1
|
Kreling NE, Fagundes VD, Simon V, Colla LM. Co-production of lipases and biosurfactants by Bacillus methylotrophicus in solid-state fermentation. 3 Biotech 2024; 14:78. [PMID: 38371903 PMCID: PMC10869328 DOI: 10.1007/s13205-023-03910-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/28/2023] [Indexed: 02/20/2024] Open
Abstract
The production of biosurfactants and lipases through solid-state fermentation (SSF) processes remains relatively unexplored, especially in bacterial applications. The use of solid matrices, eliminating the need for precipitation and recovery processes, holds significant potential for facilitating bioremediation. This study aimed to simultaneously produce biocompounds via SSF using Bacillus methylotrophicus and employ the fermented substrate for remediating soil contaminated with 20% biodiesel. Initial efforts focused on determining optimal conditions for concurrent lipase and biosurfactant production during an 8-day fermentation period. The selected conditions, including a substrate mix of wheat bran and corn cob (80/20), 75% moisture, 1% glycerol inducer, 2% nitrogen, and 1% sugarcane molasses, resulted in a 24.61% reduction in surface tension and lipase activity of 3.54 ± 1.20 U. Subsequently, a 90-day bioremediation of clayey soil contaminated with biodiesel showcased notable biodegradation, reaching 72.08 ± 0.36% within the initial 60 days. The incorporation of biocompounds, biostimulation, and bioaugmentation (Test E2) contributed to this efficacy. The use of the fermented substrate as a biostimulant and bioaugmentation agent facilitated in situ biocompound production in the soil, leading to a 23.97% reduction in surface tension and lipase production of 1.52 ± 0.19 U. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03910-7.
Collapse
Affiliation(s)
- Naiara Elisa Kreling
- Institute of Technology, Post-graduation Program in Civil and Environmental Engineering, Universidade de Passo Fundo, Campus I, L1 Building, BR 285, Bairro São José, 611, Passo Fundo, RS CEP: 99052-900 Brazil
| | - Victória Dutra Fagundes
- Institute of Technology, Post-graduation Program in Civil and Environmental Engineering, Universidade de Passo Fundo, Campus I, L1 Building, BR 285, Bairro São José, 611, Passo Fundo, RS CEP: 99052-900 Brazil
| | - Viviane Simon
- Institute of Technology, Post-graduation Program in Civil and Environmental Engineering, Universidade de Passo Fundo, Campus I, L1 Building, BR 285, Bairro São José, 611, Passo Fundo, RS CEP: 99052-900 Brazil
| | - Luciane Maria Colla
- Institute of Technology, Post-graduation Program in Civil and Environmental Engineering, Universidade de Passo Fundo, Campus I, L1 Building, BR 285, Bairro São José, 611, Passo Fundo, RS CEP: 99052-900 Brazil
| |
Collapse
|
2
|
Kumari R, Singha LP, Shukla P. Biotechnological potential of microbial bio-surfactants, their significance, and diverse applications. FEMS MICROBES 2023; 4:xtad015. [PMID: 37614639 PMCID: PMC10442721 DOI: 10.1093/femsmc/xtad015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/16/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
Globally, there is a huge demand for chemically available surfactants in many industries, irrespective of their detrimental impact on the environment. Naturally occurring green sustainable substances have been proven to be the best alternative for reducing reliance on chemical surfactants and promoting long-lasting sustainable development. The most frequently utilized green active biosurfactants, which are made by bacteria, yeast, and fungi, are discussed in this review. These biosurfactants are commonly originated from contaminated sites, the marine ecosystem, and the natural environment, and it holds great potential for environmental sustainability. In this review, we described the importance of biosurfactants for the environment, including their biodegradability, low toxicity, environmental compatibility, and stability at a wide pH range. In this review, we have also described the various techniques that have been utilized to characterize and screen the generation of microbial biosurfactants. Also, we reviewed the potential of biosurfactants and its emerging applications in the foods, cosmetics, pharmaceuticals, and agricultural industries. In addition, we also discussed the ways to overcome problems with expensive costs such as low-cost substrate media formulation, gravitational techniques, and solvent-free foam fractionation for extraction that could be employed during biosurfactant production on a larger scale.
Collapse
Affiliation(s)
- Renuka Kumari
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Lairenjam Paikhomba Singha
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer-305817, Rajasthan, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
3
|
Pal S, Chatterjee N, Das AK, McClements DJ, Dhar P. Sophorolipids: A comprehensive review on properties and applications. Adv Colloid Interface Sci 2023; 313:102856. [PMID: 36827914 DOI: 10.1016/j.cis.2023.102856] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Sophorolipids are surface-active glycolipids produced by several non-pathogenic yeast species and are widely used as biosurfactants in several industrial applications. Sophorolipids provide a plethora of benefits over chemically synthesized surfactants for certain applications like bioremediation, oil recovery, and pharmaceuticals. They are, for instance less toxic, more benign and environment friendly in nature, biodegradable, freely adsorb to different surfaces, self-assembly in hydrated solutions, robustness for industrial applications etc. These miraculous properties result in valuable physicochemical attributes such as low critical micelle concentrations (CMCs), reduced interfacial surface tension, and capacity to dissolve non-polar components. Moreover, they exhibit a diverse range of physicochemical, functional, and biological attributes due to their unique molecular composition and structure. In this article, we highlight the physico-chemical properties of sophorolipids, how these properties are exploited by the human community for extensive benefits and the conditions which lead to their unique tailor-made structures and how they entail their interfacial behavior. Besides, we discuss the advantages and disadvantages associated with the use of these sophorolipids. We also review their physiological and functional attributes, along with their potential commercial applications, in real-world scenario. Biosurfactants are compared to their man-made equivalents to show the variations in structure-property correlations and possible benefits. Those attempting to manufacture purported natural or green surfactant with innovative and valuable qualities can benefit from an understanding of biosurfactant features structured along the same principles. The uniqueness of this review article is the detailed physico-chemical study of the sophorolipid biosurfactant and how these properties helps in their usage and detailed explicit study of their applications in the current scenario and also covering their pros and cons.
Collapse
Affiliation(s)
- Srija Pal
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Kolkata 700027, West Bengal, India
| | - Niloy Chatterjee
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Kolkata 700027, West Bengal, India; Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata 700 098, West Bengal, India
| | - Arun K Das
- Eastern Regional Station, ICAR-IVRI, 37 Belgachia Road, Kolkata 700037, West Bengal, India
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Kolkata 700027, West Bengal, India; Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata 700 098, West Bengal, India.
| |
Collapse
|
4
|
Handa S, Aggarwal Y, Puri S, Chatterjee M. Pharmaceutical prospects of biosurfactants produced from fungal species. J Basic Microbiol 2022; 62:1307-1318. [PMID: 36257786 DOI: 10.1002/jobm.202200327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/10/2022] [Indexed: 11/10/2022]
Abstract
The development of novel types of biogenic surface-active compounds is of greater interest for combating many diseases and infections. In this respect research and development of biosurfactant has gained immense importance. Substantially, biosurfactant is defined as a class of active amphiphilic chemical compounds that comprise hydrophobic and hydrophilic moieties on their surfaces. It is generally known that many kinds of microorganisms can be used to produce these surfactants or surface-active compounds. Hosting interesting features such as biodegradability, emulsifying/de-emulsifying capacity, low toxicity, and antimicrobial activities; these amphiphilic compounds in recent years have flourished as an ideal replacement for the chemically synthesized surfactant, and also have various commercial attractions. Both bacteria and fungi are the producers of these amphiphilic molecules; however, the pathogenicity of certain bacterial strains has caused a shift in interest toward fungi. Therefore, various fungi species have been reported for the production of biosurfactants amongst which Candida species have been the most studied strains. Biosurfactants uphold desired properties like antibacterial, antifungal, antiviral, antiadhesion, and anticancer activity which proves them an ideal candidate for the application in various fields like pharmaceutical, gene therapy, medical insertion safety, immunotherapy to fight against many chronic diseases, and so forth. Hence, this review article discusses the pharmaceutical prospects of biosurfactants produced from different fungal species, providing new directions toward the discovery and development of molecules with novel structures and diverse functions for advanced application in the medical field.
