaning piglets who were given probiotics had a better balance of the cecum microbiota, with lactobacillus abundance increased and clostridium_sensu_stricto_1 abundance decreased. In conclusion, dietary supplementation with the probiotic BL-S6 promoted intestinal integrity, which was associated, in part, with modulating intestinal barrier function and microbial diversity in weaned piglets; it may offer a promising alternative to antibiotics to prevent diarrhea.
Collapse
Affiliation(s)
- Wenjuan Sun
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenning Chen
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kun Meng
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long Cai
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guiguan Li
- COFCO Feed Co., Ltd., Beijing 100020, China
- Correspondence: (G.L.); (X.J.); Tel.: +86-010-82108134 (X.J.)
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (G.L.); (X.J.); Tel.: +86-010-82108134 (X.J.)
| |
Collapse
|
9
|
Bai J, Zhou Y, Luo X, Hai J, Si X, Li J, Fu H, Dai Z, Yang Y, Wu Z. Roles of stress response-related signaling and its contribution to the toxicity of zearalenone in mammals. Compr Rev Food Sci Food Saf 2022; 21:3326-3345. [PMID: 35751400 DOI: 10.1111/1541-4337.12974] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022]
Abstract
Zearalenone (ZEA) is a mycotoxin frequently found in cereal crops and cereal-derived foodstuffs worldwide. It affects plant productivity, and is also a serious hazard to humans and animals if being exposed to food/feed contaminated by ZEA. Studies over the last decade have shown that the toxicity of ZEA in animals is mainly mediated by the various stress responses, such as endoplasmic reticulum (ER) stress, oxidative stress, and others. Accumulating evidence shows that oxidative stress and ER stress signaling are actively implicated in and contributes to the pathophysiology of various diseases. Biochemically, the deleterious effects of ZEA are associated with apoptosis, DNA damage, and lipid peroxidation by regulating the expression of genes implicated in these biological processes. Despite these findings, the underlying mechanisms responsible for these alterations remain unclear. This review summarized the characteristics, metabolism, toxicity and the deleterious effects of ZEA exposure in various tissues of animals. Stress response signaling implicated in the toxicity as well as potential therapeutic options with the ability to reduce the deleterious effects of ZEA in animals were highlighted and discussed.
Collapse
Affiliation(s)
- Jun Bai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Yusong Zhou
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Xin Luo
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Jia Hai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Xuemeng Si
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Jun Li
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Huiyang Fu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China.,Beijing Jingwa Agricultural Science and Technology Innovation Center, #1, Yuda Road, Pinggu, Beijing, P. R. China
| |
Collapse
|
10
|
Tutida Y, Montes J, Borstnez K, Siqueira H, Güths MF, Moreira F, Peripolli V, Irgang R, Morés N, Bianchi I, Kich J. Effects of in feed removal of antimicrobials in comparison to other prophylactic alternatives in growing and finishing pigs. ARQ BRAS MED VET ZOO 2021. [DOI: 10.1590/1678-4162-12450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT The utilization of antimicrobials in animal production, causes selection of resistant bacteria. The objective of this study was to compare the utilization of alternatives in association with preventive antibiotic therapy in swine feed during the growing and finishing phases. 1,045 animals were used from 60 to 190 days of age and were subjected to six treatments with 16 repetitions as follows: 1) antibiotic free; 2) antibiotics; 3) prebiotic; 4) probiotic; 5) essential oils; and 6) organic acid. Animals were weighted, and clinical history was recorded including mortality and diarrhea. At the abattoir, pneumonia index and gastric ulcers were investigated. The cost for each treatment was discussed. No difference between treatments were observed (P>0.05) regarding feed conversion rate (2.64±0.03), overall average weight gain (107.06±0.9kg), average daily weight gain (856.49±7.7g) and carcass weight (92.4±0.7kg). The application injectable drugs in animals presenting clinical symptoms, represented US$ 0.56/intervention, without difference between the treatments (P>0.05). Furthermore, independently of the treatment, high frequency of pneumonia was observed (>0.90). No difference for the degree of gastric ulcer nor feces consistency were observed (P>0.05). The utilization of antibiotic therapy and alternatives to antibiotics in feed did not produce benefits to the production indices and sanitary performances of the animals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - R. Irgang
- Universidade Federal de Santa Catarina, Brazil
| | | | | | - J.D. Kich
- Instituto Federal Catarinense, Brazil; Embrapa Suínos e Aves, Brazil
| |
Collapse
|
11
|
