1
|
Takeda S, Ohtsuka H, Kosenda K. Effect of probiotics on immune cells in young Japanese Black calves responding to vaccination against bacterial respiratory diseases. J Vet Res 2025; 69:27-33. [PMID: 40144064 PMCID: PMC11936084 DOI: 10.2478/jvetres-2025-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Introduction The vaccination against bacterial respiratory diseases in calves has been generally recognised as useful for the prevention of infections. Inducing an immunological response after vaccination is important for obtaining protection from infections. The aim of the study was to investigate the effects of probiotics on the immunological response to vaccination against bacterial respiratory diseases in young Japanese Black calves. Material and Methods Twenty-four Japanese Black calves were randomly divided into two groups (12 calves for the research group and 12 calves for the control group) on the seventh day of life (dol). The research group received 30 g per day of live bacteria mix consisting of Streptococcus faecalis, Clostridium butyricum and Bacillus mesentericus until the 63rd dol. The control group did not receive the bacteria mix. All calves were vaccinated against bacterial respiratory diseases twice, at 21 and 42 dol. Blood samples were obtained from all calves at 7, 21, 42 (prior to the second vaccination), 45, 49 and 63 dol for determination of antibody titres, leukocyte numbers and cytokine genes. Results Lymphocyte counts, T cell (CD3+, CD4+ and CD8+ cell) counts and relative expressions of cytokine genes (interleukin (IL)-4 and IL-17A) at 45, 49 and 63 dol were significantly higher in the research group compared than in the control group. Conclusion The addition of probiotics to young Japanese Black calves' feed promoted an immunological reaction to vaccination against bacterial respiratory diseases.
Collapse
Affiliation(s)
- Shogo Takeda
- Veterinary Medicine, Obihiro University of Agriculture, Obihiro-shi, Hokkaido, 080-8555, Japan
- Hidaka C.L.C, Niikappu-cho, Hokkaido, 059-2403, Japan
| | - Hiromichi Ohtsuka
- Veterinary Medicine, Obihiro University of Agriculture, Obihiro-shi, Hokkaido, 080-8555, Japan
| | - Keigo Kosenda
- Veterinary Medicine, Rakuno Gakuen University, Ebetsu-shi, Hokkaido, 069-8501, Japan
| |
Collapse
|
2
|
He G, Long H, He J, Zhu C. The Immunomodulatory Effects and Applications of Probiotic Lactiplantibacillus plantarum in Vaccine Development. Probiotics Antimicrob Proteins 2024; 16:2229-2250. [PMID: 39101975 DOI: 10.1007/s12602-024-10338-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Lactiplantibacillus plantarum (previously known as Lactobacillus plantarum) is a lactic acid bacterium that exists in various niches. L. plantarum is a food-grade microorganism that is commonly considered a safe and beneficial microorganism. It is widely used in food fermentation, agricultural enhancement, and environmental protection. L. plantarum is also part of the normal flora that can regulate the intestinal microflora and promote intestinal health. Some strains of L. plantarum are powerful probiotics that induce and modulate the innate and adaptive immune responses. Due to its outstanding immunoregulatory capacities, an increasing number of studies have examined the use of probiotic L. plantarum strains as natural immune adjuvants or alternative live vaccine carriers. The present review summarizes the main immunomodulatory characteristics of L. plantarum and discusses the preliminary immunological effects of L. plantarum as a vaccine adjuvant and delivery carrier. Different methods for improving the immune capacities of recombinant vector vaccines are also discussed.
Collapse
Affiliation(s)
- Guiting He
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China
| | - Huanbing Long
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China
| | - Jiarong He
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China
| | - Cuiming Zhu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China.
| |
Collapse
|
3
|
Guo J, Cao X, Li Z, Wang C, Zhong C, Wang S, Fan Z, Zhao J, Wang J, Fang Y, Liu H, Ding H, Ma X, Lu W. Protective effects of engineered Lactobacillus johnsonii expressing bovine granulocyte-macrophage colony-stimulating factor on bovine postpartum endometritis. Front Vet Sci 2024; 11:1418091. [PMID: 39176400 PMCID: PMC11338911 DOI: 10.3389/fvets.2024.1418091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction Postpartum endometritis is a prevalent reproductive disorder in bovines, leading to a prolonged open period, infertility, and other complications. While Lactobacillus strains can mitigate these conditions by reducing uterine inflammation, their effectiveness is limited due to a lack of direct anti microbial action and extended treatment duration. This study aimed to construct a recombinant Lactobacillus johnsonii strain expressing bovine Granulocyte-macrophage colony-stimulating factor (GM-CSF) to evaluate its potential in reducing postpartum uterine inflammation. Methods The recombinant Lactobacillus johnsonii strain was engineered to express bovine GM-CSF and administered to pregnant mice via vaginal perfusion. Postpartum endometritis was induced using E. coli infection, and the protective effects of the engineered strain were assessed. Inflammatory markers (IL-6, IL-1β, TNF-α), myeloperoxidase (MPO) activity, and nitric oxide (NO) concentration were measured. Histological examination was performed to evaluate uterine morphology and pathological damage. Results The recombinant L. johnsonii strain expressing GM-CSF significantly reduced inflammation levels induced by E. coli infection in the uterus. This reduction was evidenced by decreased expression of IL-6, IL-1β, TNF-α, as well as reduced MPO activity and NO concentration. Histological examination revealed improved uterine morphology and reduced pathological damage in mice treated with the recombinant GM-CSF strain. Crucially, the recombinant strain also exerts beneficial effects on bovine endometritis by reducing levels of inflammatory cytokines, suggesting a beneficial effect on clinical bovine endometritis. Conclusion The recombinant Lactobacillus johnsonii expressing GM-CSF demonstrated protective effects against postpartum endometritis in bovines by reducing inflammatory cytokines. The findings indicate the potential clinical application of this engineered strain in preventing postpartum uterine inflammation, offering a novel and effective protective option for related disorders and improving bovine reproductive efficiency.