Collapse
Affiliation(s)
- Shristi Handa
- Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Yadu Aggarwal
- Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Sanjeev Puri
- Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Mary Chatterjee
- Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| |
Collapse
|
5
|
Current advances in the classification, production, properties and applications of microbial biosurfactants – A critical review. Adv Colloid Interface Sci 2022; 306:102718. [DOI: 10.1016/j.cis.2022.102718] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022]
|
6
|
Satapute P, Jogaiah S. A biogenic microbial biosurfactin that degrades difenoconazole fungicide with potential antimicrobial and oil displacement properties. CHEMOSPHERE 2022; 286:131694. [PMID: 34346344 DOI: 10.1016/j.chemosphere.2021.131694] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/15/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Surfactin is a bacterial lipopeptide and an influential biosurfactant mainly known for excellent surfactant ability. The amphiphilic nature of surfactin helps it to sustain under hydrophobic and hydrophilic conditions. In this investigation, a bacterium strain (BTKU3) that produces biosurfactant were isolated from oil-contaminated soil. Based on the blue agar plate (Bap) assay, the BTKU3 strain was found to be promising for biosurfactant production. This strain was later identified as a Lysinibacillus sp. by 16S rRNA sequencing. The characteristics of extracted bacterial surfactin were evidenced by FTIR with the presence of amine, C-H, CO, CC, esters, thiocarbonyl and asymmetric aliphatic C-H stretch molecular structural groups. Further, the extracted bacterial biosurfactant material was subjected to Liquid Chromatography-Mass Spectroscopy (LCMS), and it was identified and confirmed as surfactin with an elution time of 3.1 min and m/z value of 1034. The emulsification and oil displacement tests further proved the surfactin ability with 83% of coconut oil emulsion index and 80 % oil displacement ability with diesel, respectively. Lysinibacillus sp. BTKU3 strain also proved its efficacy in the degradation of difenoconazole by utilizing a capacity of 9.1 μg ml-1. Thus, it is inferred that the Lysinibacillus sp. BTKU3 strain plays a significant role in the production of surfactin, which positively acts as an antimicrobial agent and reduces contaminants in polluted sites.
Collapse
Affiliation(s)
- Praveen Satapute
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka, 580003, India
| | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka, 580003, India.
| |
Collapse
|
7
|
Moldes AB, Rodríguez-López L, Rincón-Fontán M, López-Prieto A, Vecino X, Cruz JM. Synthetic and Bio-Derived Surfactants Versus Microbial Biosurfactants in the Cosmetic Industry: An Overview. Int J Mol Sci 2021; 22:ijms22052371. [PMID: 33673442 PMCID: PMC7956807 DOI: 10.3390/ijms22052371] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 11/17/2022] Open
Abstract
This article includes an updated review of the classification, uses and side effects of surfactants for their application in the cosmetic, personal care and pharmaceutical industries. Based on their origin and composition, surfactants can be divided into three different categories: (i) synthetic surfactants; (ii) bio-based surfactants; and (iii) microbial biosurfactants. The first group is the most widespread and cost-effective. It is composed of surfactants, which are synthetically produced, using non-renewable sources, with a final structure that is different from the natural components of living cells. The second category comprises surfactants of intermediate biocompatibility, usually produced by chemical synthesis but integrating fats, sugars or amino acids obtained from renewable sources into their structure. Finally, the third group of surfactants, designated as microbial biosurfactants, are considered the most biocompatible and eco-friendly, as they are produced by living cells, mostly bacteria and yeasts, without the intermediation of organic synthesis. Based on the information included in this review it would be interesting for cosmetic, personal care and pharmaceutical industries to consider microbial biosurfactants as a group apart from surfactants, needing specific regulations, as they are less toxic and more biocompatible than chemical surfactants having formulations that are more biocompatible and greener.
Collapse
Affiliation(s)
- Ana B. Moldes
- Chemical Engineering Department, School of Industrial Engineering—Cintecx, Campus As Lagoas-Marcosende, University of Vigo, 36310 Vigo, Spain; (L.R.-L.); (M.R.-F.); (A.L.-P.); (J.M.C.)
- Correspondence: (A.B.M.); (X.V.)
| | - Lorena Rodríguez-López
- Chemical Engineering Department, School of Industrial Engineering—Cintecx, Campus As Lagoas-Marcosende, University of Vigo, 36310 Vigo, Spain; (L.R.-L.); (M.R.-F.); (A.L.-P.); (J.M.C.)
| | - Myriam Rincón-Fontán
- Chemical Engineering Department, School of Industrial Engineering—Cintecx, Campus As Lagoas-Marcosende, University of Vigo, 36310 Vigo, Spain; (L.R.-L.); (M.R.-F.); (A.L.-P.); (J.M.C.)
| | - Alejandro López-Prieto
- Chemical Engineering Department, School of Industrial Engineering—Cintecx, Campus As Lagoas-Marcosende, University of Vigo, 36310 Vigo, Spain; (L.R.-L.); (M.R.-F.); (A.L.-P.); (J.M.C.)
| | - Xanel Vecino
- Chemical Engineering Department, School of Industrial Engineering—Cintecx, Campus As Lagoas-Marcosende, University of Vigo, 36310 Vigo, Spain; (L.R.-L.); (M.R.-F.); (A.L.-P.); (J.M.C.)
- Chemical Engineering Department, Barcelona East School of Engineering (EEBE)—Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, Polytechnic University of Catalonia (UPC), 08930 Barcelona, Spain
- Correspondence: (A.B.M.); (X.V.)
| | - José M. Cruz
- Chemical Engineering Department, School of Industrial Engineering—Cintecx, Campus As Lagoas-Marcosende, University of Vigo, 36310 Vigo, Spain; (L.R.-L.); (M.R.-F.); (A.L.-P.); (J.M.C.)
| |
Collapse
|
8
|
Design of a New Gemini Lipoaminoacid with Immobilized Lipases Based on an Eco-Friendly Biosynthetic Process. Catalysts 2021. [DOI: 10.3390/catal11020164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lipoaminoacids (LAA) are an important group of biosurfactants, formed by a polar hydrophilic part (amino acid) and a hydrophobic tail (lipid). The gemini LAA structures allow the formation of a supramolecular complex with bioactive molecules, like DNA, which provides them with good transfection efficiency. Since lipases are naturally involved in lipid and protein metabolism, they are an alternative to the chemical production of LAA, offering an eco-friendly biosynthetic process option. This work aimed to design the production of novel cystine derived gemini through a bioconversion system using immobilized lipases. Three lipases were used: porcine pancreatic lipase (PPL); lipase from Thermomyces lanuginosus (TLL); and lipase from Rizhomucor miehei (RML). PPL was immobilized in sol-gel lenses. L-cystine dihydrochloride and dodecylamine were used as substrates for the bioreaction. The production of LAA was evaluated by thin layer chromatography (TLC), and colorimetric reaction with eosin. The identification and quantification was carried out by High Performance Liquid Chromatographer-Mass Spectrometry (HPLC-MS/MS). The optimization of media design included co-solvent (methanol, dimethylsulfoxide), biphasic (n-hexane and 2-propanol) or solvent-free media, in order to improve the biocatalytic reaction rates and yields. Moreover, a new medium was tested where dodecylamine was melted and added to the cystine and to the biocatalyst, building a system of mainly undissolved substrates, leading to 5 mg/mL of LAA. Most of the volume turned into foam, which indicated the production of the biosurfactant. For the first time, the gemini derived cystine lipoaminoacid was produced, identified, and quantified in both co-solvent and solvent-free media, with the lipases PPL, RML, and TLL.
Collapse
|
9
|
Rodríguez-López L, López-Prieto A, Lopez-Álvarez M, Pérez-Davila S, Serra J, González P, Cruz JM, Moldes AB. Characterization and Cytotoxic Effect of Biosurfactants Obtained from Different Sources. ACS OMEGA 2020; 5:31381-31390. [PMID: 33324849 PMCID: PMC7726928 DOI: 10.1021/acsomega.0c04933] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/12/2020] [Indexed: 05/04/2023]
Abstract
In this work, five biosurfactant extracts, obtained from different sources, all of them with demonstrated antimicrobial properties, were characterized and subjected to a cytotoxic study using mouse fibroblast cells (NCTC clone 929). Biosurfactant extracts obtained directly from corn steep water (CSW) showed similar surfactant characteristics to those of the extracellular biosurfactant extract produced by Bacillus isolated from CSW and grown in tryptic soy broth, observing that they are amphoteric, consisting of viscous and yellowish liquid with no foaming capacity. Contrarily, cell-bound biosurfactant extracts produced from Lactobacillus pentosus or produced by Bacillus sp isolated from CSW are nonionic, consisting of a white powder with foaming capacity. All the biosurfactants possess a similar fatty acid composition. The cytotoxic test revealed that the extracts under evaluation, at a concentration of 1 g/L, were not cytotoxic for fibroblasts (fibroblast growth > 90%). The biosurfactant extract obtained from CSW with ethyl acetate, at 1 g/L, showed the highest cytotoxic effect but above the cytotoxicity limit established by the UNE-EN-ISO10993-5. It is remarkable that the cell-bound biosurfactant produced by L. pentosus, at a concentration of 1 g/L, promoted the growth of the fibroblast up to 113%.
