1
|
Henriquez MA, Sura S, Walkowiak S, Kaminski D, Kirk A, Sumarah MW, Santhanam P, Kepeshchuk N, Carlson J, Ojo ER, de Rocquigny P, Derksen H. The First Large Identification of 3ANX and NX Producing Isolates of Fusarium graminearum in Manitoba, Western Canada. Toxins (Basel) 2025; 17:45. [PMID: 39852998 PMCID: PMC11769337 DOI: 10.3390/toxins17010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Fusarium head blight, caused by Fusarium graminearum, continues to be one of the most important and devastating fungal diseases on cereal grains including wheat, barley, and oat crops. F. graminearum produces toxic secondary metabolites that include trichothecene type A and type B mycotoxins. There are many variants of these toxins that are produced, and in the early 2010s, a novel type A trichothecene mycotoxin known as 3ANX (7-α hydroxy,15-deacetylcalonectrin) and its deacetylated product NX (7-α hydroxy, 3,15-dideacetylcalonectrin) were identified in Minnesota, USA. In the current study, a total of 31,500 wheat spikes over a period of 6 years (2015-2020) within Manitoba, Canada, were screened for the F. graminearum pathogen, which accounted for 72.8% (2015), 98.3% (2016), 71.9% (2017), 74.4% (2018), 92.6% (2019), and 66.1% (2020) of isolations. A total of 303 F. graminearum isolates, confirmed through sequencing of the ribosomal intergenic spacer, were further investigated for variation in the gene Tri1, which was previously associated with the production of the NX toxin, as well as the accumulation of mycotoxins. A subset of these isolates, consisting of 73 isolates, which tested positive or negative for the NX-Tri1-F/R assay in this study, were cultured in vitro using rice media. Mycotoxins were quantified in these samples using mass spectrometry. Using the same rice culture, genomic DNA was isolated, and the Tri1 coding sequence along with its flanking regions (upstream and downstream of the Tri1 gene) was amplified and sequenced. Deoxynivalenol (DON) accumulated in 96% of the cultures from these isolates, while 3-acetyl deoxynivalenol (3ADON) and 3ANX mycotoxins accumulated in 66% and 63%, respectively. Nivalenol, 15-acetyl deoxynivalenol, and NX mycotoxins were detected in 62%, 36%, and 19% of samples, respectively. A significant correlation was observed between 3ADON and 3ANX (r2 = 0.87), as well as between DON and 3ANX (r2 = 0.89). This study highlights the first large identification of 3ANX- and NX-producing isolates of F. graminearum in Western Canada. In addition, it is the first identification of 15ADON chemotypes producing 3ANX in Western Canada and the first identification of 3ANX and NX-producing isolates in Manitoba, collected from wheat samples.
Collapse
Affiliation(s)
- Maria Antonia Henriquez
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada; (P.S.); (N.K.); (J.C.)
| | - Srinivas Sura
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada; (P.S.); (N.K.); (J.C.)
| | - Sean Walkowiak
- Canadian Grain Commission, Grain Research Laboratory, Winnipeg, MB R3T 2N2, Canada;
| | - David Kaminski
- Manitoba Agriculture, 65-3rd Avenue NE, Carman, MB R1N 1Y7, Canada; (D.K.); (A.K.); (E.R.O.); (P.d.R.); (H.D.)
| | - Anne Kirk
- Manitoba Agriculture, 65-3rd Avenue NE, Carman, MB R1N 1Y7, Canada; (D.K.); (A.K.); (E.R.O.); (P.d.R.); (H.D.)
| | - Mark W. Sumarah
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada;
| | - Parthasarathy Santhanam
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada; (P.S.); (N.K.); (J.C.)
| | - Nina Kepeshchuk
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada; (P.S.); (N.K.); (J.C.)
| | - Jules Carlson
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada; (P.S.); (N.K.); (J.C.)
| | - E. RoTimi Ojo
- Manitoba Agriculture, 65-3rd Avenue NE, Carman, MB R1N 1Y7, Canada; (D.K.); (A.K.); (E.R.O.); (P.d.R.); (H.D.)
| | - Pam de Rocquigny
- Manitoba Agriculture, 65-3rd Avenue NE, Carman, MB R1N 1Y7, Canada; (D.K.); (A.K.); (E.R.O.); (P.d.R.); (H.D.)
