1
|
Løn N, Engel S, Damholt A, Mortensen B, Haaber AB, Wellejus A, Knop FK. Bifidobacterium breve Bif195 ameliorates aspirin-induced gastric mucosal damage: A randomised, double blind, placebo-controlled crossover trial. Aliment Pharmacol Ther 2024; 59:341-349. [PMID: 38036761 DOI: 10.1111/apt.17817] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/02/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Gastric and duodenal ulcerations are common during multiple-dosing aspirin treatment, such as for prevention of cardiovascular disease. On capsule endoscopy, oral administration of the bacterial strain Bifidobacterium breve Bif195 (DSM 33360) reduced the risk of aspirin-induced small intestinal damage, without affecting cyclo-oxygenase-2 (COX-2) inhibition. AIM To evaluate endoscopically the effect of Bif195 on aspirin-induced stomach and duodenal mucosal damage METHODS: Twenty-five healthy volunteers underwent two intervention periods in a randomised, double-blind, placebo-controlled crossover design including four gastroduodenoscopies and 6 weeks washout. Each intervention was a 4-week oral co-treatment of aspirin 300 mg daily and Bif195 (≥1011 colony-forming units daily) or placebo. Primary endpoint was change in Lanza score - ranging from 0 (normal mucosa) to 4 (>10 erosions or ulcer). RESULTS All 25 participants (56% females); age 27.3 (±4.8) years; BMI 23.2 (±3.4) kg/m2 , completed the trial exhibiting significant increases in Lanza scores during placebo treatment as compared to baseline. Bif195 reduced gastric Lanza score with an odds ratio of 7.2 (95% confidence interval 1.72-30.08, p = 0.009) compared to placebo with no related adverse events. There were no significant changes in Lanza scores in the duodenum. CONCLUSIONS Bif195 reduces aspirin-induced gastric mucosal damage and may serve as a safe supplement during multiple-dosing aspirin treatment.
Collapse
Affiliation(s)
- Nina Løn
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Sara Engel
- Chr. Hansen A/S, Human Health, Scientific Affairs, Hørsholm, Denmark
| | - Anders Damholt
- Chr. Hansen A/S, Human Health, Scientific Affairs, Hørsholm, Denmark
| | | | | | - Anja Wellejus
- Chr. Hansen A/S, Human Health, Scientific Affairs, Hørsholm, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| |
Collapse
|
2
|
Cheng J, Sun Y, Zhao Y, Guo Q, Wang Z, Wang R. Research Progress on the Mechanism of Intestinal Barrier Damage and Drug Therapy in a High Altitude Environment. Curr Drug Deliv 2024; 21:807-816. [PMID: 36892115 DOI: 10.2174/1567201820666230309090241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 03/10/2023]
Abstract
The plateau is a typical extreme environment with low temperature, low oxygen and high ultraviolet rays. The integrity of the intestinal barrier is the basis for the functioning of the intestine, which plays an important role in absorbing nutrients, maintaining the balance of intestinal flora, and blocking the invasion of toxins. Currently, there is increasing evidence that high altitude environment can enhance intestinal permeability and disrupt intestinal barrier integrity. This article mainly focuses on the regulation of the expression of HIF and tight junction proteins in the high altitude environment, which promotes the release of pro-inflammatory factors, especially the imbalance of intestinal flora caused by the high altitude environment. The mechanism of intestinal barrier damage and the drugs to protect the intestinal barrier are reviewed. Studying the mechanism of intestinal barrier damage in high altitude environment is not only conducive to understanding the mechanism of high altitude environment affecting intestinal barrier function, but also provides a more scientific medicine treatment method for intestinal damage caused by the special high altitude environment.