Collapse
Affiliation(s)
- Lorena Rodríguez-López
- EQ10 Group, CINTECX,
Department Chemical Engineering, Universidade
de Vigo-University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Alejandro López-Prieto
- EQ10 Group, CINTECX,
Department Chemical Engineering, Universidade
de Vigo-University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Miriam Lopez-Álvarez
- New Materials Group,
CINTECX, IISGS, Department Applied Physics, University of Vigo, Campus Lagoas-Marcosende, Vigo 36310, Spain
| | - Sara Pérez-Davila
- New Materials Group,
CINTECX, IISGS, Department Applied Physics, University of Vigo, Campus Lagoas-Marcosende, Vigo 36310, Spain
| | - Julia Serra
- New Materials Group,
CINTECX, IISGS, Department Applied Physics, University of Vigo, Campus Lagoas-Marcosende, Vigo 36310, Spain
| | - Pío González
- New Materials Group,
CINTECX, IISGS, Department Applied Physics, University of Vigo, Campus Lagoas-Marcosende, Vigo 36310, Spain
| | - José Manuel Cruz
- EQ10 Group, CINTECX,
Department Chemical Engineering, Universidade
de Vigo-University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Ana B. Moldes
- EQ10 Group, CINTECX,
Department Chemical Engineering, Universidade
de Vigo-University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| |
Collapse
|
10
|
Microbial Biosurfactants in Cosmetic and Personal Skincare Pharmaceutical Formulations. Pharmaceutics 2020; 12:pharmaceutics12111099. [PMID: 33207832 PMCID: PMC7696787 DOI: 10.3390/pharmaceutics12111099] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
Cosmetic and personal care products are globally used and often applied directly on the human skin. According to a recent survey in Europe, the market value of cosmetic and personal care products in Western Europe reached about 84 billion euros in 2018 and are predicted to increase by approximately 6% by the end of 2020. With these significant sums of money spent annually on cosmetic and personal care products, along with chemical surfactants being the main ingredient in a number of their formulations, of which many have been reported to have the potential to cause detrimental effects such as allergic reactions and skin irritations to the human skin; hence, the need for the replacement of chemical surfactants with other compounds that would have less or no negative effects on skin health. Biosurfactants (surfactants of biological origin) have exhibited great potential such as lower toxicity, skin compatibility, protection and surface moisturizing effects which are key components for an effective skincare routine. This review discusses the antimicrobial, skin surface moisturizing and low toxicity properties of glycolipid and lipopeptide biosurfactants which could make them suitable substitutes for chemical surfactants in current cosmetic and personal skincare pharmaceutical formulations. Finally, we discuss some challenges and possible solutions for biosurfactant applications.
Collapse
|
11
|
Thakur S, Singh A, Sharma R, Aurora R, Jain SK. Biosurfactants as a Novel Additive in Pharmaceutical Formulations: Current Trends and Future Implications. Curr Drug Metab 2020; 21:885-901. [PMID: 33032505 DOI: 10.2174/1389200221666201008143238] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/09/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Surfactants are an important category of additives that are used widely in most of the formulations as solubilizers, stabilizers, and emulsifiers. Current drug delivery systems comprise of numerous synthetic surfactants (such as Cremophor EL, polysorbate 80, Transcutol-P), which are associated with several side effects though used in many formulations. Therefore, to attenuate the problems associated with conventional surfactants, a new generation of surface-active agents is obtained from the metabolites of fungi, yeast, and bacteria, which are termed as biosurfactants. OBJECTIVES In this article, we critically analyze the different types of biosurfactants, their origin along with their chemical and physical properties, advantages, drawbacks, regulatory status, and detailed pharmaceutical applications. METHODS 243 papers were reviewed and included in this review. RESULTS Briefly, Biosurfactants are classified as glycolipids, rhamnolipids, sophorolipids, trehalolipids, surfactin, lipopeptides & lipoproteins, lichenysin, fatty acids, phospholipids, and polymeric biosurfactants. These are amphiphilic biomolecules with lipophilic and hydrophilic ends and are used as drug delivery vehicles (foaming, solubilizer, detergent, and emulsifier) in the pharmaceutical industry. Despite additives, they have some biological activity as well (anti-cancer, anti-viral, anti-microbial, P-gp inhibition, etc.). These biomolecules possess better safety profiles and are biocompatible, biodegradable, and specific at different temperatures. CONCLUSION Biosurfactants exhibit good biomedicine and additive properties that can be used in developing novel drug delivery systems. However, more research should be driven due to the lack of comprehensive toxicity testing and high production cost which limits their use.
Collapse
Affiliation(s)
- Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Amrinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Ritika Sharma
- Sri Sai College of Pharmacy, Badhani, Pathankot, 145001, India
| | - Rohan Aurora
- The International School Bangalore, Karnataka, 562125, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| |
Collapse
|
12
|
López-Prieto A, Rodríguez-López L, Rincón-Fontán M, Cruz JM, Moldes AB. Characterization of extracellular and cell bound biosurfactants produced by Aneurinibacillus aneurinilyticus isolated from commercial corn steep liquor. Microbiol Res 2020; 242:126614. [PMID: 33045681 DOI: 10.1016/j.micres.2020.126614] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/14/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022]
Abstract
The presence of biosurfactants produced by a Bacillus strain in corn steep liquor (CSL), a wastewater stream of the corn milling process, has been recently discovered. However, the species responsible for their production has not been identified at the moment. Therefore, in this work, the Bacillus strain isolated from CSL, with capacity to produce biosurfactants, was subjected to amplification and sequence analysis of the 16S rRNA, being identified as Aneurinibacillus aneurinilyticus. This strain has been proved to be endospore forming and thermophile, what would explain its presence in the commercial CSL. It was observed that the strain under evaluation has the ability to produce both cell-bound and extracellular biosurfactant extracts, which were characterized in this work. The electrospray ionization mass spectrometry (ESI) analysis of the biosurfactant extracts revealed that the extracellular biosurfactant produced by Aneurinibacillus aneurinilyticus is composed by a mixture of lipopeptides, containing C16 and C18 fatty acids and amino acids, including valine, phenylalanine, proline, cysteine, histidine, aspartic acid/asparagine, alanine, glycine, leucine/isoleucine, with biomarkers between 1025-458 m/z. Conversely, the cell-bound biosurfactant extract produced by Aneurinibacillus aneurinilyticus was composed by the cyclic decapeptide gramicidin S, with a characteristic peak at 571 m/z, and lipopeptides with characteristic peaks between 1034-705 m/z, containing alanine, glycine, cysteine, serine, proline, aspartic acid/asparagine, similarly to the amino acid sequence of the extracellular biosurfactant extract.
Collapse
Affiliation(s)
- Alejandro López-Prieto
- Chemical Engineering Department, School of Industrial Engineering - Centro de Investigación Tecnológico Industrial (MTI), University of Vigo, Campus As Lagoas-Marcosende, 36310, Spain
| | - Lorena Rodríguez-López
- Chemical Engineering Department, School of Industrial Engineering - Centro de Investigación Tecnológico Industrial (MTI), University of Vigo, Campus As Lagoas-Marcosende, 36310, Spain
| | - Myriam Rincón-Fontán
- Chemical Engineering Department, School of Industrial Engineering - Centro de Investigación Tecnológico Industrial (MTI), University of Vigo, Campus As Lagoas-Marcosende, 36310, Spain
| | - José Manuel Cruz
- Chemical Engineering Department, School of Industrial Engineering - Centro de Investigación Tecnológico Industrial (MTI), University of Vigo, Campus As Lagoas-Marcosende, 36310, Spain
| | - Ana Belén Moldes
- Chemical Engineering Department, School of Industrial Engineering - Centro de Investigación Tecnológico Industrial (MTI), University of Vigo, Campus As Lagoas-Marcosende, 36310, Spain.
| |
Collapse
|
13
|
EKPRASERT JINDARAT, KANAKAI SASIWIMON, YOSPRASONG SULADDA. Improved Biosurfactant Production by Enterobacter cloacae B14, Stability Studies, and its Antimicrobial Activity. Pol J Microbiol 2020; 69:273-282. [PMID: 33574856 PMCID: PMC7810112 DOI: 10.33073/pjm-2020-030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/08/2020] [Accepted: 06/19/2020] [Indexed: 02/05/2023] Open
Abstract
This work aimed to optimize carbon and nitrogen sources for the growth of Enterobacter cloacae B14 and its biosurfactant (BS) production via One-Variable-At-a-Time (OVAT) method. The BS stability under a range of pH and temperatures was assessed. Antimicrobial activity against Gram-positive and Gram-negative pathogens was determined by the agar well diffusion method. The results showed that the optimum carbon and nitrogen sources for BS production were maltose and yeast extract, respectively, with a maximum BS yield of (39.8 ± 5.2) mg BS/g biomass. The highest emulsification activity (E24) was 79%, which is significantly higher than in the previous studies. We found that B14 BS can withstand a wide range of pH values from 2 to10. It could also function under a range of temperatures from 30-37°C. Thin Layer Chromatography (TLC) and Fourier Transform Infrared Spectrometry (FTIR) analysis confirmed that B14 BS is a glycolipid-like compound, which is rarely found in Enterobacter spp. Cell-free broth showed inhibition against various pathogens, preferable to Gram-positive ones. It had better antimicrobial activity against Bacillus subtilis than a commonly-used antibiotic, tetracycline. Furthermore, B14 broth could inhibit the growth of a tetracycline-resistant Serratia marcescens. Our results showed promising B14 BS applications not only for bioremediation but also for the production of antimicrobial products.
