1
|
Ghanati K, Shafaroodi H, Basaran B, Moslemizadeh A, Mahdavi V, Sadighara M, Oskoei V, Sadighara P. Strategies to reduce neurotoxic acrylamide in biscuits, a systematic review. Toxicol Rep 2024; 13:101751. [PMID: 39399097 PMCID: PMC11470260 DOI: 10.1016/j.toxrep.2024.101751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
In this systematic review, considering the wide consumption of biscuits, the research that has been designed so far to reduce acrylamide in biscuits is discussed. Some methods were the use of antioxidants, some food additives, optimization of baking methods, suppression of acrolein production, and suppression of Maillard reaction. The advantages and disadvantages of each of these methods are discussed in this systematic review. The most important possible mechanism in the formation of acrylamide is the Maillard reaction.The greatest influence of the intervention effects was seen in the studies in which the Maillard reaction was suppressed. In some studies, this efficiency was observed above 90 %. It has also been observed in some studies that acrylamide is significantly reduced by using some antioxidants in the biscuit formulation. In this condition, a decrease in the amount of acrylamide was observed in the range of 50-90 % depending on the type of antioxidant. In this regard, the greatest reduction effect was reported with the use of tropical fruits and bamboo leaves in the formulation of biscuits.
Collapse
Affiliation(s)
- Kiandokht Ghanati
- Department of food science and Technology, National Nutrition and Food Technology Research Institute (NNFTRI) and Food safety research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shafaroodi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Burhan Basaran
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Recep Tayyip Erdogan University, Rize 53100, Turkey
| | - Amirhossein Moslemizadeh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection (IRIPP), Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Melina Sadighara
- Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vahide Oskoei
- School of Life and Environmental Science, Deakin University, Geelong, Australia
| | - Parisa Sadighara
- Department of Environmental Health Engineering, Division of Food Safety and Hygiene, School of Public health,Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Ferreira CLP, da Costa DS, de Faria RAPG, Bragotto APA. Acrylamide in alternative snacks to potato: A review. Food Res Int 2024; 194:114931. [PMID: 39232543 DOI: 10.1016/j.foodres.2024.114931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/03/2024] [Accepted: 08/14/2024] [Indexed: 09/06/2024]
Abstract
The snack food market has been changing to keep up with the growing demand for healthier products and, as a result, alternative products to traditional potato chips have been emerging to provide health-related benefits. Extrusion, frying, and baking are the main techniques used worldwide in the processing of snacks and are among the main reasons for the formation of toxic compounds induced by heat, such as acrylamide. This contaminant is formed during thermal processing in foods heated at high temperatures and rich in carbohydrates. Processed potato-based products have been pointed out as the main contributors to acrylamide dietary exposure. Many studies have been conducted on potato chips since the discovery of this contaminant in foods and research on the formation of acrylamide in snacks from other vegetables has begun to be conducted more recently. Thus, this review aims to present a detailed discussion on the occurrence of acrylamide in alternative vegetable snacks that are consumed as being healthier and to address relevant questions about the effectiveness of mitigation strategies that have been developed for these products. Through this research, it was observed that, depending on the vegetable, the levels of this contaminant can be quite variable. Alternative snacks, such as sweet potato, carrot and beetroot may also contain high levels of acrylamide and need to be monitored even more closely than potatoes snacks, as less information is available on these food products. Furthermore, various pretreatments (e.g. bleaching, immersion in solutions containing chemical substances) and processing conditions (heating methods, time, temperature) can reduce the formation of acrylamide (54-99 %) in alternative vegetable snacks.
Collapse
Affiliation(s)
- Cristiane Lopes Pinto Ferreira
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos, Rua Monteiro Lobato 80, 13083-862 Campinas, SP, Brazil; Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso (IFMT), Rua Juliano da Costa Marques, s/n, Bela Vista, 78360-900 Cuiabá, MT, Brazil.
| | - David Silva da Costa
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos, Rua Monteiro Lobato 80, 13083-862 Campinas, SP, Brazil.
| | | | - Adriana Pavesi Arisseto Bragotto
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos, Rua Monteiro Lobato 80, 13083-862 Campinas, SP, Brazil.
| |
Collapse
|
3
|
Pietropaoli F, Pantalone S, Cichelli A, d'Alessandro N. Acrylamide in widely consumed foods - a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:853-887. [PMID: 35286246 DOI: 10.1080/19440049.2022.2046292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acrylamide (AA) is considered genotoxic, neurotoxic and a 'probable human carcinogen'. It is included in group 2 A of the International Agency for Research on Cancer (IARC). The formation of AA occurs when starch-based foods are subjected to temperatures higher than 120 °C in an atmosphere with very low water content. The aim of this review is to shed light on the toxicological aspects of AA, showing its regulatory evolution, and describing the most interesting mitigation techniques for each food category involved, with a focus on compliance with EU legislation in the various classes of consumer products of industrial origin in Europe.