Collapse
Affiliation(s)
- Junfei Cheng
- PLA Key Laboratory of Plateau Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, 730050, China
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yuemei Sun
- PLA Key Laboratory of Plateau Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, 730050, China
| | - Yilan Zhao
- PLA Key Laboratory of Plateau Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, 730050, China
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Qianwen Guo
- PLA Key Laboratory of Plateau Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, 730050, China
| | - ZiHan Wang
- PLA Key Laboratory of Plateau Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, 730050, China
| | - Rong Wang
- PLA Key Laboratory of Plateau Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, 730050, China
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
3
|
Oh S, Seo H. Dietary intervention with functional foods modulating gut microbiota for improving the efficacy of COVID-19 vaccines. Heliyon 2023; 9:e15668. [PMID: 37124341 PMCID: PMC10121067 DOI: 10.1016/j.heliyon.2023.e15668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023] Open
Abstract
Dysbiosis of the gut microbiota with aging contributes to a reduction in important cross-feeding bacterial reactions in the gut and immunosenescence, which could contribute to a decrease in vaccine efficacy. Fever, cough, and fatigue are the main signs of coronavirus disease 2019 (COVID-19); however, some patients with COVID-19 present with gastrointestinal symptoms. COVID-19 vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the best measures to reduce SARS-CoV-2 infection rates and the severity of COVID-19. The immunogenicity of COVID-19 vaccines is influenced by the composition of the gut microbiota, and the immune response to COVID-19 vaccines decreases with age. In this review, we discuss gut microbiota dysbiosis and immunosenescence in the older adults, the role of gut microbiota in improving the efficacy of COVID-19 vaccines, and dietary interventions to improve the efficacy of COVID-19 vaccines in the older adults.
Collapse
Affiliation(s)
- Soyoung Oh
- Infectious Disease Research Center, Citizen's Health Bureau, Seoul Metropolitan Government, 110, Sejong-daero, Jung-gu, Seoul, 04524, Republic of Korea
| | - Haesook Seo
- Infectious Disease Research Center, Citizen's Health Bureau, Seoul Metropolitan Government, 110, Sejong-daero, Jung-gu, Seoul, 04524, Republic of Korea
| |
Collapse
|
4
|
Wang Z, Liu J, Li F, Luo Y, Ge P, Zhang Y, Wen H, Yang Q, Ma S, Chen H. The gut-lung axis in severe acute Pancreatitis-associated lung injury: The protection by the gut microbiota through short-chain fatty acids. Pharmacol Res 2022; 182:106321. [PMID: 35752356 DOI: 10.1016/j.phrs.2022.106321] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 02/07/2023]
Abstract
The role of gut microbiota in regulating the intestinal homeostasis, as well as the pathogenesis of severe acute pancreatitis-associated lung injury (PALI) is widely recognized. The bioactive functions of metabolites with small molecule weight and the detail molecular mechanisms of PALI mediated by "gut-lung axis" have gradually raised the attentions of researchers. Several studies have proved that short-chain fatty acids (SCFAs) produced by gut microbiome play crucial roles and varied activities in the process of PALI. However, relevant reviews reporting SCFAs in the involvement of PALI is lacking. In this review, we firstly introduced the synthetic and metabolic pathways of SCFAs, as well as the transport and signal transduction routes in brief. Afterwards, we focused on the possible mechanisms and clues of SCFAs to participate in the fight against PALI which referred to the inhibition of pathogen proliferation, anti-inflammatory effects, enhancement of intestinal barrier functions, and the maintenance and regulation of immune homeostasis via pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). In addition, the latest reported pathological and physiological mechanisms of the gut-lung axis involved in PALI were reviewed. Finally, we summarized the potential therapeutic interventions of PALI by targeting SCFAs, including dietary fiber supplementation, direct supplementation of SCFAs/prebiotics/probiotics, and drugs administration, which is expected to provide new sights for clinical use in the future.
Collapse
Affiliation(s)
- Zhengjian Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning 116000, PR China; Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China
| | - Jin Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning 116000, PR China; Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China
| | - Fan Li
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning 116000, PR China; Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning 116000, PR China; Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China
| | - Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning 116000, PR China; Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China
| | - Yibo Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning 116000, PR China; Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China
| | - Haiyun Wen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning 116000, PR China; Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China
| | - Qi Yang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning 116000, PR China; Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China; Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China
| | - Shurong Ma
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China; Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China.