Hou S, Ma J, Cheng Y, Wang H, Sun J, Yan Y. The toxicity mechanisms of DON to humans and animals and potential biological treatment strategies. Crit Rev Food Sci Nutr 2021; 63:790-812. [PMID: 34520302 DOI: 10.1080/10408398.2021.1954598] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Deoxynivalenol, also known as vomitotoxin, is produced by Fusarium, belonging to the group B of the trichothecene family. DON is widely polluted, mainly polluting cereal crops such as wheat, barley, oats, corn and related cereal products, which are closely related to lives of people and animals. At present, there have been articles summarizing DON induced toxicity, biological detoxification and the protective effect of natural products, but there is no systematic summary of this information. In addition to ribosome and endoplasmic reticulum, recent investigations support that mitochondrion is also organelles that DON can damage. DON can't directly act on mitochondria, but can indirectly cause mitochondrial damage and changes through other means. DON can indirectly inhibit mitochondrial biogenesis and mitochondrial electron transport chain activity, ATP production, and mitochondrial transcription and translation. This review will provide the latest progress on mitochondria as the research object, and systematically summarizes all the toxic mechanisms of DON. Here, we discuss DON induced mitochondrial-mediated apoptosis and various mitochondrial toxicity. For the toxicity of DON, many methods have been derived to prevent or reduce the toxicity. Biological detoxification and the antioxidant effect of natural products are potentially effective treatments for DON toxicity.
Collapse
Affiliation(s)
- Silu Hou
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jingjiao Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hengan Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhe Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yaxian Yan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Saccharomyces Cerevisiae Var Boulardii CNCM I-1079 Reduces Expression of Genes Involved in Inflammatory Response in Porcine Cells Challenged by Enterotoxigenic E. Coli and Influences Bacterial Communities in an In Vitro Model of the Weaning Piglet Colon. Antibiotics (Basel) 2021; 10:antibiotics10091101. [PMID: 34572682 PMCID: PMC8467900 DOI: 10.3390/antibiotics10091101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the main infectious agent responsible for piglet post-weaning diarrhea with high mortality rates. Antimicrobials represent the current principal strategy for treating ETEC infections in pig farms, but the occurrence of multi-resistant bacterial strains has considerably increased in the last decades. Thus, finding non-antibiotic alternatives becomes a real emergency. In this context, we investigated the effect of a live yeast strain, Saccharomyces cerevisiae var boulardii CNCM I-1079 (SB) in an in vitro model of the weaning piglet colon implemented with a mucus phase (MPigut-IVM) inoculated with ETEC and coupled with an intestinal porcine cell line IPI-2I. We showed that SB was able to modulate the in vitro microbiota through an increase in Bacteroidiaceae and a decrease in Prevotellaceae families. Effluents collected from the SB treated bioreactors were able to mitigate the expression level of genes encoding non-gel forming mucins, tight junction proteins, innate immune pathway, and pro-inflammatory response in IPI-2I cells. Furthermore, SB exerted a significant protective effect against ETEC adhesion on porcine IPEC-J2 intestinal cells in a dose-dependent manner and showed a positive effect on ETEC-challenged IPEC-J2 by lowering expression of genes involved in pro-inflammatory immune responses. Our results showed that the strain SB CNCM I-1079 could prevent microbiota dysbiosis associated with weaning and protect porcine enterocytes from ETEC infections by reducing bacterial adhesion and modulating the inflammatory response.
Collapse
|
13
|
Käser T. Swine as biomedical animal model for T-cell research-Success and potential for transmittable and non-transmittable human diseases. Mol Immunol 2021; 135:95-115. [PMID: 33873098 DOI: 10.1016/j.molimm.2021.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
Swine is biologically one of the most relevant large animal models for biomedical research. With its use as food animal that can be exploited as a free cell and tissue source for research and its high susceptibility to human diseases, swine additionally represent an excellent option for both the 3R principle and One Health research. One of the previously most limiting factors of the pig model was its arguably limited immunological toolbox. Yet, in the last decade, this toolbox has vastly improved including the ability to study porcine T-cells. This review summarizes the swine model for biomedical research with focus on T cells. It first contrasts the swine model to the more commonly used mouse and non-human primate model before describing the current capabilities to characterize and extend our knowledge on porcine T cells. Thereafter, it not only reflects on previous biomedical T-cell research but also extends into areas in which more in-depth T-cell analyses could strongly benefit biomedical research. While the former should inform on the successes of biomedical T-cell research in swine, the latter shall inspire swine T-cell researchers to find collaborations with researchers working in other areas - such as nutrition, allergy, cancer, transplantation, infectious diseases, or vaccine development.