- Manitoba Crop Alliance, 38-4th Avenue NE, Carman, MB R1N 1Y7, Canada
| | - Holly Derksen
- Manitoba Agriculture, 65-3rd Avenue NE, Carman, MB R1N 1Y7, Canada; (D.K.); (A.K.); (E.R.O.); (P.d.R.); (H.D.)
- UPL AgroSolutions Canada, 2-400 Michener Road, Guelph, ON N1K 1E4, Canada
| |
Collapse
|
2
|
Nguyen TBH, Foulongne-Oriol M, Jany JL, le Floch G, Picot A. New insights into mycotoxin risk management through fungal population genetics and genomics. Crit Rev Microbiol 2024:1-22. [PMID: 39188135 DOI: 10.1080/1040841x.2024.2392179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/08/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
Mycotoxin contamination of food and feed is a major global concern. Chronic or acute dietary exposure to contaminated food and feed can negatively affect both human and animal health. Contamination occurs through plant infection by toxigenic fungi, primarily Aspergillus and Fusarium spp., either before or after harvest. Despite the application of various management strategies, controlling these pathogens remains a major challenge primarily because of their ability to adapt to environmental changes and selection pressures. Understanding the genetic structure of plant pathogen populations is pivotal for gaining new insights into their biology and epidemiology, as well as for understanding the mechanisms behind their adaptability. Such deeper understanding is crucial for developing effective and preemptive management strategies tailored to the evolving nature of pathogenic populations. This review focuses on the population-level variations within the two most economically significant toxigenic fungal genera according to space, host, and pathogenicity. Outcomes in terms of migration patterns, gene flow within populations, mating abilities, and the potential for host jumps are examined. We also discuss effective yet often underutilized applications of population genetics and genomics to address practical challenges in the epidemiology and disease control of toxigenic fungi.
Collapse
Affiliation(s)
- Toan Bao Hung Nguyen
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Plouzané, France
| | | | - Jean-Luc Jany
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Plouzané, France
| | - Gaétan le Floch
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Plouzané, France
| | - Adeline Picot
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Plouzané, France
| |
Collapse
|
3
|
Kelman MJ, Miller JD, Renaud JB, Baskova D, Sumarah MW. A Multi-Year Study of Mycotoxin Co-Occurrence in Wheat and Corn Grown in Ontario, Canada. Toxins (Basel) 2024; 16:372. [PMID: 39195782 PMCID: PMC11359917 DOI: 10.3390/toxins16080372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Mycotoxin emergence and co-occurrence trends in Canadian grains are dynamic and evolving in response to changing weather patterns within each growing season. The mycotoxins deoxynivalenol and zearalenone are the dominant mycotoxins detected in grains grown in Eastern Canada. Two potential emerging mycotoxins of concern are sterigmatocystin, produced by Aspergillus versicolor, and diacetoxyscirpenol, a type A trichothecene produced by a number of Fusarium species. In response to a call from the 83rd Joint Expert Committee on Food Additives and Contaminants, we conducted a comprehensive survey of samples from cereal production areas in Ontario, Canada. Some 159 wheat and 160 corn samples were collected from farms over a three-year period. Samples were extracted and analyzed by LC-MS/MS for 33 mycotoxins and secondary metabolites. Ergosterol was analyzed as an estimate of the overall fungal biomass in the samples. In wheat, the ratio of DON to its glucoside, deoxynivalenol-3-glucoside (DON-3G), exhibited high variability, likely attributable to differences among cultivars. In corn, the ratio was more consistent across the samples. Sterigmatocystin was detected in some wheat that had higher concentrations of ergosterol. Diacetoxyscirpenol was not detected in either corn or wheat over the three years, demonstrating a low risk to Ontario grain. Overall, there was some change to the mycotoxin profiles over the three years for wheat and corn. Ongoing surveys are required to reassess trends and ensure the safety of the food value chain, especially for emerging mycotoxins.
Collapse
Affiliation(s)
- Megan J. Kelman
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (M.J.K.); (J.B.R.); (D.B.)
| | - J. David Miller
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada;
| | - Justin B. Renaud
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (M.J.K.); (J.B.R.); (D.B.)
| | - Daria Baskova
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (M.J.K.); (J.B.R.); (D.B.)
- Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Mark W. Sumarah
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (M.J.K.); (J.B.R.); (D.B.)
| |
Collapse
|
4
|
Gao M, Zhang M, Zhang J, Yang X, Abdallah MF, Wang J. Phylogenetic Variation of Tri1 Gene and Development of PCR-RFLP Analysis for the Identification of NX Genotypes in Fusarium graminearum Species Complex. Toxins (Basel) 2023; 15:692. [PMID: 38133196 PMCID: PMC10747927 DOI: 10.3390/toxins15120692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
NX toxins have been described as a novel group of type A trichothecenes produced by members of the Fusarium graminearum species complex (FGSC). Differences in structure between NX toxins and the common type B trichothecenes arise from functional variation in the trichothecene biosynthetic enzyme Tri1 in the FGSC. The identified highly conserved changes in the Tri1 gene can be used to develop specific PCR-based assays to identify the NX-producing strains. In this study, the sequences of the Tri1 gene from type B trichothecene- and NX-producing strains were analyzed to identify DNA polymorphisms between the two different kinds of trichothecene producers. Four sets of Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methods were successfully developed to distinguish the common type B trichothecene producers and NX producers within FGSC. These promising diagnostic methods can be used for high-throughput genotype detection of Fusarium strains as a step forward for crop disease management and mycotoxin control in agriculture. Additionally, it was found that the Tri1 gene phylogeny differs from the species phylogeny, which is consistent with the previous studies.
Collapse
Affiliation(s)
- Meiling Gao
- Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China; (M.G.); (M.Z.); (J.Z.); (X.Y.)
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Mengyuan Zhang
- Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China; (M.G.); (M.Z.); (J.Z.); (X.Y.)
| | - Jiahui Zhang
- Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China; (M.G.); (M.Z.); (J.Z.); (X.Y.)
| | - Xianli Yang
- Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China; (M.G.); (M.Z.); (J.Z.); (X.Y.)
| | - Mohamed F. Abdallah
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium;
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Jianhua Wang
- Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China; (M.G.); (M.Z.); (J.Z.); (X.Y.)
| |
Collapse
|
5
|
Yli-Mattila T, Opoku J, Ward TJ. Population structure and genetic diversity of Fusarium graminearum from southwestern Russia and the Russian Far East as compared with northern Europe and North America. Mycologia 2023:1-11. [PMID: 37192332 DOI: 10.1080/00275514.2023.2198927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/28/2023] [Indexed: 05/18/2023]
Abstract
Genetic variation at variable number tandem repeat (VNTR) markers was used to assess population structure and diversity among 296 Fusarium graminearum isolates from northern Europe (Finland, northwestern Russia, and Norway), southern Europe (southwestern and western Russia), and Asia (Siberia and the Russian Far East). We identified at least two highly differentiated and geographically structured genetic populations (E1 and E2) in Eurasia (ΦPT = 0.35). Isolates from northern Europe were almost exclusively from the E1 population (95.6%) and had the 3ADON (3-acetyldeoxynivalenol) trichothecene genotype (97.3%). In contrast, all isolates from southern Europe were from the E2 population and 94.4% had the 15ADON (15-acetyldeoxynivalenol) genotype. The E2 population also predominated in the Asian sampling locations (92.7%) where 3ADON and 15ADON genotypes occurred at nearly equal frequencies. Southern European isolates were more closely related to those from Asia (ΦPT = 0.06) than to geographically closer populations from northern Europe (ΦPT ≥ 0.31). Northern European populations also harbored substantially less genetic diversity (Ne ≤ 2.1) than populations in southern Europe or Asia (Ne ≥ 3.4), indicative of a selective sweep or recent introduction and subsequent range expansion in northern Europe. Bayesian analyses incorporating previously described genetic populations from North America (NA1 and NA2) surprisingly identified NA2 and E2 as a single genetic population, consistent with hypotheses of a recent Eurasian origin for NA2. Additionally, more than 10% of the isolates from Asia and southern Europe were assigned to the NA1 population, indicating recent introductions of NA1 into parts of Eurasia. Collectively, these results demonstrate that there are at least three genetic populations of F. graminearum in the Northern Hemisphere and indicate that population-level diversity in Eurasia and North America has been shaped by recent transcontinental introductions.