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China; Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China.
| |
Collapse
|
5
|
Zhao L, Xie Q, Evivie SE, Yue Y, Yang H, Lv X, Liu F, Li B, Huo G. Bifidobacterium longum subsp. longum K5 alleviates inflammatory response and prevents intestinal barrier injury induced by LPS in vitro based on comparative genomics. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
6
|
Zhou Y, Feng Y, Cen R, Hou X, Yu H, Sun J, Zhou L, Ji Q, Zhao L, Wang Y, Li Q. San-Wu-Huang-Qin decoction attenuates tumorigenesis and mucosal barrier impairment in the AOM/DSS model by targeting gut microbiome. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153966. [PMID: 35158238 DOI: 10.1016/j.phymed.2022.153966] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/07/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND A classic herbal formula San-Wu-Huang-Qin (SWHQ) decoction has been widely used in clinical practices to prevent and treat colorectal cancer (CRC) for years, but its anti-tumorigenic properties and the underlying mechanisms remain undetermined. PURPOSE The present study used a CRC mouse model to clarify whether and how SWHQ suppresses tumorigenesis. METHODS Different doses of SWHQ were gavaged to the AOM/DSS model mice to examine its anti-tumor efficacy in comparison with the positive control drug Aspirin. The underlying microbiota-driven anti-tumor action of SWHQ was proven with bacterial manipulations by fecal microbial transplantation (FMT) in vivo and anaerobic culturing in vitro. RESULTS SWHQ decoction dose-dependently reduced colonic tumor numbers/loads of AOM/DSS models and suppressed their disease activity index scores. SWHQ also recovered epithelial MUC2 secretion and colonic tight junction protein (ZO-1 and claudin1) expression in the mouse model. Such inhibitory impact on tumorigenesis and mucosal barrier impairment was found to be associated with modulation of gut dysbiosis, particularly for suppressing lipopolysaccharide (LPS) producers. The FMT experiment confirmed the substantial contribution of SWHQ-reshaped microbiota to anti-tumor function and mucosal barrier protection. Moreover, LPS-activated TLR4/NF-κB signaling and its downstream pro-inflammatory factors were significantly suppressed in the colon of SWHQ-treated models and SWHQ-reshaped microbiota recipients. CONCLUSIONS We demonstrated that the SWHQ effectively inhibited tumorigenesis and protect mucosal barrier in CRC at least partially by targeting gut microbiota. This study provides scientific basis for the clinical usage of SWHQ in CRC intervention and prevention.
Collapse
Affiliation(s)
- Yelu Zhou
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuanyuan Feng
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rong Cen
- Endoscopy center of Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinxin Hou
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hao Yu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jian Sun
- Laboratory Department of Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lihong Zhou
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Ji
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ling Zhao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
7
|
Yokoo K, Yamamoto Y, Suzuki T. Ammonia impairs tight junction barriers by inducing mitochondrial dysfunction in Caco-2 cells. FASEB J 2021; 35:e21854. [PMID: 34597422 DOI: 10.1096/fj.202100758r] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/12/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022]
Abstract
Ammonia is one of the major metabolites produced by intestinal microorganisms; however, its role in intestinal homeostasis is poorly understood. The present study investigated the regulation of intestinal tight junction (TJ) proteins by ammonia and the underlying mechanisms in human intestinal Caco-2 cells. Ammonia (15, 30, and 60 mM) increased the permeability of the cells in a dose-dependent manner, as indicated by reduced transepithelial electrical resistance and increased dextran flux. Immunoblot and immunofluorescence analyses revealed that the ammonia-induced increase in TJ permeability reduced the membrane localization of TJ proteins such as zonula occludens (ZO)1, ZO2, occludin, claudin-1, and claudin-3. DNA microarray analysis identified a biological pathway "response to reactive oxygen species" enriched by ammonia treatment, indicating the induction of oxidative stress in the cells. Ammonia treatment also increased the malondialdehyde content and decreased the ratio of reduced to oxidized glutathione. Meanwhile, ammonia treatment-induced mitochondrial dysfunction, as indicated by the downregulation of genes associated with the electron transport chain, reduction of the cellular ATP, NADH, and tricarboxylic acid cycle intermediate content, and suppression of the mitochondrial membrane potential. In contrast, N-acetyl cysteine reversed the ammonia-induced impairment of TJ permeability and structure without affecting the mitochondrial parameters. Collectively, ammonia impaired the TJ barrier by increasing oxidative stress in Caco-2 cells. A mitochondrial dysfunction is possibly an event preceding ammonia-induced oxidative stress. The findings of this study could potentially improve our understanding of the interplay between intestinal microorganisms and their hosts.
