1
|
Li Y, Zhang J, Wang W, Lu Y, Sun L, Zhang Y. Ecological Risk Assessment of Three Pesticide Additives in Soil and Application to the Remediation of Contaminated Soil. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1677-1689. [PMID: 38661489 DOI: 10.1002/etc.5883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
Pesticide additives (PAs) are auxiliary ingredients added to the pesticide manufacturing and use processes, constituting 1% to 99% of the pesticide and often composed of benzene and chlorinated hydrocarbons. We selected three typical PAs, toluene, chloroform, and trichloroethylene, to evaluate their retention function toxicity and ecological risk in soil. Soil immobilization techniques and aquatic model organisms were used to demonstrate the effectiveness of the immobilized soil method to determine the ecological risk of chemicals. The 48-h median lethal concentrations of toluene, chloroform, and trichloroethylene alone in spiked soil on Daphnia magna were 10.5, 2.3, and 1.1 mg/L (medium, high, and high toxicity, respectively). The toxicity of the three-PA mixtures showed an antagonistic effect. The risk levels of toluene, chloroform, and trichloroethylene in the soil were evaluated as moderate to high, low to high, and high risk, respectively. The toxicity of two pesticide-contaminated sites in the Yangtze River Delta before and after remediation was successfully evaluated by immobilized soil technology. The toxicity of two soil sampling points was reduced from medium toxic to low toxic and no toxic, respectively, after remediation. The results of our study give a rationale for and prove the validity of the aquatic model organisms and soil immobilization techniques in assessing the soil retention functions toxicity of PAs. Environ Toxicol Chem 2024;43:1677-1689. © 2024 SETAC.
Collapse
Affiliation(s)
- Ying Li
- School of Energy & Environment, Southeast University, Nanjing, China
| | - Jing Zhang
- School of Energy & Environment, Southeast University, Nanjing, China
| | - Wenqiang Wang
- School of Energy & Environment, Southeast University, Nanjing, China
| | - Yongze Lu
- School of Energy & Environment, Southeast University, Nanjing, China
| | - Liwei Sun
- School of Energy & Environment, Southeast University, Nanjing, China
| | - Yimin Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, China
| |
Collapse
|
2
|
Cytotoxicity of Mycotoxins and Their Combinations on Different Cell Lines: A Review. Toxins (Basel) 2022; 14:toxins14040244. [PMID: 35448853 PMCID: PMC9031280 DOI: 10.3390/toxins14040244] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 12/11/2022] Open
Abstract
Mycotoxins are secondary metabolites of molds and mainly produced by species of the genera Aspergillus, Penicillium and Fusarium. They can be synthesized on the field, during harvest as well as during storage. They are fairly stable compounds and difficult to remove. Among several hundreds of mycotoxins, according to the WHO, ochratoxin A, aflatoxins, zearalenone, deoxynivalenol, patulin, fumonisins as well as T-2 and HT-2 toxins deserve special attention. Cytotoxicity is one of the most important adverse properties of mycotoxins and is generally assessed via the MTT assay, the neutral red assay, the LDH assay, the CCK-8 assay and the ATP test in different cell lines. The apoptotic cell ratio is mainly assessed via flow cytometry. Aside from the assessment of the toxicity of individual mycotoxins, it is important to determine the cytotoxicity of mycotoxin combinations. Such combinations often exhibit stronger cytotoxicity than individual mycotoxins. The cytotoxicity of different mycotoxins often depends on the cell line used in the experiment and is frequently time- and dose-dependent. A major drawback of assessing mycotoxin cytotoxicity in cell lines is the lack of interaction typical for complex organisms (for example, immune responses).
Collapse
|
3
|
Rong X, Jiang Y, Li F, Sun-Waterhouse D, Zhao S, Guan X, Li D. Close association between the synergistic toxicity of zearalenone-deoxynivalenol combination and microRNA221-mediated PTEN/PI3K/AKT signaling in HepG2 cells. Toxicology 2022; 468:153104. [DOI: 10.1016/j.tox.2022.153104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/21/2022]
|
4
|
Thapa A, Horgan KA, White B, Walls D. Deoxynivalenol and Zearalenone-Synergistic or Antagonistic Agri-Food Chain Co-Contaminants? Toxins (Basel) 2021; 13:toxins13080561. [PMID: 34437432 PMCID: PMC8402399 DOI: 10.3390/toxins13080561] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 01/01/2023] Open
Abstract
Deoxynivalenol (DON) and Zearalenone (ZEN) are two commonly co-occurring mycotoxins produced by members of the genus Fusarium. As important food chain contaminants, these can adversely affect both human and animal health. Critically, as they are formed prior to harvesting, their occurrence cannot be eliminated during food production, leading to ongoing contamination challenges. DON is one of the most commonly occurring mycotoxins and is found as a contaminant of cereal grains that are consumed by humans and animals. Consumption of DON-contaminated feed can result in vomiting, diarrhoea, refusal of feed, and reduced weight gain in animals. ZEN is an oestrogenic mycotoxin that has been shown to have a negative effect on the reproductive function of animals. Individually, their mode of action and impacts have been well-studied; however, their co-occurrence is less well understood. This common co-occurrence of DON and ZEN makes it a critical issue for the Agri-Food industry, with a fundamental understanding required to develop mitigation strategies. To address this issue, in this targeted review, we appraise what is known of the mechanisms of action of DON and ZEN with particular attention to studies that have assessed their toxic effects when present together. We demonstrate that parameters that impact toxicity include species and cell type, relative concentration, exposure time and administration methods, and we highlight additional research required to further elucidate mechanisms of action and mitigation strategies.