Collapse
Affiliation(s)
- Jing Guo
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| | - Xu Cao
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| | - Zhiqiang Li
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| | - Caiyu Wang
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| | - Chengkun Zhong
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| | - Simin Wang
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| | - Zhile Fan
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| | - Jing Zhao
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| | - Jun Wang
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| | - Yi Fang
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| | - Hongyu Liu
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| | - He Ding
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| | - Xin Ma
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| | - Wenfa Lu
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| |
Collapse
|
4
|
Abavisani M, Ebadpour N, Khoshrou A, Sahebkar A. Boosting vaccine effectiveness: The groundbreaking role of probiotics. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2024; 16:101189. [DOI: 10.1016/j.jafr.2024.101189] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Kazemi D, Doosti A, Shakhsi-Niaei M. Immunization of BALB/c mice with BAB1-0278: An initial investigation of a novel potential vaccine for brucellosis based on Lactococcus Lactis vector. Microb Pathog 2023; 185:106417. [PMID: 37866552 DOI: 10.1016/j.micpath.2023.106417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
The gram-negative intracellular bacterium Brucella abortus causes bovine brucellosis, a zoonotic disease that costs a lot of money. This work developed a vector vaccine against brucellosis utilizing recombinant L. lactis expressing Brucella outer membrane protein BAB1-0278. Gene sequences were obtained from GenBank. The proteins' immunogenicity was tested with Vaxijen. The target vector was converted into L. lactis after enzymatic digestion and PCR validated the BAB1-0278 gene cloning in the pNZ8148 vector. The target protein was extracted using a Ni-NTA column and confirmed using SDS-PAGE and western blot. After vaccination with the target vaccine, the expression of IgG subclasses was evaluated by the ELISA method. Cytokine production was also measured by the qPCR method in the small intestine and spleen. Lymphocyte proliferation and innate immune response (NLR, CRP, and PLR) were also assessed. Finally, after the challenge test, the spleen tissue was examined by H&E staining. BAB1-0278 was chosen because of its antigenicity score of 0.5614. A 237-bp gene fragment was discovered using enzymatic digestion and PCR. The presence of a 13 kDa protein band was confirmed by SDS-PAGE and western blot. In comparison to the PBS group, mice given the L. lactis-pNZ8148-BAB1-0278-Usp45 vaccine 14 days after priming had substantially greater levels of total IgG, IgG1, and IgG2a (P < 0.001). Also, the production of cytokines (IFN-γ, TNFα, IL-4, and IL-10) indicating cellular immunity increased compared to the control group (P < 0.001). The target group had a lower inflammatory response, morphological impairment, alveolar edema, and lymphocyte infiltration. An efficient probiotic-based oral brucellosis vaccination was created. These studies have proven that the recommended immunization gives the best protection, which supports its promotion.
Collapse
Affiliation(s)
- Donya Kazemi
- Department of Biology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mostafa Shakhsi-Niaei
- Department of Biology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran; Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
6
|
Oh S, Seo H. Dietary intervention with functional foods modulating gut microbiota for improving the efficacy of COVID-19 vaccines. Heliyon 2023; 9:e15668. [PMID: 37124341 PMCID: PMC10121067 DOI: 10.1016/j.heliyon.2023.e15668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023] Open
Abstract
Dysbiosis of the gut microbiota with aging contributes to a reduction in important cross-feeding bacterial reactions in the gut and immunosenescence, which could contribute to a decrease in vaccine efficacy. Fever, cough, and fatigue are the main signs of coronavirus disease 2019 (COVID-19); however, some patients with COVID-19 present with gastrointestinal symptoms. COVID-19 vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the best measures to reduce SARS-CoV-2 infection rates and the severity of COVID-19. The immunogenicity of COVID-19 vaccines is influenced by the composition of the gut microbiota, and the immune response to COVID-19 vaccines decreases with age. In this review, we discuss gut microbiota dysbiosis and immunosenescence in the older adults, the role of gut microbiota in improving the efficacy of COVID-19 vaccines, and dietary interventions to improve the efficacy of COVID-19 vaccines in the older adults.