Collapse
Affiliation(s)
- Francesca Pietropaoli
- Department of Innovative Technology in Medicine and Dentistry, University "G. d'Annunzio", Chieti, Italy
| | - Sara Pantalone
- Department of Engineering and Geology, University "G. d'Annunzio", Chieti, Italy
| | - Angelo Cichelli
- Department of Innovative Technology in Medicine and Dentistry, University "G. d'Annunzio", Chieti, Italy
| | - Nicola d'Alessandro
- Department of Engineering and Geology, University "G. d'Annunzio", Chieti, Italy
| |
Collapse
|
4
|
Biscuit Contaminants, Their Sources and Mitigation Strategies: A Review. Foods 2021; 10:foods10112751. [PMID: 34829032 PMCID: PMC8621915 DOI: 10.3390/foods10112751] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 01/18/2023] Open
Abstract
The scientific literature is rich in investigations on the presence of various contaminants in biscuits, and of articles aimed at proposing innovative solutions for their control and prevention. However, the relevant information remains fragmented. Therefore, the objective of this work was to review the current state of the scientific literature on the possible contaminants of biscuits, considering physical, chemical, and biological hazards, and making a critical analysis of the solutions to reduce such contaminations. The raw materials are primary contributors of a wide series of contaminants. The successive processing steps and machinery must be monitored as well, because if they cannot improve the initial safety condition, they could worsen it. The most effective mitigation strategies involve product reformulation, and the use of alternative baking technologies to minimize the thermal load. Low oxygen permeable packaging materials (avoiding direct contact with recycled ones), and reformulation are effective for limiting the increase of contaminations during biscuit storage. Continuous monitoring of raw materials, intermediates, finished products, and processing conditions are therefore essential not only to meet current regulatory restrictions but also to achieve the aim of banning dietary contaminants and coping with related diseases.
Collapse
|
5
|
Deribew HA, Woldegiorgis AZ. Acrylamide levels in coffee powder, potato chips and French fries in Addis Ababa city of Ethiopia. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Endeshaw H, Belay A. Optimization of the roasting conditions to lower acrylamide content and improve the nutrient composition and antioxidant properties of Coffea arabica. PLoS One 2020; 15:e0237265. [PMID: 32841240 PMCID: PMC7447024 DOI: 10.1371/journal.pone.0237265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/22/2020] [Indexed: 11/18/2022] Open
Abstract
Roasting is the most common method of processing coffee. During roasting, aromatic compounds are generated due to various reactions, which are important for developing color, flavor and aroma. Acrylamide is an undesirable carcinogenic substance that is metabolically activated and formed during the coffee roasting process. Coffea arabica was first found in Ethiopia, and Ethiopia can produce a large volume of coffee. The major coffee-producing areas in Ethiopia are Hararghe, Sidama, Gimbi/Nekemte, Yergachefe and Limu. The primary purpose of this study was to quantify the acrylamide contents of brewed and roasted coffee collected from street coffee sellers and industrial processors found in Addis Ababa, Ethiopia, and optimize the roasting conditions for Sidama coffee. The acrylamide contents were determined by HPLC using a DAD at 210 nm, the antioxidant property were examined using a UV-spectrophotometer, and moisture and nutrient composition of coffee was determined using the method described by the AOAC (Association of Official Analytical Chemists). The roasting temperature and time were optimized based on the acrylamide content, nutritional composition and antioxidant property of the coffee using central composite design. The roasting temperature and time significantly affected (p<0.05) the acrylamide level, nutritional composition and antioxidant property of the coffee. The acrylamide contents of street and industrial processed powdered coffee were 346 ±19 to 701±38μg/kg and 442±14 to 906±7μg/kg, respectively. Brewed coffee from street vendors and industrial processing had acrylamide contents of 25±2 to 49±1μg/L and 63±2 to 89±4μg/L, respectively. The EC50 values for scavenging radicals for the optimized coffee ranged from 171±0 to 111±4 μg/L. The optimal roasting temperature and time were 190°C and 6 minutes, at this temperature and time the acrylamide content decreased, and the antioxidant and nutritional compositions of the coffee improved.
Collapse
Affiliation(s)
- Huluager Endeshaw
- Department of Food Science and Applied Nutrition, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Abera Belay
- Department of Food Science and Applied Nutrition, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| |
Collapse
|
7
|
Detecting the Quantity of Acrylamide in Potato Chips Utilizing CdTe Surface Functionalized Quantum Dots with Fluorescence Spectroscopy. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09889-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Lange L, Meyer AS. Potentials and possible safety issues of using biorefinery products in food value chains. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Boz H, Karaoğlu M, Kaban G. The effects of cooking time and sugar on total phenols, hydroxymethylfurfural and acrylamide content of mulberry leather (pestil). QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2016. [DOI: 10.3920/qas2014.0558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- H. Boz
- Gastronomy and Culinary Arts Department, Tourism Faculty, Atatürk University, 25240 Erzurum, Turkey
| | - M.M. Karaoğlu
- Food Engineering Department, Faculty of Agriculture, Atatürk University, 25240 Erzurum, Turkey
| | - G. Kaban
- Food Engineering Department, Faculty of Agriculture, Atatürk University, 25240 Erzurum, Turkey
| |
Collapse
|
10
|
Zamora R, Hidalgo FJ. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) formation and fate: an example of the coordinate contribution of lipid oxidation and Maillard reaction to the production and elimination of processing-related food toxicants. RSC Adv 2015. [DOI: 10.1039/c4ra15371e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Major chemical reactions dealing with carbonyl chemistry in foods (Maillard reaction and lipid oxidation) play a role in PhIP formation and fate, pointing to this and analogous heterocyclic aromatic amines as outcomes of this chemistry.
Collapse
Affiliation(s)
- Rosario Zamora
- Instituto de la Grasa
- Consejo Superior de Investigaciones Científicas
- 41013 Seville
- Spain
| | - Francisco J. Hidalgo
- Instituto de la Grasa
- Consejo Superior de Investigaciones Científicas
- 41013 Seville
- Spain
| |
Collapse
|