Collapse
Affiliation(s)
- Tapani Yli-Mattila
- Department of Life Technologies, University of Turku, Turku, FI20014, Finland
| | - Joseph Opoku
- National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, Illinois, 61604
| | - Todd J Ward
- National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, Illinois, 61604
| |
Collapse
|
6
|
Akohoue F, Miedaner T. Meta-analysis and co-expression analysis revealed stable QTL and candidate genes conferring resistances to Fusarium and Gibberella ear rots while reducing mycotoxin contamination in maize. FRONTIERS IN PLANT SCIENCE 2022; 13:1050891. [PMID: 36388551 PMCID: PMC9662303 DOI: 10.3389/fpls.2022.1050891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Fusarium (FER) and Gibberella ear rots (GER) are the two most devastating diseases of maize (Zea mays L.) which reduce yield and affect grain quality worldwide, especially by contamination with mycotoxins. Genetic improvement of host resistance to effectively tackle FER and GER diseases requires the identification of stable quantitative trait loci (QTL) to facilitate the application of genomics-assisted breeding for improving selection efficiency in breeding programs. We applied improved meta-analysis algorithms to re-analyze 224 QTL identified in 15 studies based on dense genome-wide single nucleotide polymorphisms (SNP) in order to identify meta-QTL (MQTL) and colocalized genomic loci for fumonisin (FUM) and deoxynivalenol (DON) accumulation, silk (SR) and kernel (KR) resistances of both FER and GER, kernel dry-down rate (KDD) and husk coverage (HC). A high-resolution genetic consensus map with 36,243 loci was constructed and enabled the projection of 164 of the 224 collected QTL. Candidate genes (CG) mining was performed within the most refined MQTL, and identified CG were cross-validated using publicly available transcriptomic data of maize under Fusarium graminearum infection. The meta-analysis revealed 40 MQTL, of which 29 were associated each with 2-5 FER- and/or GER-related traits. Twenty-eight of the 40 MQTL were common to both FER and GER resistances and 19 MQTL were common to silk and kernel resistances. Fourteen most refined MQTL on chromosomes 1, 2, 3, 4, 7 and 9 harbored a total of 2,272 CG. Cross-validation identified 59 of these CG as responsive to FER and/or GER diseases. MQTL ZmMQTL2.2, ZmMQTL9.2 and ZmMQTL9.4 harbored promising resistance genes, of which GRMZM2G011151 and GRMZM2G093092 were specific to the resistant line for both diseases and encoded "terpene synthase21 (tps21)" and "flavonoid O-methyltransferase2 (fomt2)", respectively. Our findings revealed stable refined MQTL harboring promising candidate genes for use in breeding programs for improving FER and GER resistances with reduced mycotoxin accumulation. These candidate genes can be transferred into elite cultivars by integrating refined MQTL into genomics-assisted backcross breeding strategies.
Collapse
|
7
|
Abstract
This perspective examines four of the primary challenges that the mycotoxin deoxynivalenol (DON) presents to farmers, producers, and consumers. DON is one of the big five agriculturally important mycotoxins, resulting from Fusarium infection on grains, such as maize, barley, and wheat. In many countries, such as Canada, DON is the mycotoxin of principal concern because it can lead to major economic losses and stresses on food and feed security. The challenges discussed here include (1) understanding the different toxin profiles of Fusarium graminearum chemotypes/genotypes and the fate of these toxins upon interaction with the host crop, (2) the need for rapid analytical tests to measure DON and any masked or modified toxins in food and feed products, (3) DON exposure assessments in human populations to ensure health and safety, and (4) how contaminated food and feed products can be managed throughout the supply chain system. Despite decades of research, we are continuously learning new knowledge about DON and how best to manage it; however, there is still much work to be done. DON poses a very complex challenge that is being further exacerbated by climate change, evolving fungal populations, and the increased need for global food security.