Collapse
Affiliation(s)
- Soyoung Oh
- Infectious Disease Research Center, Citizen's Health Bureau, Seoul Metropolitan Government, 110, Sejong-daero, Jung-gu, Seoul, 04524, Republic of Korea
| | - Haesook Seo
- Infectious Disease Research Center, Citizen's Health Bureau, Seoul Metropolitan Government, 110, Sejong-daero, Jung-gu, Seoul, 04524, Republic of Korea
| |
Collapse
|
7
|
Ortiz Moyano R, Raya Tonetti F, Fukuyama K, Elean M, Tomokiyo M, Suda Y, Melnikov V, Kitazawa H, Villena J. The Respiratory Commensal Bacterium Corynebacterium pseudodiphtheriticum as a Mucosal Adjuvant for Nasal Vaccines. Vaccines (Basel) 2023; 11:vaccines11030611. [PMID: 36992195 PMCID: PMC10058227 DOI: 10.3390/vaccines11030611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Previously, we demonstrated that nasally administered Corynebacterium pseudodiphteriticum 090104 (Cp) or its bacterium-like particles (BLPs) increase the resistance of mice against bacterial and viral respiratory pathogens by modulating the innate immunity. In this work, we evaluated the ability of Cp and BLPs to stimulate alveolar macrophages, and to enhance the humoral immune response induced by a commercial vaccine against Streptococcus pneumoniae. In the first set of experiments, Cp or the BLPs were incubated with primary cultures of murine alveolar macrophages and the phagocytic activity, and the production of cytokines was evaluated. The results revealed that Cp and BLPs were efficiently phagocyted by respiratory macrophages and that both treatments triggered the production of TNF-α, IFN-γ, IL-6, and IL-1β. In the second set of experiments, 3-week-old Swiss mice were intranasally immunized at days 0, 14, and 28 with the pneumococcal vaccine Prevenar®13 (PCV), Cp + PCV, or BLPs + PCV. On day 33, samples of bronco-alveolar lavages (BAL) and serum were collected for the study of specific antibodies. In addition, immunized mice were challenged with S. pneumoniae serotypes 6B or 19F on day 33 and sacrificed on day 35 (day 2 post-infection) to evaluate the resistance to the infection. Both Cp + PCV and BLPs + PCV groups had higher specific serum IgG and BAL IgA antibodies than the PCV control mice. In addition, the mice that were immunized with Cp + PCV or BLPs + PCV had lower lung and blood pneumococcal cell counts as well as lower levels of BAL albumin and LDH, indicating a reduced lung damage compared to the control mice. Improved levels of anti-pneumococcal antibodies were also detected in the serum and BAL samples after the challenges with the pathogens. The results demonstrated that C. pseudodiphteriticum 090104 and its bacterium-like particles are capable of stimulating the respiratory innate immune system serving as adjuvants to potentiate the adaptive humoral immune response. Our study is a step forward in the positioning of this respiratory commensal bacterium as a promising mucosal adjuvant for vaccine formulations aimed at combating respiratory infectious diseases.
Collapse
Affiliation(s)
- Ramiro Ortiz Moyano
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán 4000, Argentina; (R.O.M.); (F.R.T.); (M.E.)
| | - Fernanda Raya Tonetti
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán 4000, Argentina; (R.O.M.); (F.R.T.); (M.E.)
| | - Kohtaro Fukuyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; (K.F.); (M.T.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Mariano Elean
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán 4000, Argentina; (R.O.M.); (F.R.T.); (M.E.)
| | - Mikado Tomokiyo
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; (K.F.); (M.T.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Yoshihito Suda
- Department of Food, Agriculture and Environment, Miyagi University, Sendai 980-8572, Japan;
| | - Vyacheslav Melnikov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia;
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; (K.F.); (M.T.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
- Correspondence: (H.K.); (J.V.)
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán 4000, Argentina; (R.O.M.); (F.R.T.); (M.E.)
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; (K.F.); (M.T.)
- Correspondence: (H.K.); (J.V.)
| |
Collapse
|
8
|
Pan N, Liu Y, Zhang H, Xu Y, Bao X, Sheng S, Liang Y, Liu B, Lyu Y, Li H, Ma F, Pan H, Wang X. Oral Vaccination with Engineered Probiotic Limosilactobacillus reuteri Has Protective Effects against Localized and Systemic Staphylococcus aureus Infection. Microbiol Spectr 2023; 11:e0367322. [PMID: 36723073 PMCID: PMC10100842 DOI: 10.1128/spectrum.03673-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/14/2023] [Indexed: 02/02/2023] Open
Abstract
Staphylococcus aureus is a Gram-positive bacterium responsible for most hospital-acquired (nosocomial) and community-acquired infections worldwide. The only therapeutic strategy against S. aureus-induced infections, to date, is antibiotic treatment. A protective vaccine is urgently needed in view of the emergence of antibiotic-resistant strains associated with high-mortality cases; however, no such vaccine is currently available. In our previous work, the feasibility of implementing a Lactobacillus delivery system for development of S. aureus oral vaccine was first discussed. Here, we describe systematic screening and evaluation of protective effects of engineered Lactobacillus against S. aureus infection in terms of different delivery vehicle strains and S. aureus antigens and in localized and systemic infection models. Limosilactobacillus reuteri WXD171 was selected as the delivery vehicle strain based on its tolerance of the gastrointestinal environment, adhesion ability, and antimicrobial activities in vitro and in vivo. We designed, constructed, and evaluated engineered L. reuteri strains expressing various S. aureus antigens. Among these, engineered L. reuteri WXD171-IsdB displayed effective protection against S. aureus-induced localized infection (pneumonia and skin infection) and, furthermore, a substantial survival benefit in systemic infection (sepsis). WXD171-IsdB induced mucosal responses in gut-associated lymphoid tissues, as evidenced by increased production of secretory IgA and interleukin 17A (IL-17A) and proliferation of lymphocytes derived from Peyer's patches. The probiotic L. reuteri-based oral vaccine appears to have strong potential as a prophylactic agent against S. aureus infections. Our findings regarding utilization of Lactobacillus delivery system in S. aureus vaccine development support the usefulness of this live vaccination strategy and its potential application in next-generation vaccine development. IMPORTANCE We systematically screened and evaluated protective effects of engineered Lactobacillus against S. aureus infection in terms of differing delivery vehicle strains and S. aureus antigens and in localized and systemic infection models. Engineered L. reuteri was developed and showed strong protective effects against both types of S. aureus-induced infection. Our findings regarding the utilization of a Lactobacillus delivery system in S. aureus vaccine development support the usefulness of this live vaccination strategy and its potential application in next-generation vaccine development.