Collapse
Affiliation(s)
- Asmita Thapa
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland;
| | | | - Blánaid White
- School of Chemical Sciences, National Centre for Sensor Research, DCU Water Institute, Dublin City University, Dublin 9, Ireland
- Correspondence: (B.W.); (D.W.); Tel.: +353-01-7006731 (B.W.); +353-01-7005600 (D.W.)
| | - Dermot Walls
- School of Biotechnology, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
- Correspondence: (B.W.); (D.W.); Tel.: +353-01-7006731 (B.W.); +353-01-7005600 (D.W.)
| |
Collapse
|
5
|
Zhou H, Guog T, Dai H, Yu Y, Zhang Y, Ma L. Deoxynivalenol: toxicological profiles and perspective views for future research. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Deoxynivalenol (DON) is a secondary metabolite mainly produced by the fungi Fusarium in agricultural crops, widely existing in feeds and cereal-based foodstuffs. Because of the high occurrence and potentials to induce a variety of toxic effects on animals and humans, DON has been a very harmful exogenous dietary toxicant threating public health. The focus of this review is to summarise the DON-induced broad spectrum of adverse health effects, to probe the current state of knowledge of combined toxicity of DON with other mycotoxins and its derivatives, and to put forward prospective ideas that multi-generational toxicity of DON and its overall impacts on intestinal-immuno-neuroendocrine system could receive more attention in future investigations. The general aim is to provide a scientific basis for the necessity to re-consider risk-assessment and regulations.
Collapse
Affiliation(s)
- H. Zhou
- College of Food Science, Southwest University, Tiansheng Road #2, Chongqing 400715, China P.R
| | - T. Guog
- College of Food Science, Southwest University, Tiansheng Road #2, Chongqing 400715, China P.R
| | - H. Dai
- College of Food Science, Southwest University, Tiansheng Road #2, Chongqing 400715, China P.R
| | - Y. Yu
- College of Food Science, Southwest University, Tiansheng Road #2, Chongqing 400715, China P.R
| | - Y. Zhang
- College of Food Science, Southwest University, Tiansheng Road #2, Chongqing 400715, China P.R
- Biological Science Research Center, Southwest University, Chongqing 26463, China P.R
| | - L. Ma
- College of Food Science, Southwest University, Tiansheng Road #2, Chongqing 400715, China P.R
- Biological Science Research Center, Southwest University, Chongqing 26463, China P.R
| |
Collapse
|
6
|
Assessing the Effect of Mycotoxin Combinations: Which Mathematical Model Is (the Most) Appropriate? Toxins (Basel) 2020; 12:toxins12030153. [PMID: 32121330 PMCID: PMC7150917 DOI: 10.3390/toxins12030153] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 12/17/2022] Open
Abstract
In the past decades, many studies have examined the nature of the interaction between mycotoxins in biological models classifying interaction effects as antagonisms, additive effects, or synergisms based on a comparison of the observed effect with the expected effect of combination. Among several described mathematical models, the arithmetic definition of additivity and factorial analysis of variance were the most commonly used in mycotoxicology. These models are incorrectly based on the assumption that mycotoxin dose-effect curves are linear. More appropriate mathematical models for assessing mycotoxin interactions include Bliss independence, Loewe’s additivity law, combination index, and isobologram analysis, Chou-Talalays median-effect approach, response surface, code for the identification of synergism numerically efficient (CISNE) and MixLow method. However, it seems that neither model is ideal. This review discusses the advantages and disadvantages of these mathematical models.