Collapse
Affiliation(s)
- Mark W Sumarah
- London Research and Development Center, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada
| |
Collapse
|
8
|
Exposure of intestinal explants to NX, but not to DON, enriches the secretome in mitochondrial proteins. Arch Toxicol 2022; 96:2609-2619. [PMID: 35674809 PMCID: PMC9325857 DOI: 10.1007/s00204-022-03318-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022]
Abstract
NX is a type A trichothecene produced by Fusarium graminearum with limited information on its toxicity. NX is structurally similar to deoxynivalenol (DON), only differing by the lacking keto group at C8. Because of the structural similarity of the two toxins as well as their potential co-occurrence in food and feed, it is of interest to determine the toxicity of this new compound. In this study, we compared the protein composition of the extracellular media of pig intestinal explants (secretome) exposed to 10 µM of DON or NX for 4 h compared with controls. The combination of two complementary quantitative proteomic approaches (a gel-based and a gel-free approach) identified 18 and 23 differentially abundant proteins (DAPs) for DON and NX, respectively, compared to controls. Functional analysis suggested that, whereas DON toxicity was associated with decreased cell viability and cell destruction, NX toxicity was associated with an enrichment of mitochondrial proteins in the secretome. The presence of these proteins may be associated with the already known ability of NX to induce an intestinal inflammation. Overall, our results indicated that DON- and NX-induced changes in the extracellular proteome of intestinal explants are different. The increased leakage/secretion of mitochondrial proteins by NX may be a feature of NX toxicity.
Collapse
|
9
|
Pierron A, Neves M, Puel S, Lippi Y, Soler L, Miller JD, Oswald IP. Intestinal toxicity of the new type A trichothecenes, NX and 3ANX. CHEMOSPHERE 2022; 288:132415. [PMID: 34600008 DOI: 10.1016/j.chemosphere.2021.132415] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
NX and its acetylated form 3ANX are two new type A trichothecenes produced by Fusarium graminearum whose toxicity is poorly documented. The aim of this study was to obtain a general view of the intestinal toxicity of these toxins. Deoxynivalenol (DON), which differs from NX by the keto group at C8, served as a benchmark. The viability of human intestinal Caco-2 cells decreased after 24 h of exposure to 3 μM NX (-21.4%), 3 μM DON (-20.2%) or 10 μM 3ANX (-17.4%). Histological observations of porcine jejunal explants exposed for 4 h to 10 μM of the different toxins showed interstitial edema and cellular debris. Explants exposed to NX also displayed cell vacuolization, a broken epithelial barrier and high loss of villi. Whole transcriptome profiling revealed that NX, DON and 3ANX modulated 369, 146 and 55 genes, respectively. Functional analyses indicated that the three toxins regulate the same gene networks and signaling pathways mainly; cell proliferation, differentiation, apoptosis and growth, and particularly immune and pro-inflammatory responses. Greater transcriptional impacts were observed with NX than with DON. In conclusion, our data revealed that the three toxins have similar impacts on the intestine but of different magnitude: NX > DON ≫ 3ANX. NX and 3ANX should consequently be included in overall risk analysis linked to the presence of trichothecenes in our diet.
Collapse
Affiliation(s)
- Alix Pierron
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, Toulouse, France
| | - Manon Neves
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, Toulouse, France
| | - Sylvie Puel
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, Toulouse, France
| | - Yannick Lippi
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, Toulouse, France
| | - Laura Soler
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, Toulouse, France
| | - J David Miller
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Isabelle P Oswald
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, Toulouse, France.
| |
Collapse
|
10
|
Chen L, Yang J, Wang H, Yang X, Zhang C, Zhao Z, Wang J. NX toxins: New threat posed by Fusarium graminearum species complex. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
11
|
Accumulation of 4-Deoxy-7-hydroxytrichothecenes, but Not 4,7-Dihydroxytrichothecenes, in Axenic Culture of a Transgenic Nivalenol Chemotype Expressing the NX-Type FgTri1 Gene. Int J Mol Sci 2021; 22:ijms222111428. [PMID: 34768859 PMCID: PMC8583793 DOI: 10.3390/ijms222111428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
Fusarium graminearum species complex produces type B trichothecenes oxygenated at C-7. In axenic liquid culture, F. graminearum mainly accumulates one of the three types of trichothecenes, namely 3-acetyldeoxyinvalenol, 15-acetyldeoxyinvalenol, or mixtures of 4,15-diacetylnivalenol/4-acetylnivalenol, depending on each strain's genetic background. The acetyl groups of these trichothecenes are slowly deacetylated to give deoxynivalenol (DON) or nivalenol (NIV) on solid medium culture. Due to the evolution of F. graminearum FgTri1, encoding a cytochrome P450 monooxygenase responsible for hydroxylation at both C-7 and C-8, new derivatives of DON, designated as NX-type trichothecenes, have recently emerged. To assess the risks of emergence of new NX-type trichothecenes, we examined the effects of replacing FgTri1 in the three chemotypes with FgTri1_NX chemotype, which encodes a cytochrome P450 monooxygenase that can only hydroxylate C-7 of trichothecenes. Similar to the transgenic DON chemotypes, the transgenic NIV chemotype strain accumulated NX-type 4-deoxytrichothecenes in axenic liquid culture. C-4 oxygenated trichothecenes were marginal, despite the presence of a functional FgTri13 encoding a C-4 hydroxylase. At present, outcrossing of the currently occurring NX chemotype with NIV chemotype strains of F. graminearum in the natural environment likely will not yield a new strain that produces a C-4 oxygenated NX-type trichothecene.