Collapse
Affiliation(s)
- Na Pan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yang Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Haochi Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Ying Xu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xuemei Bao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Shouxin Sheng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yanchen Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Bohui Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yueqing Lyu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Haotian Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Fangfei Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Haiting Pan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
- Basic Medical College, Inner Mongolia Medical University, Hohhot, China
| | - Xiao Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
9
|
Rybkin I, Pinyaev S, Sindeeva O, German S, Koblar M, Pyataev N, Čeh M, Gorin D, Sukhorukov G, Lapanje A. Modification of bacterial cells for in vivo remotely guided systems. Front Bioeng Biotechnol 2023; 10:1070851. [PMID: 36686260 PMCID: PMC9845715 DOI: 10.3389/fbioe.2022.1070851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023] Open
Abstract
It was shown recently that bacterial strains, which can act specifically against malignant cells, can be used efficiently in cancer therapy. Many appropriate bacterial strains are either pathogenic or invasive and there is a substantial shortage of methods with which to monitor in vivo the distribution of bacteria used in this way. Here, it is proposed to use a Layer-by-Layer (LbL) approach that can encapsulate individual bacterial cells with fluorescently labeled polyelectrolytes (PE)s and magnetite nanoparticles (NP)s. The NP enable remote direction in vivo to the site in question and the labeled shells in the far-red emission spectra allow non-invasive monitoring of the distribution of bacteria in the body. The magnetic entrapment of the modified bacteria causes the local concentration of the bacteria to increase by a factor of at least 5. The PEs create a strong barrier, and it has been shown in vitro experiments that the division time of bacterial cells coated in this way can be regulated, resulting in control of their invasion into tissues. That animals used in the study survived and did not suffer septic shock, which can be attributed to PE capsules that prevent release of endotoxins from bacterial cells.
Collapse
Affiliation(s)
- Iaroslav Rybkin
- Helmholtz-Zentrum Dresden-Rossendorf, Leipzig, Germany,Jožef Stefan Institute, Ljubljana, Slovenia,State University, Saratov, Russia,Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Sergey Pinyaev
- National Research Ogerev Mordovia State University, Saransk, Russia
| | - Olga Sindeeva
- State University, Saratov, Russia,A.V. Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Sergey German
- Center of Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia,Institute of Spectroscopy of the Russian Academy of Sciences, Moscow, Russia
| | - Maja Koblar
- Jožef Stefan Institute, Ljubljana, Slovenia,Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Nikolay Pyataev
- National Research Ogerev Mordovia State University, Saransk, Russia
| | - Miran Čeh
- Jožef Stefan Institute, Ljubljana, Slovenia
| | - Dmitry Gorin
- Center of Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Gleb Sukhorukov
- A.V. Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia,Queen Mary University of London, London, United Kingdom
| | - Aleš Lapanje
- Jožef Stefan Institute, Ljubljana, Slovenia,*Correspondence: Aleš Lapanje,
| |
Collapse
|
10
|
Xu YXY, Zhang XZ, Weng MM, Cheng YK, Liu RD, Long SR, Wang ZQ, Cui J. Oral immunization of mice with recombinant Lactobacillus plantarum expressing a Trichinella spiralis galectin induces an immune protection against larval challenge. Parasit Vectors 2022; 15:475. [PMID: 36539832 PMCID: PMC9764493 DOI: 10.1186/s13071-022-05597-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Trichinella spiralis is an important foodborne parasite that presents a severe threat to food safety. The development of an anti-Trichinella vaccine is an important step towards controlling Trichinella infection in food animals and thus ensure meat safety. Trichinella spiralis galectin (Tsgal) is a novel protein that has been identified on the surface of this nematode. Recombinant Tsgal (rTsgal) was found to participate in larval invasion of intestinal epithelium cells (IECs), whereas anti-rTsgal antibodies impeded the invasion. METHODS The rTsgal/pSIP409- pgsA' plasmid was constructed and transferred into Lactobacillus plantarum strain NC8, following which the in vitro biological properties of rTsgal/NC8 were determined. Five groups of mice were orally immunized three times, with a 2-week interval between immunizations, with recombinant NC8-Tsgal, recombinant NC8-Tsgal + α-lactose, empty NC8, α-lactose only or phosphate-buffered saline (PBS), respectively. The vaccinated mice were infected orally with T. spiralis larvae 2 weeks following the last vaccination. Systemic and intestinal local mucosal immune responses and protection were also assessed, as were pathological changes in murine intestine and skeletal muscle. RESULTS rTsgal was expressed on the surface of NC8-Tsgal. Oral immunization of mice with rTsgal vaccine induced specific forms of serum immunoglobulin G (IgG), namely IgG1/IgG2a, as well as IgA and gut mucosal secretion IgA (sIgA). The levels of interferon gamma and interleukin-4 secreted by cells of the spleen, mesenteric lymph nodes, Peyer's patches and intestinal lamina propria were significantly elevated at 2-6 weeks after immunization, and continued to rise following challenge. Immunization of mice with the oral rTsgal vaccine produced a significant immune protection against T. spiralis challenge, as demonstrated by a 57.28% reduction in the intestinal adult worm burden and a 53.30% reduction in muscle larval burden, compared to the PBS control group. Immunization with oral rTsgal vaccine also ameliorated intestinal inflammation, as demonstrated by a distinct reduction in the number of gut epithelial goblet cells and mucin 2 expression level in T. spiralis-infected mice. Oral administration of lactose alone also reduced adult worm and larval burdens and relieved partially inflammation of intestine and muscles. CONCLUSIONS Immunization with oral rTsgal vaccine triggered an obvious gut local mucosal sIgA response and specific systemic Th1/Th2 immune response, as well as an evident protective immunity against T. spiralis challenge. Oral rTsgal vaccine provided a prospective approach for control of T. spiralis infection.