Collapse
Affiliation(s)
- Tobias Käser
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, 27607 Raleigh, NC, USA.
| |
Collapse
|
14
|
The Compromised Intestinal Barrier Induced by Mycotoxins. Toxins (Basel) 2020; 12:toxins12100619. [PMID: 32998222 PMCID: PMC7600953 DOI: 10.3390/toxins12100619] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
Mycotoxins are fungal metabolites that occur in human foods and animal feeds, potentially threatening human and animal health. The intestine is considered as the first barrier against these external contaminants, and it consists of interconnected physical, chemical, immunological, and microbial barriers. In this context, based on in vitro, ex vivo, and in vivo models, we summarize the literature for compromised intestinal barrier issues caused by various mycotoxins, and we reviewed events related to disrupted intestinal integrity (physical barrier), thinned mucus layer (chemical barrier), imbalanced inflammatory factors (immunological barrier), and dysfunctional bacterial homeostasis (microbial barrier). We also provide important information on deoxynivalenol, a leading mycotoxin implicated in intestinal dysfunction, and other adverse intestinal effects induced by other mycotoxins, including aflatoxins and ochratoxin A. In addition, intestinal perturbations caused by mycotoxins may also contribute to the development of mycotoxicosis, including human chronic intestinal inflammatory diseases. Therefore, we provide a clear understanding of compromised intestinal barrier induced by mycotoxins, with a view to potentially develop innovative strategies to prevent and treat mycotoxicosis. In addition, because of increased combinatorial interactions between mycotoxins, we explore the interactive effects of multiple mycotoxins in this review.
Collapse
|
15
|
Bracarense APFL, Pierron A, Pinton P, Gerez JR, Schatzmayr G, Moll WD, Zhou T, Oswald IP. Reduced toxicity of 3-epi-deoxynivalenol and de-epoxy-deoxynivalenol through deoxynivalenol bacterial biotransformation: In vivo analysis in piglets. Food Chem Toxicol 2020; 140:111241. [PMID: 32194137 DOI: 10.1016/j.fct.2020.111241] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 12/17/2022]
Abstract
Ingestion of deoxynivalenol (DON), one of the most common mycotoxin contaminants of cereals, leads to adverse effects for animal and human health. Bacterial biotransformation is a strategy to mitigate the toxicity of this mycotoxin. The present study aims to evaluate the toxicity of two bacterial biotranformation products of DON: 3-epi-deoxynivalenol (3-epi-DON) and de-epoxy-deoxynivalenol (DOM-1) through zootechnical, hematological, histological and immunological assays. Twenty-four 4-weeks-old piglets received a control diet or a diet contaminated with 3 mg kg-1 DON, DOM-1, or 3-epi-DON for 7 days. Sample tissues were collected for histomorphometrical analysis, expression of cytokines and cell protein junctions. The zootechnical and hematological parameters were not modulated by any treatment. Ingestion of DON induced histological alterations in the intestine, liver and lymphoid organs, as well as an overexpression of pro-inflammatory cytokines, E-cadherin and occludin. These changes were not observed in piglets receiving the DOM-1 and 3-epi-DON contaminated diets. Pigs fed 3-epi-DON contaminated diet showed an increase in IgM levels in comparison with other diets, while no change was observed in IgA and IgG levels among the diets. Our results indicate that DOM-1 and 3-epi-DON are not toxic for piglets; thus bacterial biotransformation seems to be a sustainable alternative to reduce mycotoxin toxicity.
Collapse
Affiliation(s)
- Ana Paula F L Bracarense
- Laboratory of Animal Pathology, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, 86057-970, Londrina, PR, Brazil.