Collapse
Affiliation(s)
- Kana Yokoo
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yoshinari Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takuya Suzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.,Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
8
|
Adesina PA, Isayama K, Sitolo GC, Yamamoto Y, Suzuki T. Propionate and Dietary Fermentable Fibers Upregulate Intestinal Heat Shock protein70 in Intestinal Caco-2 Cells and Mouse Colon. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8460-8470. [PMID: 34291640 DOI: 10.1021/acs.jafc.1c03036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Short-chain fatty acids (SCFAs), including propionate, are major metabolites of intestinal microorganisms and play an essential role in regulating intestinal epithelial integrity. Heat shock proteins (HSPs) promote cellular homeostasis under physiological and stressed conditions. This study aimed to investigate the regulation of intestinal HSP70 by propionate in human intestinal Caco-2 cells and the colon of fermentable dietary fiber (DF)-fed mice and germ-free mice. The results showed that propionate increased Hspa1a (HSP70 mRNA) level in Caco-2 cells, upregulated HSP70 protein, and phosphorylation of heat shock factor 1; however, the latter two were reduced by mitogen-activated protein kinases and the mechanistic target of rapamycin inhibitors. Feeding fermentable DFs, such as guar gum (GG) and partially hydrolyzed GG, increased both cecal SCFAs and colonic HSP70 expression, both of which were reduced in germ-free mice than in specific-pathogen-free mice. Collectively, the propionate-induced HSP70 expression was shown to be possibly involved in intestinal homeostasis.
Collapse
Affiliation(s)
- Precious Adedayo Adesina
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| | - Kana Isayama
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| | - Gertrude Cynthia Sitolo
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
- Department of Physics and Biochemical Sciences, Malawi University of Business and Applied Sciences, Private Bag 303, Chichiri Blantyre 3, Malawi
| | - Yoshinari Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| | - Takuya Suzuki
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| |
Collapse
|
9
|
Sitolo GC, Mitarai A, Adesina PA, Yamamoto Y, Suzuki T. Fermentable fibers upregulate suppressor of cytokine signaling1 in the colon of mice and intestinal Caco-2 cells through butyrate production. Biosci Biotechnol Biochem 2020; 84:2337-2346. [DOI: 10.1080/09168451.2020.1798212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
Short chain fatty acids (SCFAs), the microbial metabolites of fermentable dietary fibers exert multiple beneficial effects on mammals including humans. We examined the effects of fermentable dietary fibers on suppressor of cytokine signaling 1 (SOCS1), a negative regulator of inflammatory signaling, on the intestinal epithelial cells of the mouse colon and human intestinal Caco-2 cells, specifically focusing on the role of SCFAs. Feeding fermentable fibers, guar gum (GG) and partially hydrolyzed GG (PHGG) increased SOCS1 expression in the colon and the cecal pool of some SCFAs including acetate, propionate, and butyrate. The antibiotic administration abolished the GG-mediated SOCS1 expression in the colon. In Caco-2 cells, butyrate, but not other SCFAs, increased SOCS1 expression. Taken together, fermentable fibers such as GG and PHGG upregulate the colonic SOCS1 expression, possibly through the increased production of butyrate in mice and can be a potential tool in the fight against inflammatory diseases.
Abbreviations: GG: Guar gum; GPR: G protein-coupled receptor; IL: Interleukin; JAK: Janus kinase; NF- κB: Nuclear factor-kappa B; PHGG: Partially hydrolyzed guar gum; SCFA: Short chain fatty acid; SOCS: Suppressor of cytokine signaling; STAT: Signal transducer and activator of transcription; TLR: Toll-like receptor.