Collapse
Affiliation(s)
- JINDARAT EKPRASERT
- Department of Microbiology, Faculty of Science, Khon Kaen University, Thailand
| | - SASIWIMON KANAKAI
- Department of Microbiology, Faculty of Science, Khon Kaen University, Thailand
| | - SULADDA YOSPRASONG
- Department of Microbiology, Faculty of Science, Khon Kaen University, Thailand
| |
Collapse
|
14
|
Edosa TT, Jo YH, Keshavarz M, Kim IS, Han YS. Biosurfactants Induce Antimicrobial Peptide Production through the Activation of TmSpatzles in Tenebrio molitor. Int J Mol Sci 2020; 21:ijms21176090. [PMID: 32847078 PMCID: PMC7504391 DOI: 10.3390/ijms21176090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
Biosurfactant immunomodulatory activities in mammals, nematodes, and plants have been investigated. However, the immune activation property of biosurfactants in insects has not been reported. Therefore, here, we studied the defense response triggered by lipopeptides (fengycin and iturin A), glycolipids (rhamnolipid), and cyclic polypeptides (bacitracin) in the coleopteran insect, mealworm Tenebrio molitor. The in vitro antimicrobial activities against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria and fungi (Candida albicans) were assessed by mixing these pathogens with the hemolymph of biosurfactant-immune-activated larvae. E. coli growth was remarkably inhibited by this hemolymph. The antimicrobial peptide (AMP) induction results also revealed that all biosurfactants tested induced several AMPs, exclusively in hemocytes. The survivability analysis of T. molitor larvae challenged by E. coli (106 CFU/µL) at 24 h post biosurfactant-immune activation showed that fengycin, iturin A, and rhamnopid significantly increased survivability against E. coli. Biosurfactant-induced TmSpatzles activation was also monitored, and the results showed that TmSpz3 and TmSpz-like were upregulated in the hemocytes of iturin A-injected larvae, while TmSpz4 and TmSpz6 were upregulated in the fat bodies of the fengycin-, iturin A-, and rhamnolipid-injected larvae. Overall, these results suggest that lipopeptide and glycolipid biosurfactants induce the expression of AMPs in T. molitor via the activation of spätzle genes, thereby increasing the survivability of T. molitor against E. coli.
Collapse
Affiliation(s)
- Tariku Tesfaye Edosa
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (T.T.E.); (Y.H.J.); (M.K.)
- Ethiopian Institute of Agricultural Research, Ambo Agricultural Research Center, Ambo 37, Ethiopia
| | - Yong Hun Jo
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (T.T.E.); (Y.H.J.); (M.K.)
| | - Maryam Keshavarz
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (T.T.E.); (Y.H.J.); (M.K.)
| | - In Seon Kim
- Department of Agricultural Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea;
| | - Yeon Soo Han
- Ethiopian Institute of Agricultural Research, Ambo Agricultural Research Center, Ambo 37, Ethiopia
- Correspondence: ; Tel.: +82-62-530-2072
| |
Collapse
|
15
|
Shikha S, Chaudhuri SR, Bhattacharyya MS. Facile One Pot Greener Synthesis of Sophorolipid Capped Gold Nanoparticles and its Antimicrobial Activity having Special Efficacy Against Gram Negative Vibrio cholerae. Sci Rep 2020; 10:1463. [PMID: 31996706 PMCID: PMC6989514 DOI: 10.1038/s41598-019-57399-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 12/23/2019] [Indexed: 12/24/2022] Open
Abstract
Microbes develop several strategies to survive in the adverse condition such as biofilm formation, attaining non-dividing state, altering drug target or drug, thereby increases the burden of drug dosage. To combat these issues, nanoparticles have shown an alternative approach for new treatment strategy but synthesis via chemical synthetic route limits their application in biomedical field. Here, green method for the synthesis of gold nanoparticles using sophorolipid (SL) is discussed that is characterized by various techniques. Initially, the antimicrobial activity was checked against metabolically active state of microbes; Gram-positive Staphylococcus aureus and Gram-negative Vibrio cholerae using XTT assay and growth kinetics assay. Results suggested higher efficacy of nanoparticles for Gram-negative, therefore further analyzed against Escherichia coli that confirmed its potency for the same. AuNPs-SL also signifies its efficiency at least metabolically active state; non dividing cells and biofilm of these microbes. Induced morphological changes were studied by SEM that revealed AuNPs-SL led to disruption of cell membrane and leakage of intracellular fluid to the surroundings. Inhibition of respiratory enzymes activity also plays a crucial role in bactericidal action as indicated by LDH assay. Synergy of AuNPs-SL with different antibiotics was also analyzed using checkerboard assay. These results suggested the possible use of AuNPs-SL as an antimicrobial therapy in the field of nanomedicine.
Collapse
Affiliation(s)
- Sristy Shikha
- CSIR-Institute of Microbial Technology (IMTECH), Sector-39A, Chandigarh, 160036, India.
| | - Saumya Ray Chaudhuri
- CSIR-Institute of Microbial Technology (IMTECH), Sector-39A, Chandigarh, 160036, India
| | | |
Collapse
|
16
|
Hmidet N, Jemil N, Ouerfelli M, Pilar Almajano M, Nasri M. Antioxidant properties of
Enterobacter cloacae
C3 lipopeptides in vitro and in model food emulsion. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Noomen Hmidet
- Laboratoire de Génie Enzymatique et de Microbiologie Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax Sfax Tunisia
| | - Nawel Jemil
- Laboratoire de Génie Enzymatique et de Microbiologie Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax Sfax Tunisia
| | - Manel Ouerfelli
- Research Unit « Nutrition et Métabolisme Azotés et Protéines de Stress » (UR/ES‐13/29), Biology Department, Faculty of Sciences of Tunis University of Tunis El‐Manar Tunis Tunisia
- School of Industrial Engineering of Barcelona (ETSEIB), Chemical Engineering Department (DEQ) Technical University of Catalonia (UPC) Barcelona Spain
| | - María Pilar Almajano
- School of Industrial Engineering of Barcelona (ETSEIB), Chemical Engineering Department (DEQ) Technical University of Catalonia (UPC) Barcelona Spain
| | - Moncef Nasri
- Laboratoire de Génie Enzymatique et de Microbiologie Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax Sfax Tunisia
| |
Collapse
|
17
|
Abstract
Biosurfactant compounds have been studied in many applications, including biomedical, food, cosmetic, agriculture, and bioremediation areas, mainly due to their low toxicity, high biodegradability, and multifunctionality. Among biosurfactants, the lipoplexes of lipoaminoacids play a key role in medical and pharmaceutical fields. Lipoaminoacids (LAAs) are amino acid-based surfactants that are obtained from the condensation reaction of natural origin amino acids with fatty acids or fatty acid derivatives. LAA can be produced by biocatalysis as an alternative to chemical synthesis and thus become very attractive from both the biomedical and the environmental perspectives. Gemini LAAs, which are made of two hydrophobic chains and two amino acid head groups per molecule and linked by a spacer at the level of the amino acid residues, are promising candidates as both drug and gene delivery and protein disassembly agents. Gemini LAA usually show lower critical micelle concentration, interact more efficiently with proteins, and are better solubilising agents for hydrophobic drugs when compared to their monomeric counterparts due to their dimeric structure. A clinically relevant human gene therapy vector must overcome or avoid detect and silence foreign or misplaced DNA whilst delivering sustained levels of therapeutic gene product. Many non-viral DNA vectors trigger these defence mechanisms, being subsequently destroyed or rendered silent. The development of safe and persistently expressing DNA vectors is a crucial prerequisite for a successful clinical application, and it one of the main strategic tasks of non-viral gene therapy research.