Collapse
Affiliation(s)
- Yang Xiu Yue Xu
- grid.207374.50000 0001 2189 3846Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Xin Zhuo Zhang
- grid.207374.50000 0001 2189 3846Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Min Min Weng
- grid.207374.50000 0001 2189 3846Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Yong Kang Cheng
- grid.207374.50000 0001 2189 3846Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Ruo Dan Liu
- grid.207374.50000 0001 2189 3846Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Shao Rong Long
- grid.207374.50000 0001 2189 3846Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Zhong Quan Wang
- grid.207374.50000 0001 2189 3846Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Jing Cui
- grid.207374.50000 0001 2189 3846Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| |
Collapse
|
11
|
Liu Y, Feng J, Pan H, Zhang X, Zhang Y. Genetically engineered bacterium: Principles, practices, and prospects. Front Microbiol 2022; 13:997587. [PMID: 36312915 PMCID: PMC9606703 DOI: 10.3389/fmicb.2022.997587] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/23/2022] [Indexed: 12/24/2022] Open
Abstract
Advances in synthetic biology and the clinical application of bacteriotherapy enable the use of genetically engineered bacteria (GEB) to combat various diseases. GEB act as a small 'machine factory' in the intestine or other tissues to continuously produce heterologous proteins or molecular compounds and, thus, diagnose or cure disease or work as an adjuvant reagent for disease treatment by regulating the immune system. Although the achievements of GEBs in the treatment or adjuvant therapy of diseases are promising, the practical implementation of this new therapeutic modality remains a grand challenge, especially at the initial stage. In this review, we introduce the development of GEBs and their advantages in disease management, summarize the latest research advances in microbial genetic techniques, and discuss their administration routes, performance indicators and the limitations of GEBs used as platforms for disease management. We also present several examples of GEB applications in the treatment of cancers and metabolic diseases and further highlight their great potential for clinical application in the near future.
Collapse
Affiliation(s)
- Yiting Liu
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Jing Feng
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Hangcheng Pan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Xiuwei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Yunlei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Docando F, Nuñez-Ortiz N, Serra CR, Arense P, Enes P, Oliva-Teles A, Díaz-Rosales P, Tafalla C. Mucosal and systemic immune effects of Bacillus subtilis in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2022; 124:142-155. [PMID: 35367376 DOI: 10.1016/j.fsi.2022.03.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Bacillus spp. are well known for their probiotic properties. Hence, the long-term feeding of Bacillus spp. strains to different fish species has been proved to confer beneficial effects regarding growth or pathogen resistance, among others. However, whether these strains could function as mucosal adjuvants, up-regulating immune responses after a single administration, has not yet been investigated in fish. Thus, in the current work, we have performed a series of experiments in rainbow trout (Oncorhynchus mykiss) aimed at establishing the potential of two Bacillus subtilis spore-forming strains, designated as ABP1 and ABP2, as oral adjuvants/immunostimulants. As an initial step, we evaluated their transcriptional effects on the rainbow trout intestinal epithelial cell line RTgutGC, and in gut tissue explants incubated ex vivo with the two strains. Their capacity to adhere to RTgutGC cells was also evaluated by flow cytometry. Although both strains had the capacity to modulate the transcription of several genes related to innate and adaptive immune responses, it was the ABP1 strain that led to stronger transcriptional effects, also exerting a higher binding capacity to intestinal epithelial cells. Consequently, we selected this strain to establish its effects on splenic B cells upon in vitro exposure as well as to determine the transcriptional effects exerted in the spleen, kidney, and gut after a single oral administration of the bacteria. Our results showed that B. subtilis ABP1 had the capacity to modulate the proliferation, IgM secreting capacity and MHC II surface expression of splenic B cells. Finally, we confirmed that this strain also induced the transcription of genes involved in inflammation, antimicrobial genes, and genes involved in T cell responses upon a single oral administration. Our results provide valuable information regarding how B. subtilis modulates the immune response of rainbow trout, pointing to the usefulness of the ABP1 strain to design novel oral vaccination strategies for aquaculture.
Collapse
Affiliation(s)
- F Docando
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), 28130, Valdeolmos-Alalpardo, Madrid, Spain; Autonomous University of Madrid, Madrid, Spain
| | - N Nuñez-Ortiz
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), 28130, Valdeolmos-Alalpardo, Madrid, Spain
| | - C R Serra
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - P Arense
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), 28130, Valdeolmos-Alalpardo, Madrid, Spain
| | - P Enes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal
| | - A Oliva-Teles
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal
| | - P Díaz-Rosales
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), 28130, Valdeolmos-Alalpardo, Madrid, Spain.
| | - C Tafalla
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), 28130, Valdeolmos-Alalpardo, Madrid, Spain.
| |
Collapse
|
13
|
Huang Q, Niu T, Zou B, Wang J, Xin J, Niu H, Li N, Jiang Y, Bao J, Zhang D, Feng X, Sun T, Wang X, Yang K, Wang Y, Yang G, Zhao D, Wang C. Lactobacillus plantarum Surface-Displayed ASFV (p14.5) Can Stimulate Immune Responses in Mice. Vaccines (Basel) 2022; 10:vaccines10030355. [PMID: 35334986 PMCID: PMC8950097 DOI: 10.3390/vaccines10030355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
African Swine Fever Virus (ASFV) has spread worldwide, and the lack of vaccines severely negatively impacts the pig industry. In this study, the p14.5 protein encoded by ASFV was used as the antigen, and the p14.5 gene was expressed in vitro using the Lactobacillus expression system. Three new functionally recombinant Lactobacillus plantarum (L. plantarum) were constructed and the expressions of the p14.5 protein, p14.5-IL-33-Mus fusion protein and CTA1-p14.5-D-D fusion protein were successfully detected using Western blot analysis. After oral immunization of SPF mice with recombinant L. plantarum, flow cytometry and ELISA were performed to detect the differentiation and maturity of T lymphocytes, B lymphocytes and DCs of the mice, which were higher than those of the control group. Specific antibodies were produced. The immunogenicity of the adjuvant group was stronger than that of the single antigen group, and the IL-33 adjuvant effect was stronger than that of the CTA1-DD adjuvant.