Collapse
Affiliation(s)
- Gertrude Cynthia Sitolo
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
- Department of Physics and Biochemical Sciences, University of Malawi, The Polytechnic, Blantyre, Malawi
| | - Aya Mitarai
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Precious Adedayo Adesina
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yoshinari Yamamoto
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takuya Suzuki
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
10
|
Morrin ST, McCarthy G, Kennedy D, Marotta M, Irwin JA, Hickey RM. Immunoglobulin G from bovine milk primes intestinal epithelial cells for increased colonization of bifidobacteria. AMB Express 2020; 10:114. [PMID: 32556705 PMCID: PMC7303254 DOI: 10.1186/s13568-020-01048-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/08/2020] [Indexed: 12/31/2022] Open
Abstract
A bovine colostrum fraction (BCF) was recently shown to enhance the adherence of several commensal organisms to intestinal epithelial cells through modulating the epithelial cell surface. In this study, the main components of the BCF were examined to investigate the active component/s responsible for driving the changes in the intestinal cells. The adherence of various bifidobacteria to HT-29 cells was increased when the intestinal cells were pre-incubated with immunoglobulin G (IgG). Modulation of the intestinal cells by IgG was concentration dependent with 16 mg/mL IgG resulting in a 43-fold increase in the adhesion of Bifidobacterium longum NCIMB 8809 to HT-29 cells. Periodate treatment of colostral IgG prior to performing the colonization studies resulted in a reduction in the adhesion of the strain to the intestinal cells demonstrating that the glycans of IgG may be important in modulating the intestinal cells for enhanced commensal adhesion. IgG isolated from mature milk also resulted in significant increases in adhesion of the Bifidobacterium strains tested albeit at reduced levels (3.9-fold). The impact of IgG on the HT-29 cells was also visualised via scanning electron microscopy. This study builds a strong case for the inclusion of IgG ingredients sourced from cow’s milk in functional foods aimed at increasing numbers of health promoting bacteria in the human gut.
Collapse
|
11
|
Meoli L, Günzel D. Channel functions of claudins in the organization of biological systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183344. [PMID: 32442419 DOI: 10.1016/j.bbamem.2020.183344] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
Claudins are tight junction proteins mostly appreciated in their function of paracellular barrier-formation. Compared to a virtual absence of any tight junctions, their paracellular sealing role certainly stands out. Yet, it was recognized immediately after the discovery of the first claudins, that some members of the claudin protein family were able to convey size and charge selectivity to the paracellular pathway. Thus, paracellular permeability can be fine-tuned according to the physiological needs of a tissue by inserting these channel-forming claudins into tight junction strands. Precise permeability adjustment is further suggested by the presence of numerous isoforms of channel-forming claudins (claudin-10b-, -15-, -16-like isoforms) in various vertebrate taxa. Moreover, their expression and localization are controlled by multiple transcriptional and posttranslational mechanisms. Consequently, mutation or dysregulation of channel-forming claudins can cause severe diseases. The present review therefore aims at providing an up-to-date report of the current research on these aspects of channel-forming claudins and their possible implications on future developments.
Collapse
Affiliation(s)
- Luca Meoli
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Dorothee Günzel
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany.
| |
Collapse
|
12
|
Heat-Killed Bifidobacterium breve B-3 Enhances Muscle Functions: Possible Involvement of Increases in Muscle Mass and Mitochondrial Biogenesis. Nutrients 2020; 12:nu12010219. [PMID: 31952193 PMCID: PMC7019314 DOI: 10.3390/nu12010219] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/07/2020] [Accepted: 01/11/2020] [Indexed: 12/12/2022] Open
Abstract
A previous clinical study on pre-obesity subjects revealed that Bifidobacteriumbreve B-3 shows anti-obesity effects and possibly increases muscle mass. Here, we investigated the effects of B-3 on muscle function, such as muscle strength and metabolism, and some signaling pathways in skeletal muscle. Male rodents were orally administered live B-3 (B-3L) or heat-killed B-3 (B-3HK) for 4 weeks. We found that administration of B-3 to rats tended to increase muscle mass and affect muscle metabolism, with stronger effects in the B-3HK group than in the B-3L group. B-3HK significantly increased muscle mass and activated Akt in the rat soleus. With regard to muscle metabolism, B-3HK significantly increased phosphorylated AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α and cytochrome c oxidase (CCO) gene expression in the rat soleus, suggesting an effect on the AMPK-PGC1α-mitochondrial biogenesis pathway. Furthermore, B-3HK promoted oxidative muscle fiber composition in the gastrocnemius. We also observed a significantly higher level of murine grip strength in the B-3HK group than in the control group. These findings suggest the potential of heat-killed B-3 in promoting muscle hypertrophy and modifying metabolic functions, possibly through the Akt and AMPK pathways, respectively.
Collapse
|