Collapse
|
18
|
Fenibo EO, Ijoma GN, Selvarajan R, Chikere CB. Microbial Surfactants: The Next Generation Multifunctional Biomolecules for Applications in the Petroleum Industry and Its Associated Environmental Remediation. Microorganisms 2019; 7:E581. [PMID: 31752381 PMCID: PMC6920868 DOI: 10.3390/microorganisms7110581] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 11/30/2022] Open
Abstract
Surfactants are a broad category of tensio-active biomolecules with multifunctional properties applications in diverse industrial sectors and processes. Surfactants are produced synthetically and biologically. The biologically derived surfactants (biosurfactants) are produced from microorganisms, with Pseudomonas aeruginosa, Bacillus subtilis Candida albicans, and Acinetobacter calcoaceticus as dominant species. Rhamnolipids, sophorolipids, mannosylerithritol lipids, surfactin, and emulsan are well known in terms of their biotechnological applications. Biosurfactants can compete with synthetic surfactants in terms of performance, with established advantages over synthetic ones, including eco-friendliness, biodegradability, low toxicity, and stability over a wide variability of environmental factors. However, at present, synthetic surfactants are a preferred option in different industrial applications because of their availability in commercial quantities, unlike biosurfactants. The usage of synthetic surfactants introduces new species of recalcitrant pollutants into the environment and leads to undesired results when a wrong selection of surfactants is made. Substituting synthetic surfactants with biosurfactants resolves these drawbacks, thus interest has been intensified in biosurfactant applications in a wide range of industries hitherto considered as experimental fields. This review, therefore, intends to offer an overview of diverse applications in which biosurfactants have been found to be useful, with emphases on petroleum biotechnology, environmental remediation, and the agriculture sector. The application of biosurfactants in these settings would lead to industrial growth and environmental sustainability.
Collapse
Affiliation(s)
- Emmanuel O. Fenibo
- World Bank Africa Centre of Excellence, Centre for Oilfield Chemical Research, University of Port Harcourt, Port Harcourt 500272, Nigeria
| | - Grace N. Ijoma
- Institute for the Development of Energy for African Sustainability, University of South Africa, Roodepoort 1709, South Africa;
| | - Ramganesh Selvarajan
- Department of Environmental Science, University of South Africa, Florida Campus, Rooderpoort 1709, South Africa
| | - Chioma B. Chikere
- Department of Microbiology, Faculty of Science, University of Port Harcourt, Port Harcourt 500272, Nigeria;
| |
Collapse
|
19
|
Domínguez Rivera Á, Martínez Urbina MÁ, López Y López VE. Advances on research in the use of agro-industrial waste in biosurfactant production. World J Microbiol Biotechnol 2019; 35:155. [PMID: 31576428 DOI: 10.1007/s11274-019-2729-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/18/2019] [Indexed: 11/25/2022]
Abstract
Biosurfactants are amphiphilic molecules produced by a variety of microorganisms, including bacteria, yeast and filamentous fungi. Unlike chemically synthesized surfactants, biosurfactants present advantages, such as biodegradability, low toxicity, high selectivity and activity under extreme temperature, pH and salinity conditions, as well as a low critical micelle concentration. Moreover, they can be produced from agro-industrial waste and renewable sources. Their structural diversity and functional properties mean that they have potential applications in various industrial processes as wetting agents, dispersants, emulsifiers, foaming agents, food additives and detergents, as well as in the field of environmental biotechnology. However, opportunities for their commercialization have been limited due to the low yields obtained in the fermentation processes involved in their production as well as the use of refined raw materials, which means higher cost in production. In an attempt to solve these limitations on the commercialization of biosurfactants, various research groups have focused on testing the use of inexpensive alternative sources, such as agro-industrial waste, as substrates for the production of different biosurfactants. In addition to enabling the economical production of biosurfactants, the use of such waste aims to reduce the accumulation of compounds that cause environmental damage. This review shows advances in biosurfactant production carried out using different waste materials or by-products from agro-industrial activities.
Collapse
Affiliation(s)
- Ángeles Domínguez Rivera
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Carretera Estatal Sta. Inés Tecuexcomac-Tepetitla, 90700, Tepetitla de Lardizábal, Tlaxcala, México
| | | | - Víctor Eric López Y López
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Carretera Estatal Sta. Inés Tecuexcomac-Tepetitla, 90700, Tepetitla de Lardizábal, Tlaxcala, México.
| |
Collapse
|
20
|
Rodríguez‐López L, Rincón‐Fontán M, Vecino X, Moldes AB, Cruz JM. Biodegradability Study of the Biosurfactant Contained in a Crude Extract from Corn Steep Water. J SURFACTANTS DETERG 2019. [DOI: 10.1002/jsde.12338] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Lorena Rodríguez‐López
- Chemical Engineering Department, School of Industrial Engineering – Módulo Tecnológico Industrial (MTI)University of Vigo Campus As Lagoas‐Marcosende, 36310 Vigo Spain
| | - Myriam Rincón‐Fontán
- Chemical Engineering Department, School of Industrial Engineering – Módulo Tecnológico Industrial (MTI)University of Vigo Campus As Lagoas‐Marcosende, 36310 Vigo Spain
| | - Xanel Vecino
- Chemical Engineering Department, Barcelona East School of Engineering (EEBE)Polytechnic University of Catalonia (UPC)‐Barcelona TECH Campus Diagonal‐Besòs, 08930 Barcelona Spain
- Barcelona Research Center for Multiscale Science and Engineering Campus Diagonal‐Besòs, 08930 Barcelona Spain
| | - Ana B. Moldes
- Chemical Engineering Department, School of Industrial Engineering – Módulo Tecnológico Industrial (MTI)University of Vigo Campus As Lagoas‐Marcosende, 36310 Vigo Spain
| | - Jose M. Cruz
- Chemical Engineering Department, School of Industrial Engineering – Módulo Tecnológico Industrial (MTI)University of Vigo Campus As Lagoas‐Marcosende, 36310 Vigo Spain
| |
Collapse
|
21
|
Development of Palm Fatty Acid Distillate-Containing Medium for Biosurfactant Production by Pseudomonas sp. LM19. Molecules 2019; 24:molecules24142613. [PMID: 31323769 PMCID: PMC6680552 DOI: 10.3390/molecules24142613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/22/2019] [Accepted: 06/28/2019] [Indexed: 11/16/2022] Open
Abstract
High production costs of biosurfactants are mainly caused by the usage of the expensive substrate and long fermentation period which undermines their potential in bioremediation processes, food, and cosmetic industries even though they, owing to the biodegradability, lower toxicity, and raise specificity traits. One way to circumvent this is to improvise the formulation of biosurfactant-production medium by using cheaper substrate. A culture medium utilizing palm fatty acid distillate (PFAD), a palm oil refinery by-product, was first developed through one-factor-at-a-time (OFAT) technique and further refined by means of the statistical design method of factorial and response surface modeling to enhance the biosurfactant production from Pseudomonas sp. LM19. The results shows that, the optimized culture medium containing: 1.148% (v/v) PFAD; 4.054 g/L KH2PO4; 1.30 g/L yeast extract; 0.023 g/L sodium-EDTA; 1.057 g/L MgSO4·7H2O; 0.75 g/L K2HPO4; 0.20 g/L CaCl2·2H2O; 0.080 g/L FeCl3·6H2O gave the maximum biosurfactant productivity. This study demonstrated that the cell concentration and biosurfactant productivity could reach up to 8.5 × 109 CFU/mL and 0.346 g/L/day, respectively after seven days of growth, which were comparable to the values predicted by an RSM regression model, i.e., 8.4 × 109 CFU/mL and 0.347 g/L/day, respectively. Eleven rhamnolipid congeners were detected, in which dirhamnolipid accounted for 58% and monorhamnolipid was 42%. All in all, manipulation of palm oil by-products proved to be a feasible substrate for increasing the biosurfactant production about 3.55-fold as shown in this study.
Collapse
|
22
|
Cortés-Sánchez ADJ. Legionella, water and biotechnology. REGULATORY MECHANISMS IN BIOSYSTEMS 2019. [DOI: 10.15421/021918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Legionella spp. are microorganisms that are generally found in the aquatic environment (rivers, streams, lakes, among others). The importance in public health is in the fact that this bacterium is capable of multiplying and propagating in artificial aquatic systems (piping systems, storage tanks, fountains, and cooling towers), giving rise to diseases in humans called legionellosis, transmitted by inhalation of contaminated water droplets or aerosols and whose complications can lead to the death of the patient. Legionellosis is of worldwide distribution, Legionella pneumophila being the most commonly involved species in outbreaks and reported cases. The people most at risk are the elderly, people with weakened immune systems, and people with a history of smoking. Around the world, regulatory agencies and health organizations have issued and established recommendations with the purpose of controlling and preventing the risk of contracting this disease, which include the sanitation of water supplies, maintenance through regular cleaning and disinfection of facilities and devices for reducing the presence of this pathogen. The main objective of this review is to present in a general manner, aspects related to the disease known as legionellosis, its casual agents, habitat, transmission form, and phenotypic and metabolic characteristics. Likewise, the methods of control and prevention of these pathogens are presented, including a potential biotechnological alternative that can contribute to actions in favour of the protection of public health through the use of compounds with surface activity called biosurfactants.