Collapse
|
12
|
Mwaniki AW, Buis QR, Trott D, Huber LA, Yang C, Kiarie EG. Comparative efficacy of commercially available deoxynivalenol detoxifying feed additives on growth performance, total tract digestibility of components, and physiological responses in nursery pigs fed diets formulated with naturally contaminated corn. Transl Anim Sci 2021; 5:txab050. [PMID: 34085027 PMCID: PMC8162626 DOI: 10.1093/tas/txab050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/09/2021] [Indexed: 11/14/2022] Open
Abstract
Comparative efficacy of deoxynivalenol (DON) detoxifying feed additives (FA) was evaluated in growth performance (exp. 1) and apparent total tract digestibility (ATTD; exp. 2) nursery pig studies. Six corn-soybean meal-based diets were used: 1) positive control (PC, formulated with <1.5 ppm DON corn), negative control (NC, formulated with 5.5 ppm DON corn), NC + FA1 (clay plus yeast cell wall extract), NC + FA2 (aluminosilicate), NC + FA3 (aluminosilicate plus fungal extract), and NC + FA4 (sodium metabisulfite, SMB). In exp. 1, 144 pigs (body weight [BW], 10.2 ± 0.1kg) were housed (4 pigs/pen), allocated to diets (n = 6) based on BW, and fed for 4-wk. The BW and feed intake were monitored weekly. On d 7, one pig/pen was bled for plasma and euthanized for organ weight and tissue samples. Assayed DON concentration in PC, NC, NC + FA4 was 0.29, 2.86, and 1.21 ppm, respectively. In wk-1, the average daily gain (ADG) of pigs fed NC + FA4 was not different (P > 0.05) to that of pigs fed PC diet but greater (P = 0.01) than for pigs fed NC without or with other FA. Pigs fed NC and NC + FA2 had lower (P = 0.026) average daily feed intake (ADFI) than pigs fed PC and NC + FA3. Pigs fed NC + FA4 had greater (P = 0.003) G:F than pigs fed the other diets. Diets had no effect (P > 0.05) on ADG, ADFI, and G: F after first week, plasma concentration of urea and creatinine or liver and spleen weight. Pigs fed NC diets had greater (P = 0.01) jejunal mRNA expression of superoxide dismutase 1 relative to pigs fed PC or NC plus FA. Jejunal histomorphology and mRNA expression of nutrient transporters, inflammatory cytokines, and tight junction proteins and ceca digesta concentration of short-chain fatty acids were not affected (P > 0.05) by the diet. In exp. 2, 24 barrows (BW 10.2 ± 0.3 kg) were individually placed in metabolism crates and allocated to four diets: PC, NC, NC + FA3, and NC + FA4 (n = 6) containing TiO2 as digestibility marker. Pigs were adjusted to diets for 5 d, followed by a 2-d grab fecal sample collection. Pigs fed PC and NC + FA4 diets had higher ATTD of dry matter, gross energy, and crude protein than NC fed pigs. The FA3 was intermediate in digestibility response. In conclusion, FA containing sequestering component plus fungal extract or SMB in DON-contaminated feed resulted in commensurate nursery pig performance to PC. The tested FA mitigated intestinal oxidative stress through decreased expression of genes for superoxide dismutase.
Collapse
Affiliation(s)
- Alice W Mwaniki
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Quincy R Buis
- Wallenstein Feed & Supply Ltd., Wallenstein, ON, Canada
| | - David Trott
- Wallenstein Feed & Supply Ltd., Wallenstein, ON, Canada
| | - Lee-Anne Huber
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Elijah G Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|