Collapse
Affiliation(s)
- Quntao Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.H.); (T.N.); (B.Z.); (J.W.); (J.X.); (H.N.); (N.L.); (Y.J.); (J.B.); (D.Z.); (X.F.); (T.S.); (X.W.); (K.Y.); (Y.W.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Tianming Niu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.H.); (T.N.); (B.Z.); (J.W.); (J.X.); (H.N.); (N.L.); (Y.J.); (J.B.); (D.Z.); (X.F.); (T.S.); (X.W.); (K.Y.); (Y.W.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Boshi Zou
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.H.); (T.N.); (B.Z.); (J.W.); (J.X.); (H.N.); (N.L.); (Y.J.); (J.B.); (D.Z.); (X.F.); (T.S.); (X.W.); (K.Y.); (Y.W.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Junhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.H.); (T.N.); (B.Z.); (J.W.); (J.X.); (H.N.); (N.L.); (Y.J.); (J.B.); (D.Z.); (X.F.); (T.S.); (X.W.); (K.Y.); (Y.W.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Junhong Xin
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.H.); (T.N.); (B.Z.); (J.W.); (J.X.); (H.N.); (N.L.); (Y.J.); (J.B.); (D.Z.); (X.F.); (T.S.); (X.W.); (K.Y.); (Y.W.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Hui Niu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.H.); (T.N.); (B.Z.); (J.W.); (J.X.); (H.N.); (N.L.); (Y.J.); (J.B.); (D.Z.); (X.F.); (T.S.); (X.W.); (K.Y.); (Y.W.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Nan Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.H.); (T.N.); (B.Z.); (J.W.); (J.X.); (H.N.); (N.L.); (Y.J.); (J.B.); (D.Z.); (X.F.); (T.S.); (X.W.); (K.Y.); (Y.W.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yuxin Jiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.H.); (T.N.); (B.Z.); (J.W.); (J.X.); (H.N.); (N.L.); (Y.J.); (J.B.); (D.Z.); (X.F.); (T.S.); (X.W.); (K.Y.); (Y.W.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Junfu Bao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.H.); (T.N.); (B.Z.); (J.W.); (J.X.); (H.N.); (N.L.); (Y.J.); (J.B.); (D.Z.); (X.F.); (T.S.); (X.W.); (K.Y.); (Y.W.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Di Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.H.); (T.N.); (B.Z.); (J.W.); (J.X.); (H.N.); (N.L.); (Y.J.); (J.B.); (D.Z.); (X.F.); (T.S.); (X.W.); (K.Y.); (Y.W.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Xize Feng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.H.); (T.N.); (B.Z.); (J.W.); (J.X.); (H.N.); (N.L.); (Y.J.); (J.B.); (D.Z.); (X.F.); (T.S.); (X.W.); (K.Y.); (Y.W.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Tingting Sun
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.H.); (T.N.); (B.Z.); (J.W.); (J.X.); (H.N.); (N.L.); (Y.J.); (J.B.); (D.Z.); (X.F.); (T.S.); (X.W.); (K.Y.); (Y.W.)
| | - Xin Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.H.); (T.N.); (B.Z.); (J.W.); (J.X.); (H.N.); (N.L.); (Y.J.); (J.B.); (D.Z.); (X.F.); (T.S.); (X.W.); (K.Y.); (Y.W.)
| | - Kaidian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.H.); (T.N.); (B.Z.); (J.W.); (J.X.); (H.N.); (N.L.); (Y.J.); (J.B.); (D.Z.); (X.F.); (T.S.); (X.W.); (K.Y.); (Y.W.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Ying Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.H.); (T.N.); (B.Z.); (J.W.); (J.X.); (H.N.); (N.L.); (Y.J.); (J.B.); (D.Z.); (X.F.); (T.S.); (X.W.); (K.Y.); (Y.W.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.H.); (T.N.); (B.Z.); (J.W.); (J.X.); (H.N.); (N.L.); (Y.J.); (J.B.); (D.Z.); (X.F.); (T.S.); (X.W.); (K.Y.); (Y.W.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (G.Y.); (D.Z.); (C.W.); Tel./Fax: +86-43184533426 (C.W.)
| | - Dandan Zhao
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (G.Y.); (D.Z.); (C.W.); Tel./Fax: +86-43184533426 (C.W.)
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.H.); (T.N.); (B.Z.); (J.W.); (J.X.); (H.N.); (N.L.); (Y.J.); (J.B.); (D.Z.); (X.F.); (T.S.); (X.W.); (K.Y.); (Y.W.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (G.Y.); (D.Z.); (C.W.); Tel./Fax: +86-43184533426 (C.W.)
| |
Collapse
|
14
|
Raya-Tonetti F, Müller M, Sacur J, Kitazawa H, Villena J, Vizoso-Pinto MG. Novel LysM motifs for antigen display on lactobacilli for mucosal immunization. Sci Rep 2021; 11:21691. [PMID: 34737363 PMCID: PMC8568972 DOI: 10.1038/s41598-021-01087-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
We characterized two LysM domains of Limosilactobacillus fermentum, belonging to proteins Acglu (GenBank: KPH22907.1) and Pgb (GenBank: KPH22047.1) and bacterium like particles (BLP) derived from the immunomodulatory strain Lacticaseibacillus rhamnosus IBL027 (BLPs027) as an antigen display platform. The fluorescence protein Venus fused to the novel LysM domains could bind to the peptidoglycan shell of lactobacilli and resisted harsh conditions such as high NaCl and urea concentrations. Acglu with five LysM domains was a better anchor than Pgb baring only one domain. Six-week-old BALB/c mice were nasally immunized with the complex Venus-Acglu-BLPs027 at days 0, 14 and 28. The levels of specific serum IgG, IgG1 and IgG2a and the levels of total immunoglobulins (IgT) and IgA in broncho-alveolar lavage (BAL) were evaluated ten days after the last boosting. Venus-Acglu-BLPs027, nasally administered, significantly increased specific BAL IgT and IgA, and serum IgG levels. In addition, spleen cells of mice immunized with Venus-Acglu-BLPs027 secreted TNF-α, IFN-γ and IL-4 when stimulated ex vivo in a dose-dependent manner. We constructed a Gateway compatible destination vector to easily fuse the selected LysM domain to proteins of interest for antigen display to develop mucosal subunit vaccines.