Collapse
|
23
|
Rodríguez-López L, Shokry DS, Cruz JM, Moldes AB, Waters LJ. The effect of the presence of biosurfactant on the permeation of pharmaceutical compounds through silicone membrane. Colloids Surf B Biointerfaces 2019; 176:456-461. [PMID: 30682618 DOI: 10.1016/j.colsurfb.2018.12.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 10/27/2022]
Abstract
The permeation of ten model drugs through silicone membrane was analysed to investigate the effect of the presence of a biosurfactant obtained from corn steep liquor. The ten selected pharmaceutical compounds were chosen to include a diverse range of physicochemical properties, such as variable hydrophobicities, pKa's, molecular masses and degrees of ionisation. When compared with compound permeation alone, the additional inclusion of biosurfactant in the donor phase altered the rate and extent of permeation. It significantly enhanced permeation for five of the compounds, whereas it decreased permeation for four of the compounds and remained approximately the same for the tenth compound. These effects were observed at both biosurfactant concentrations considered, namely 0.005 mg/mL, i.e. below the critical micellar concentration (CMC) and 0.500 mg/mL, i.e. above the CMC of the biosurfactant. Upon analysing permeation change with respect to physicochemical properties of the compounds, it was determined that compounds with a relative molecular mass below 200 resulted in an increase in permeation with biosurfactant present, and those above 200 resulted in a decrease in permeation with biosurfactant present. This effect was therefore attributed to the formation of a drug-biosurfactant interaction that enhanced permeation of smaller compounds, yet retarded permeation for those with a higher molecular mass. These in vitro findings can be considered an indication of potential novel formulation options that incorporate biosurfactant to create transdermal products that have bespoke permeation profiles.
Collapse
Affiliation(s)
- Lorena Rodríguez-López
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK; School of Industrial Engineering, University of Vigo, Campus As Lagoas-Marcosende, 36310, Vigo-Pontevedra, Spain
| | - Dina S Shokry
- Faculty of Engineering and Science, Medway Centre for Formulation Science, University of Greenwich, Chatham, Kent, ME4 4TB, UK
| | - Jose M Cruz
- School of Industrial Engineering, University of Vigo, Campus As Lagoas-Marcosende, 36310, Vigo-Pontevedra, Spain
| | - Ana B Moldes
- School of Industrial Engineering, University of Vigo, Campus As Lagoas-Marcosende, 36310, Vigo-Pontevedra, Spain
| | - Laura J Waters
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| |
Collapse
|
24
|
Sadeq Al-Namil D, Patra D. Green solid-state based curcumin mediated rhamnolipids stabilized silver nanoparticles: Interaction of silver nanoparticles with cystine and albumins towards fluorescence sensing. Colloids Surf B Biointerfaces 2019; 173:647-653. [DOI: 10.1016/j.colsurfb.2018.10.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/26/2018] [Accepted: 10/13/2018] [Indexed: 12/11/2022]
|
25
|
Le Guenic S, Chaveriat L, Lequart V, Joly N, Martin P. Renewable Surfactants for Biochemical Applications and Nanotechnology. J SURFACTANTS DETERG 2018. [DOI: 10.1002/jsde.12216] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sarah Le Guenic
- Université d'Artois, UniLasalle, EA7519 - Unité Transformations & Agroressources, F-62408; Béthune
| | - Ludovic Chaveriat
- Université d'Artois, UniLasalle, EA7519 - Unité Transformations & Agroressources, F-62408; Béthune
| | - Vincent Lequart
- Université d'Artois, UniLasalle, EA7519 - Unité Transformations & Agroressources, F-62408; Béthune
| | - Nicolas Joly
- Université d'Artois, UniLasalle, EA7519 - Unité Transformations & Agroressources, F-62408; Béthune
| | - Patrick Martin
- Université d'Artois, UniLasalle, EA7519 - Unité Transformations & Agroressources, F-62408; Béthune
| |
Collapse
|
26
|
Rodríguez-López L, Rincón-Fontán M, Vecino X, Cruz JM, Moldes AB. Biological Surfactants vs. Polysorbates: Comparison of Their Emulsifier and Surfactant Properties. TENSIDE SURFACT DET 2018. [DOI: 10.3139/113.110574] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract
In this work two biological surfactants, a cell-bound biosurfactant produced by Lactobacillus pentosus and a biosurfactant obtained from a fermented stream corn milling industry, were compared with two chemical surfactants (polysorbate 20 and polysorbate 80) in terms of surface tension reduction, critical micellar concentration (CMC), oil spreading and emulsifying capacity. Biological surfactants showed a similar ability to reduce the surface tension of water as polysorbates, which was in conformance with the results obtained in the drop collapse test. Regarding the ability to spread the oil on water, both biosurfactants produced similar results as polysorbates after 1 h. However, after 24 h, polysorbates and biosurfactant from corn stream were more effective than L. pentosus biosurfactant, producing greater free oil areas. Concerning the emulsifying activity, in terms of relative emulsion volume (EV), the biosurfactant produced from L. pentosus gave the best results (EV = 100%), after 1 day of emulsion formation, keeping this value over 50% after 15 days of emulsion formation; whereas polysorbates gave EV values lower than 50%. The CMC values of the biosurfactant from corn stream and of polysorbates were closer in comparison with the CMC value of L. pentosus biosurfactant, observing that the characteristics and properties of the biosurfactant from corn stream are more similar to polysorbates than to L. pentosus biosurfactant. Thus, it could be speculated that biosurfactant from corn stream would be a good substitute for polysorbates.
Collapse
Affiliation(s)
- Lorena Rodríguez-López
- Chemical Engineering Department , School of Industrial Engineering – Centro de Investigación Tecnológico Industrial (MTI), University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo , Spain
| | - Myriam Rincón-Fontán
- Chemical Engineering Department , School of Industrial Engineering – Centro de Investigación Tecnológico Industrial (MTI), University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo , Spain
| | - Xanel Vecino
- Chemical Engineering Department , Barcelona East School of Engineering (EEBE), Polytechnic University of Catalonia (UPC)-Barcelona TECH, Campus Diagonal-Besòs, 08930 Barcelona , Spain
- Barcelona Research Center for Multiscale Science and Engineering , Campus Diagonal-Besòs, 08930 Barcelona , Spain
| | - José Manuel Cruz
- Chemical Engineering Department , School of Industrial Engineering – Centro de Investigación Tecnológico Industrial (MTI), University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo , Spain
| | - Ana Belén Moldes
- Chemical Engineering Department , School of Industrial Engineering – Centro de Investigación Tecnológico Industrial (MTI), University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo , Spain
| |
Collapse
|
27
|
Nurfarahin AH, Mohamed MS, Phang LY. Culture Medium Development for Microbial-Derived Surfactants Production-An Overview. Molecules 2018; 23:molecules23051049. [PMID: 29723959 PMCID: PMC6099601 DOI: 10.3390/molecules23051049] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/22/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022] Open
Abstract
Surfactants are compounds that can reduce the surface tension between two different phases or the interfacial tension of the liquid between water and oil, possessing both hydrophilic and hydrophobic moieties. Biosurfactants have traits that have proven to be advantageous over synthetic surfactants, but these compounds do not compete economically with synthetic surfactants. Different alternatives increase the yield of biosurfactants; development of an economical production process and the usage of cheaper substrates during process have been employed. One of the solutions relies on the suitable formulation of a production medium by including alternative raw materials sourced from agro-wastes, hydrocarbons, or by-products of a process might help in boosting the biosurfactant production. Since the nutritional factors required will be different among microorganisms, the establishment of a suitable formulation for biosurfactant production will be challenging. The present review describes various nutrients and elements considered in the formulation of a production medium with an approach focusing on the macronutrient (carbon, nitrogen source, and C/N ratio), minerals, vitamins, metabolic regulators, and salinity levels which may aid in the study of biosurfactant production in the future.
Collapse
Affiliation(s)
- Abdul Hamid Nurfarahin
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia.
| | - Mohd Shamzi Mohamed
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia.