Collapse
|
7
|
Silva AS, Brites C, Pouca AV, Barbosa J, Freitas A. UHPLC-ToF-MS method for determination of multi-mycotoxins in maize: Development and validation. Curr Res Food Sci 2019; 1:1-7. [PMID: 32914099 PMCID: PMC7473352 DOI: 10.1016/j.crfs.2019.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
An Ultra-High Performance Liquid Chromatography combined with Time-of-Flight Mass Spectrometry (UHPLC–ToF-MS) method has been developed for determination of nine mycotoxins, namely aflatoxins (AFB1, AFB2, AFG1 and AFG2), ochratoxin A (OTA), zearalenone (ZEA), toxin T2 (T2) and fumonisins (FB1 and FB2) in maize. The method included a two-step extraction with acetonitrile 80% (v/v). After optimization, the analytical method was validated. The different concentrations tested take in account the Maximum Levels (ML) for maize (Commission Regulation EC no. 1881/2006) and good results for repeatability (%RSDr ≤ 15.4%), reproducibility (%RSDR ≤ 15.9%) and recovery (77.8–110.4%, except for AFG2 at 2 μg/kg which presented a recovery of 73.4%) were achieved. These met the performance criteria imposed by Commission Regulation (EC) no. 401/2006. The method was applied to twenty-two samples from Portuguese producers of maize. Fumonisins were the most frequently detected mycotoxins, but the levels do not exceed those imposed by European legislation. A UHPLC–ToF-MS method was developed for determination of nine mycotoxins in maize. Validation of the method was performed taking in account the EU maximum legal limits for maize. Good results for repeatability, reproducibility and recovery were achieved. The method was applied to 22 samples from Portuguese producers of maize. Fumonisins were the most frequently detected mycotoxins.
Collapse
Affiliation(s)
- Ana Sanches Silva
- National Institute for Agricultural and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal
- Center for Study in Animal Science (CECA), ICETA, University of Oporto, Oporto, Portugal
- Corresponding author. National Institute for Agricultural and Veterinary Research, Rua dos Lágidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal.
| | - Carla Brites
- National Institute for Agricultural and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal
- GREEN-IT, ITQB NOVA, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana Vila Pouca
- National Institute for Agricultural and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal
| | - Jorge Barbosa
- National Institute for Agricultural and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal
- REQUIMTE/ LAQV, Pharmacy Faculty, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Andreia Freitas
- National Institute for Agricultural and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal
- REQUIMTE/ LAQV, Pharmacy Faculty, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
8
|
Marin DE, Pistol GC, Bulgaru CV, Taranu I. Cytotoxic and inflammatory effects of individual and combined exposure of HepG2 cells to zearalenone and its metabolites. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:937-947. [PMID: 30919009 DOI: 10.1007/s00210-019-01644-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/11/2019] [Indexed: 12/20/2022]
Abstract
Zearalenone (ZEA), a mycotoxin produced by several Fusarium spp., is most commonly found as a contaminant in stored grain. ZEA derivatives (α-zearalenol (α-ZOL), β-zearalenol (β-ZOL)) can also be produced by Fusarium spp. in corn stems infected by fungi in the field. Also, following oral exposure, zearalenone is metabolized in various tissues, particularly in the liver, the major metabolites being α-ZOL and β-ZOL. The co-exposure of cells to mixture of a combination of mycotoxins may cause an increase of toxicity produced by these mycotoxins. In this in vitro study, we investigated the combined effects of ZEA, α-ZOL, β-ZOL in binary mixtures on the viability and inflammatory response of human liver cancer cell line (HepG2). Cell viability was assessed after 72 h using a neutral red assay. Effect of the toxins and their binary combinations on the expression of genes involved in inflammation (IL-1β, TNF-α, and IL-8) were assessed through qPCR. Our viability data showed that irrespective of the toxin combinations, the toxins have synergistic effect. ZEA + α-ZOL and ZEA + β-ZOL mixtures have induced a slight to high antagonistic response on inflammatory cytokines at low concentrations that have turned into strong synergism for high concentrations. α-ZOL + β-ZOL showed antagonistic effects on inflammation for IL-1β and TNF-α, but act synergic for IL-8 at high toxin concentrations. This study clearly shows that co-contamination of food and feed with ZEA metabolites should be taken into consideration, as the co-exposure to mycotoxins might result in stronger adverse effect than resulted from the exposure to individual toxin.
Collapse
Affiliation(s)
- D E Marin
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, 077015, Balotesti, Ilfov, Romania.
| | - G C Pistol
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, 077015, Balotesti, Ilfov, Romania
| | - C V Bulgaru
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, 077015, Balotesti, Ilfov, Romania
| | - I Taranu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, 077015, Balotesti, Ilfov, Romania
| |
Collapse
|