Collapse
Affiliation(s)
- Fernanda Raya-Tonetti
- Infection Biology Laboratory, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, 4000, Tucumán, Argentina.,Laboratorio de Ciencias Básicas & Or. Genética, Facultad de Medicina, Universidad Nacional de Tucumán, 4000, Tucumán, Argentina
| | - Melisa Müller
- Infection Biology Laboratory, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, 4000, Tucumán, Argentina.,Laboratorio de Ciencias Básicas & Or. Genética, Facultad de Medicina, Universidad Nacional de Tucumán, 4000, Tucumán, Argentina
| | - Jacinto Sacur
- Infection Biology Laboratory, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, 4000, Tucumán, Argentina.,Laboratorio de Ciencias Básicas & Or. Genética, Facultad de Medicina, Universidad Nacional de Tucumán, 4000, Tucumán, Argentina
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan. .,Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan.
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), 4000, Tucumán, Argentina.
| | - Maria Guadalupe Vizoso-Pinto
- Infection Biology Laboratory, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, 4000, Tucumán, Argentina. .,Laboratorio de Ciencias Básicas & Or. Genética, Facultad de Medicina, Universidad Nacional de Tucumán, 4000, Tucumán, Argentina.
| |
Collapse
|
15
|
Oral vaccination with recombinant Lactobacillus plantarum encoding Trichinella spiralis inorganic pyrophosphatase elicited a protective immunity in BALB/c mice. PLoS Negl Trop Dis 2021; 15:e0009865. [PMID: 34699522 PMCID: PMC8547688 DOI: 10.1371/journal.pntd.0009865] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022] Open
Abstract
Background Trichinellosis is a serious zoonotic disease distributed around the world. It is needed to develop a safe, effective and feasible anti-Trichinella vaccine for prevention and control of trichinellosis. The aim of this study was to construct a recombinant Lactobacillus plantarum encoding Trichinella spiralis inorganic pyrophosphatase (TsPPase) and investigate its immune protective effects against T. spiralis infection. Methodology/Principal findings The growth of recombinant L. plantarum was not affected by TsPPase/pSIP409-pgsA′ plasmid, and the recombinant plasmid was inherited stably in bacteria. Western blot and immunofluorescence assay (IFA) indicated that the rTsPPase was expressed on the surface of recombinant L. plantarum. Oral vaccination with rTsPPase induced higher levels of specific serum IgG, IgG1, IgG2a and mucosal secretory IgA (sIgA) in BALB/c mice. ELISA analysis revealed that the levels of IFN-γ and IL-4 released from spleen, mesenteric lymph nodes and Peyer’s patches were evidently increased at 2–4 weeks following vaccination, compared to MRS (De Man, Rogosa, Sharpe) medium control group (P < 0.05). Immunization of mice with rTsPPase exhibited a 67.18, 54.78 and 51.91% reduction of intestinal infective larvae, adult worms and muscle larvae at 24 hours post infection (hpi), 6 days post infection (dpi) and 35 dpi, respectively (P < 0.05), and the larval molting and development was significantly inhibited by 45.45% at 24 hpi, compared to the MRS group. Conclusions TsPPase plays a crucial role in T. spiralis molting and development, oral vaccination with rTsPPase induced a significant local mucosal sIgA response and systemic Th1/Th2 immune response, and immune protection against T. spiralis infection in BALB/c mice. In the previous study, a Trichinella spiralis inorganic pyrophosphatase (TsPPase) was expressed and its role in larval molting and development was observed. In this study, a recombinant TsPPase/pSIP409-pgsA′ plasmid was constructed and transferred into Lactobacillus plantarum NC8, the rTsPPase was expressed on the surface of recombinant L. plantarum NC8. Oral immunization of mice with rTsPPase DNA vaccine elicited a high level of specific serum IgG, IgG1, IgG2a and mucosal secretory IgA (sIgA). The levels of IFN-γ and IL-4 released from spleen, mesenteric lymph nodes and Peyer’s patches were evidently increased at 2–4 weeks following vaccination. Immunization of mice with rTsPPase showed a significant reduction of intestinal infective larvae, adult worms and muscle larvae, and intestinal larval molting and development was significantly suppressed. The results indicated that oral vaccination with rTsPPase elicited a significant local mucosal sIgA response and specific systemic Th1/Th2 immune response, and an obvious protective immunity against T. spiralis infection.
Collapse
|
16
|
Qiao N, Du G, Zhong X, Sun X. Recombinant lactic acid bacteria as promising vectors for mucosal vaccination. EXPLORATION (BEIJING, CHINA) 2021; 1:20210026. [PMID: 37323212 PMCID: PMC10191043 DOI: 10.1002/exp.20210026] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/13/2021] [Indexed: 06/15/2023]
Abstract
Lactic acid bacteria (LAB), a diverse family of gram-positive bacteria, has been proven effective in delivering varieties of therapeutic and prophylactic molecules such as antigens and cytokines. Featuring the properties of acid-resistant, high uptake into Peyer's patches, and superior capacity for inducing secretory IgA antibodies, LAB have good potential to be used as vaccine vectors for mucosal vaccination. Mucosal immunization enables both mucosal and systemic immune responses, which are critical for resisting pathogens that invade the host through the mucosal surfaces. With the development of genetic engineering, LAB strains, primarily Lactococcus and Lactobacillus have been exploited to express a range of heterologous antigens. Numerous studies have demonstrated that LAB mucosal vaccines can stimulate all arms of the immune system to provide adequate protection against pathogen infections. Additionally, several LAB-based human papillomavirus vaccines have entered the clinical trial studies, which suggest the great promise of LAB vaccines for new interventions in mucosal transport diseases. Herein, we will discuss the factors that influence the immunogenicity of LAB vaccines, including LAB strains, the location of antigens, and administration routes, and focus on the current strategies that have been reported for optimizing LAB vaccines.