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia.
| | - Lai Yee Phang
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia.
| |
Collapse
|
28
|
Zhang Y, Jia D, Sun W, Yang X, Zhang C, Zhao F, Lu W. Semicontinuous sophorolipid fermentation using a novel bioreactor with dual ventilation pipes and dual sieve-plates coupled with a novel separation system. Microb Biotechnol 2018; 11:455-464. [PMID: 29235728 PMCID: PMC5902327 DOI: 10.1111/1751-7915.13028] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 10/08/2017] [Accepted: 10/30/2017] [Indexed: 11/29/2022] Open
Abstract
Sophorolipids (SLs) are biosurfactants with widespread applications. The yield and purity of SLs are two important factors to be considered during their commercial large-scale production. Notably, SL accumulation causes an increase in viscosity, decrease in dissolved oxygen and product inhibition in the fermentation medium. This inhibits the further production and purification of SLs. This describes the development of a novel integrated system for SL production using Candida albicans O-13-1. Semicontinuous fermentation was performed using a novel bioreactor with dual ventilation pipes and dual sieve-plates (DVDSB). SLs were separated and recovered using a newly designed two-stage separation system. After SL recovery, the fermentation broth containing residual glucose and oleic acid was recycled back into the bioreactor. This novel approach considerably alleviated the problem of product inhibition and accelerated the rate of substrate utilization. Production of SLs achieved was 477 g l-1 , while their productivity was 1.59 g l-1 h-1 . Purity of SLs improved by 23.3%, from 60% to 74%, using DVDSB with the separation system. The conversion rate of carbon source increased from 0.5 g g-1 (in the batch fermentation) to 0.6 g g-1 . These results indicated that the integrated system could improve the efficiency of production and purity of SLs.
Collapse
Affiliation(s)
- Yaguang Zhang
- School of Chemical Engineering and TechnologyTianjin UniversityTianjin300350China
- Key Laboratory of System BioengineeringMinistry of EducationTianjin UniversityTianjin300350China
- SynBio Research PlatformCollaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin UniversityTianjin300350China
| | - Dan Jia
- School of Chemical Engineering and TechnologyTianjin UniversityTianjin300350China
- Key Laboratory of System BioengineeringMinistry of EducationTianjin UniversityTianjin300350China
- SynBio Research PlatformCollaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin UniversityTianjin300350China
| | - Wanqi Sun
- Department of Chemical and Biological EngineeringThe University of Alabama285 Hardaway Hall, 401 7th AvenueTuscaloosaAL35487USA
| | - Xue Yang
- School of Chemical Engineering and TechnologyTianjin UniversityTianjin300350China
- Key Laboratory of System BioengineeringMinistry of EducationTianjin UniversityTianjin300350China
- SynBio Research PlatformCollaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin UniversityTianjin300350China
| | - Chuanbo Zhang
- School of Chemical Engineering and TechnologyTianjin UniversityTianjin300350China
- Key Laboratory of System BioengineeringMinistry of EducationTianjin UniversityTianjin300350China
- SynBio Research PlatformCollaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin UniversityTianjin300350China
| | - Fanglong Zhao
- School of Chemical Engineering and TechnologyTianjin UniversityTianjin300350China
- Key Laboratory of System BioengineeringMinistry of EducationTianjin UniversityTianjin300350China
- SynBio Research PlatformCollaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin UniversityTianjin300350China
| | - Wenyu Lu
- School of Chemical Engineering and TechnologyTianjin UniversityTianjin300350China
- Key Laboratory of System BioengineeringMinistry of EducationTianjin UniversityTianjin300350China
- SynBio Research PlatformCollaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin UniversityTianjin300350China
| |
Collapse
|
29
|
Brevibacterium luteolum biosurfactant: Production and structural characterization. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2017.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Zarinviarsagh M, Ebrahimipour G, Sadeghi H. Lipase and biosurfactant from Ochrobactrum intermedium strain MZV101 isolated by washing powder for detergent application. Lipids Health Dis 2017; 16:177. [PMID: 28923075 PMCID: PMC5604193 DOI: 10.1186/s12944-017-0565-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/06/2017] [Indexed: 01/11/2023] Open
Abstract
Background Alkaline thermostable lipase and biosurfactant producing bacteria are very interested at detergent applications, not only because of their eco-friendly characterize, but alsoproduction lipase and biosurfactant by using cheap materials. Ochrobactrum intermedium strain MZV101 was isolated as washing powder resistant, alkaline thermostable lipase and biosurfactant producing bacterium in order to use at detergent applications. Methods O. intermedium strain MZV101 produces was lipase and biosurfactant in the same media with pH 10 and temperature of 60 °C. Washing test and some detergent compatibility character of lipase enzyme and biosurfactant were assayed. The antimicrobial activity evaluated against various bacteria and fungi. Results Lipase and biosurfactant produced by O. intermedium strain MZV101 exhibited high stability at pH 10–13 and temperature of 70–90 °C, biosurfactant exhibits good stability at pH 9–13 and thermostability in all range. Both lipase and biosurfactant were found to be stable in the presence of different metal ions, detergents and organic solvents. The lipase enzyme extracted using isopropanol with yield of 69.2% and biosurfactant with ethanol emulsification index value of 70.99% and yield of 9.32 (g/l). The single band protein after through from G-50 Sephadex column on SDS-PAGE was calculated to be 99.42 kDa. Biosurfactant O. intermedium strain MZV101 exhibited good antimicrobial activity against Gram-negative bacteria and against various bacterial pathogens. Based upon washing test biosurfactant and lipase O. intermedium strain MZV101considered being strong oil removal. Conclusion The results of this study indicate that isolated lipase and biosurfactant with strong oil removal, antimicrobial activity and good stability could be useful for detergent applications. Graphical abstract ![]()
Collapse
Affiliation(s)
- Mina Zarinviarsagh
- Department of Microbiology and Microbial Biotechnology, Faculty of Biological Sciences and Technology, University of Shahid-Beheshty, Daneshjou Blvd. Evin St.1983969411, Tehran, Iran.
| | - Gholamhossein Ebrahimipour
- Department of Microbiology and Microbial Biotechnology, Faculty of Biological Sciences and Technology, University of Shahid-Beheshty, Daneshjou Blvd. Evin St.1983969411, Tehran, Iran
| | - Hossein Sadeghi
- Department of Microbiology and Microbial Biotechnology, Faculty of Biological Sciences and Technology, University of Shahid-Beheshty, Daneshjou Blvd. Evin St.1983969411, Tehran, Iran
| |
Collapse
|
31
|
Moussa Z, Chebl M, Patra D. Fluorescence of tautomeric forms of curcumin in different pH and biosurfactant rhamnolipids systems: Application towards on-off ratiometric fluorescence temperature sensing. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017. [DOI: 10.1016/j.jphotobiol.2017.06.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
32
|
Gómez-Graña S, Perez-Ameneiro M, Vecino X, Pastoriza-Santos I, Perez-Juste J, Cruz JM, Moldes AB. Biogenic Synthesis of Metal Nanoparticles Using a Biosurfactant Extracted from Corn and Their Antimicrobial Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E139. [PMID: 28587297 PMCID: PMC5485786 DOI: 10.3390/nano7060139] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/23/2017] [Accepted: 06/01/2017] [Indexed: 11/23/2022]
Abstract
A new and promising biosurfactant extracted from corn steep liquor has been used for the green synthesis of gold and silver nanoparticles (NPs) in a one-step procedure induced by temperature. Most of the biosurfactants proposed in the literature are produced by pathogenic microorganisms; whereas the biosurfactant used in the current work was extracted from a liquid stream, fermented spontaneously by lactic acid bacteria, which are "generally recognized as safe" (GRAS) microorganisms. The reduction of a gold precursor in the presence of a biosurfactant gives rise to a mixture of nanospheres and nanoplates with distinct optical features. Moreover, the growth of nanoplates can be promoted by increasing the reaction temperature to 60 °C. In the case of silver, the biosurfactant just induces the formation of pseudo-spherical NPs. The biosurfactant plays a key role in the reduction of the metal precursor, as well as in the stabilization of the resulting NPs. Furthermore, the antimicrobial activity of the resulting silver colloids has been analyzed against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. The biosurfactant stabilized NPs slightly increased the inhibition of E. coli in comparison with citrate stabilized Ag NPs. The use of this biosurfactant extracted from corn steep liquor for the synthesis of metal NPs contributes to enhancing the application of green technologies and increasing the utilization of clean, non-toxic and environmentally safe production processes. Therefore, it can help to reduce environmental impact, minimize waste and increase energy efficiency in the field of nanomaterials.
Collapse
Affiliation(s)
- Sergio Gómez-Graña
- Departamento de Química Física CINBIO, Universidade de Vigo, 36310 Vigo, Spain.
| | - María Perez-Ameneiro
- Chemical Engineering Department, School of Industrial Engineering (EEI), University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo-Pontevedra, Spain.
| | - Xanel Vecino
- Chemical Engineering Department, School of Industrial Engineering (EEI), University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo-Pontevedra, Spain.
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | - Jorge Perez-Juste
- Departamento de Química Física CINBIO, Universidade de Vigo, 36310 Vigo, Spain.
| | - José Manuel Cruz
- Chemical Engineering Department, School of Industrial Engineering (EEI), University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo-Pontevedra, Spain.
| | - Ana Belén Moldes
- Chemical Engineering Department, School of Industrial Engineering (EEI), University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo-Pontevedra, Spain.
| |
Collapse
|
33
|
Rincón-Fontán M, Rodríguez-López L, Vecino X, Cruz JM, Moldes AB. Influence of micelle formation on the adsorption capacity of a biosurfactant extracted from corn on dyed hair. RSC Adv 2017. [DOI: 10.1039/c7ra01351e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Biosurfactants obtained from corn steep liquor were applied to dyed hair and showed good adsorption while maintaining the dyed hair structure in a good state.