| | - Alix Pierron
- Toxalim, Research Center in Food Toxicology, Université de Toulouse, INRAe, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Philippe Pinton
- Toxalim, Research Center in Food Toxicology, Université de Toulouse, INRAe, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Juliana R Gerez
- Laboratory of Animal Pathology, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, 86057-970, Londrina, PR, Brazil
| | | | | | - Ting Zhou
- Guelph Food Research Center Agriculture &Agri-Food Canada, Guelph, Ontario, N1G 5C, Canada
| | - Isabelle P Oswald
- Toxalim, Research Center in Food Toxicology, Université de Toulouse, INRAe, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
16
|
Alassane-Kpembi I, Canlet C, Tremblay-Franco M, Jourdan F, Chalzaviel M, Pinton P, Cossalter AM, Achard C, Castex M, Combes S, Bracarense APL, Oswald IP. 1H-NMR metabolomics response to a realistic diet contamination with the mycotoxin deoxynivalenol: Effect of probiotics supplementation. Food Chem Toxicol 2020; 138:111222. [PMID: 32145353 DOI: 10.1016/j.fct.2020.111222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 01/18/2023]
Abstract
Low-level contamination of food and feed by deoxynivalenol (DON) is unavoidable. We investigated the effects of subclinical treatment with DON, and supplementation with probiotic yeast Saccharomyces cerevisiae boulardii I1079 as a preventive strategy in piglets. Thirty-six animals were randomly assigned to either a control diet, a diet contaminated with DON (3 mg/kg), a diet supplemented with yeast (4 × 109 CFU/kg), or a DON-contaminated diet supplemented with yeast, for four weeks. Plasma and tissue samples were collected for biochemical analysis,1H-NMR untargeted metabolomics, and histology. DON induced no significant modifications in biochemical parameters. However, lesion scores were higher and metabolomics highlighted alterations of amino acid and 2-oxocarboxylic acid metabolism. Administering yeast affected aminoacyl-tRNA synthesis and amino acid and glycerophospholipid metabolism. Yeast supplementation of piglets exposed to DON prevented histological alterations, and partial least square discriminant analysis emphasised similarity between the metabolic profiles of their plasma and that of the control group. The effect on liver metabolome remained marginal, indicating that the toxicity of the mycotoxin was not eliminated. These findings show that the 1H-NMR metabolomics profile is a reliable biomarker to assess subclinical exposure to DON, and that supplementation with S. cerevisiae boulardii increases the resilience of piglets to this mycotoxin.
Collapse
Affiliation(s)
- Imourana Alassane-Kpembi
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; Université D'Abomey-Calavi, Ecole Polytechnique D'Abomey, Calavi, Benin.
| | - Cecile Canlet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Marie Tremblay-Franco
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Fabien Jourdan
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | | | - Philippe Pinton
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Anne Marie Cossalter
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Caroline Achard
- Lallemand SAS, 19 Rue des Briquetiers, BP 59, 31702, Blagnac Cedex, France.
| | - Mathieu Castex
- Lallemand SAS, 19 Rue des Briquetiers, BP 59, 31702, Blagnac Cedex, France.
| | - Sylvie Combes
- GenPhySE, Université de Toulouse, INRA, ENVT, Castanet Tolosan, France.
| | | | - Isabelle P Oswald
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| |
Collapse
|
17
|
Cimbalo A, Alonso-Garrido M, Font G, Manyes L. Toxicity of mycotoxins in vivo on vertebrate organisms: A review. Food Chem Toxicol 2020; 137:111161. [PMID: 32014537 DOI: 10.1016/j.fct.2020.111161] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/31/2022]
Abstract
Mycotoxins are considered to be a major risk factor affecting human and animal health as they are one of the most dangerous contaminants of food and feed. This review aims to compile the research developed up to date on the toxicological effects that mycotoxins can induce on human health, through the examination of a selected number of studies in vivo. AFB1 shows to be currently the most studied mycotoxin in vivo, followed by DON, ZEA and OTA. Scarce data was found for FBs, PAT, CIT, AOH and Fusarium emerging mycotoxins. The majority of them concerned the investigation of immunotoxicity, whereas the rest consisted in the study of genotoxicity, oxidative stress, hepatotoxicity, cytotoxicity, teratogenicity and neurotoxicity. In order to assess the risk, a wide range of different techniques have been employed across the reviewed studies: qPCR, ELISA, IHC, WB, LC-MS/MS, microscopy, enzymatic assays, microarray and RNA-Seq. In the last decade, the attention has been drawn to immunologic and transcriptomic aspects of mycotoxins' action, confirming their toxicity at molecular level. Even though, more in vivo studies are needed to further investigate their mechanism of action on human health.
Collapse
Affiliation(s)
- A Cimbalo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avinguda Vicent Andrés Estellés S/n, 46100, Burjassot, Spain.
| | - M Alonso-Garrido
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avinguda Vicent Andrés Estellés S/n, 46100, Burjassot, Spain
| | - G Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avinguda Vicent Andrés Estellés S/n, 46100, Burjassot, Spain
| | - L Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avinguda Vicent Andrés Estellés S/n, 46100, Burjassot, Spain
| |
Collapse
|