Collapse
Affiliation(s)
- Nan Qiao
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan ProvinceSichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of Pharmacy, Sichuan UniversityChengduChina
| | - Guangsheng Du
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan ProvinceSichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of Pharmacy, Sichuan UniversityChengduChina
| | - Xiaofang Zhong
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan ProvinceSichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of Pharmacy, Sichuan UniversityChengduChina
| | - Xun Sun
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan ProvinceSichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of Pharmacy, Sichuan UniversityChengduChina
| |
Collapse
|
17
|
Tan Q, Hu J, Zhou Y, Wan Y, Zhang C, Liu X, Long X, Tan F, Zhao X. Inhibitory Effect of Lactococcus lactis subsp. lactis HFY14 on Diphenoxylate-Induced Constipation in Mice by Regulating the VIP-cAMP-PKA-AQP3 Signaling Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1971-1980. [PMID: 34007157 PMCID: PMC8123977 DOI: 10.2147/dddt.s309675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/24/2021] [Indexed: 12/26/2022]
Abstract
Aim The naturally fermented yak yogurt of pastoralists in the Tibetan Plateau, China, because of its unique geographical environment and the unique lifestyle of Tibetan pastoralists, is very different from other kinds of sour milk, and the microorganisms it contains are special. Lactococcus lactis subsp. lactis HFY14 (LLSL-HFY14) is a new lactic acid bacterium isolated from naturally fermented yak yogurt. The purpose of this study was to study the inhibitory effect of the bacterium on constipation. Methods Constipation was induced in ICR mice with diphenoxylate, and the constipated mice were treated with LLSL-HFY14. The weight and feces of the mice were visually detected. Colonic tissues were observed on hematoxylin and eosin-stained sections. Serum indices were detected with kits. mRNA expression in the colon was determined by quantitative polymerase chain reaction assay. Results Constipation caused weight loss, the number of defecation granules, defecation weight, fecal water content decreased, and the first black stool excretion time increased. LLSL-HFY14 alleviated these symptoms, and the effects were similar to those of lactulose (drug). The pathological examination revealed that constipation caused pathological changes in the colon, and LLSL-HFY14 effectively alleviated the disease. LLSL-HFY14 increased serum levels of motilin, gastrin, endothelin, substance P, acetylcholinesterase, and vasoactive intestinal peptide (VIP) and decreased serum levels of somatostatin in constipated mice. In addition, LLSL-HFY14 upregulated VIP, cAMP, protein kinase A, and aquaporin 3 expression in colonic tissues of constipated mice in a dose-dependent manner. Conclusion LLSL-HFY14 inhibited constipation, similar to lactulose, and has the potential to become a biological agent.
Collapse
Affiliation(s)
- Qian Tan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, People's Republic of China.,College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Jing Hu
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Yujing Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, People's Republic of China.,College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Yunxiao Wan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, People's Republic of China.,College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Chuanlan Zhang
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, People's Republic of China.,College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Xin Liu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, People's Republic of China.,College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Xingyao Long
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, People's Republic of China.,Department of Food Science and Biotechnology, Cha University, Seongnam, 13488, South Korea
| | - Fang Tan
- Department of Public Health, Our Lady of Fatima University, 838 Valenzuela, Philippines
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| |
Collapse
|
18
|
Muhialdin BJ, Zawawi N, Abdull Razis AF, Bakar J, Zarei M. Antiviral activity of fermented foods and their probiotics bacteria towards respiratory and alimentary tracts viruses. Food Control 2021; 127:108140. [PMID: 33867696 PMCID: PMC8036130 DOI: 10.1016/j.foodcont.2021.108140] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/09/2021] [Accepted: 04/04/2021] [Indexed: 02/06/2023]
Abstract
The recent COVID-19, a viral outbreak calls for a high demand for non-conventional antiviral agents that can reduce the risk of infections and promote fast recovery. Fermented foods and their probiotics bacteria have recently received increasing interest due to the reported potential of high antiviral activity. Several probiotics strains demonstrated broad range of antiviral activities and different mechanisms of action. This article will review the diversity, health benefits, interaction with immune system and antiviral activity of fermented foods and their probiotics bacteria. In addition, the mechanisms of action will be reviewed to determine the broad range potential antiviral activity against the respiratory and alimentary tracts viruses. The probiotics bacteria and bioactive compounds in fermented foods demonstrated antiviral activities against respiratory and alimentary tracts viruses. The mechanism of action was reported to be due to the stimulation of the immune system function via enhancing natural killers cell toxicity, enhance the production of pro-inflammatory cytokines, and increasing the cytotoxic of T lymphocytes (CD3+, CD16+, CD56+). However, further studies are highly recommended to determine the potential antiviral activity for traditional fermented foods.
Collapse
Affiliation(s)
- Belal J Muhialdin
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia.,Halal Products Research Institute, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia
| | - Norhasnida Zawawi
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia.,Natural Medicines and Product Research Laboratory, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia.,Natural Medicines and Product Research Laboratory, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia
| | - Jamilah Bakar
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia
| | - Mohammad Zarei
- Department of Food Science and Technology, School of Industrial Technology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, 40450, Selangor, Malaysia
| |
Collapse
|