Collapse
Affiliation(s)
- M. Rincón-Fontán
- Chemical Engineering Department
- School of Industrial Engineering – Centro de Investigación Tecnológico Industrial (MTI)
- University of Vigo
- Campus As Lagoas-Marcosende
- 36310 Vigo
| | - L. Rodríguez-López
- Chemical Engineering Department
- School of Industrial Engineering – Centro de Investigación Tecnológico Industrial (MTI)
- University of Vigo
- Campus As Lagoas-Marcosende
- 36310 Vigo
| | - X. Vecino
- Chemical Engineering Department
- School of Industrial Engineering – Centro de Investigación Tecnológico Industrial (MTI)
- University of Vigo
- Campus As Lagoas-Marcosende
- 36310 Vigo
| | - J. M. Cruz
- Chemical Engineering Department
- School of Industrial Engineering – Centro de Investigación Tecnológico Industrial (MTI)
- University of Vigo
- Campus As Lagoas-Marcosende
- 36310 Vigo
| | - A. B. Moldes
- Chemical Engineering Department
- School of Industrial Engineering – Centro de Investigación Tecnológico Industrial (MTI)
- University of Vigo
- Campus As Lagoas-Marcosende
- 36310 Vigo
| |
Collapse
|
34
|
Singh P, Tiwary BN. Isolation and characterization of glycolipid biosurfactant produced by a Pseudomonas otitidis strain isolated from Chirimiri coal mines, India. BIORESOUR BIOPROCESS 2016. [DOI: 10.1186/s40643-016-0119-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
35
|
|
36
|
Lukic M, Pantelic I, Savic S. An Overview of Novel Surfactants for Formulation of Cosmetics with Certain Emphasis on Acidic Active Substances. TENSIDE SURFACT DET 2016. [DOI: 10.3139/113.110405] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
Novel surfactants which are nowadays available for incorporation into various formulations of personal care and cosmetic products are numerous, implying a permanent need for their classification. This overview provides essential information relating to synthesis, basic physicochemical characteristics, application and other relevant data on surfactants currently used in cosmetic products. In the second part of the paper an outline of acidic active substances with significant application in cosmetic products is given, as well as the problems that arise during preparation/manufacture of the containing formulations, accompanied with the review of scientific publications and other available reliable data dealing with the incorporation of these actives in the cosmetic formulations stabilized with novel (mainly natural) surfactants.
Collapse
|
37
|
Rodrigues LR. Microbial surfactants: Fundamentals and applicability in the formulation of nano-sized drug delivery vectors. J Colloid Interface Sci 2015; 449:304-16. [DOI: 10.1016/j.jcis.2015.01.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 01/11/2015] [Accepted: 01/12/2015] [Indexed: 12/29/2022]
|
38
|
Varvaresou A, Iakovou K. Biosurfactants in cosmetics and biopharmaceuticals. Lett Appl Microbiol 2015; 61:214-23. [PMID: 25970073 DOI: 10.1111/lam.12440] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/23/2015] [Accepted: 04/25/2015] [Indexed: 11/28/2022]
Abstract
Biosurfactants are surface-active biomolecules that are produced by various micro-organisms. They show unique properties i.e. lower toxicity, higher biodegradability and environmental compatibility compared to their chemical counterparts. Glycolipids and lipopeptides have prompted application in biotechnology and cosmetics due to their multi-functional profile i.e. detergency, emulsifying, foaming and skin hydrating properties. Additionally, some of them can be served as antimicrobials. In this study the current status of research and development on rhamnolipids, sophorolipids, mannosyloerythritol lipids, trehalipids, xylolipids and lipopeptides particularly their commercial application in cosmetics and biopharmaceuticals, is described.
Collapse
Affiliation(s)
- A Varvaresou
- Laboratory of Cosmetology, Department of Aesthetics and Cosmetology, Technological Educational Institution of Athens, Athens, Greece
| | - K Iakovou
- Department of Drugs, Ministry of Health, Athens, Greece
| |
Collapse
|
39
|
Roy S, Chandni S, Das I, Karthik L, Kumar G, Bhaskara Rao KV. Aquatic model for engine oil degradation by rhamnolipid producing Nocardiopsis VITSISB. 3 Biotech 2015; 5:153-164. [PMID: 28324576 PMCID: PMC4362736 DOI: 10.1007/s13205-014-0199-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/11/2014] [Indexed: 11/28/2022] Open
Abstract
The present study was focused on isolation, screening, characterization and application of biosurfactant producing marine actinobacteria. Twenty actinobacteria were isolated from marine water sample and were primarily screened for biosurfactant production using hemolytic activity method. Among the 20 isolates, six showed positive result for hemolytic activity and those were taken for further secondary screening tests such as oil collapse method, oil spreading method and emulsification method. From the results of secondary screening analysis, two isolates (SIS-3 and SIS-20) were selected and further used to carry out biosurfactant characterization test such as pH, density, surface tension and viscosity determination. Comparing biosurfactant characterization results, SIS-3 was chosen for further analysis and application. FT-IR and GC-MS were carried out for analysis of biosurfactant from isolate SIS-3 and the compound detected was rhamnolipid. The isolate (SIS-3) was identified as Nocardiopsis using 16S rRNA gene sequencing and named as 'Nocardiopsis VITSISB' (KC958579) which was further applied for immobilizing whole cells for engine oil degradation by constructing an aquatic model and using natural products such as soybean meal, sugarcane juice as nutrient source. The oil was efficiently degraded by rhamnolipid producing Nocardiopsis VITSISB (KC958579) within 25 days which indicated that the strain can act as a natural candidate for the bioremediation of oil spill in ocean.
Collapse
Affiliation(s)
- Suki Roy
- Molecular and Microbiology Research Laboratory, School of Bio Sciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Shreta Chandni
- Molecular and Microbiology Research Laboratory, School of Bio Sciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Ishita Das
- Molecular and Microbiology Research Laboratory, School of Bio Sciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Loganathan Karthik
- Molecular and Microbiology Research Laboratory, School of Bio Sciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
- Department of Biotechnology, Shri JJT University, Jhunjhunu, Rajasthan, India
| | - Gaurav Kumar
- Molecular and Microbiology Research Laboratory, School of Bio Sciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Kokati Venkata Bhaskara Rao
- Molecular and Microbiology Research Laboratory, School of Bio Sciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
40
|
Meena KR, Kanwar SS. Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. BIOMED RESEARCH INTERNATIONAL 2015; 2015:473050. [PMID: 25632392 PMCID: PMC4303012 DOI: 10.1155/2015/473050] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 09/26/2014] [Accepted: 10/02/2014] [Indexed: 11/17/2022]
Abstract
A lot of crops are destroyed by the phytopathogens such as fungi, bacteria, and yeast leading to economic losses to the farmers. Members of the Bacillus genus are considered as the factories for the production of biologically active molecules that are potential inhibitors of growth of phytopathogens. Plant diseases constitute an emerging threat to global food security. Many of the currently available antimicrobial agents for agriculture are highly toxic and nonbiodegradable and thus cause extended environmental pollution. Moreover, an increasing number of phytopathogens have developed resistance to antimicrobial agents. The lipopeptides have been tried as potent versatile weapons to deal with a variety of phytopathogens. All the three families of Bacillus lipopeptides, namely, Surfactins, Iturins and Fengycins, have been explored for their antagonistic activities towards a wide range of phytopathogens including bacteria, fungi, and oomycetes. Iturin and Fengycin have antifungal activities, while Surfactin has broad range of potent antibacterial activities and this has also been used as larvicidal agent. Interestingly, lipopeptides being the molecules of biological origin are environmentally acceptable.
Collapse
Affiliation(s)
- Khem Raj Meena
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171 005, India
| | - Shamsher S. Kanwar
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171 005, India
| |
Collapse
|
41
|
Abstract
Natural surfactants or biosurfactants are amphiphilic biological compounds, usually extracellular, produced by a variety of microorganisms from various substances including waste materials.
Collapse
Affiliation(s)
- Sourav De
- Department of Chemistry
- The University of Burdwan
- Burdwa
- India
| | - Susanta Malik
- Department of Chemistry
- The University of Burdwan
- Burdwa
- India
| | | | - Rumpa Saha
- Department of Chemistry
- TDB College Raniganj
- Raniganj
- India
| | - Bidyut Saha
- Department of Chemistry
- The University of Burdwan
- Burdwa
- India
| |
Collapse
|
42
|
Vecino X, Barbosa-Pereira L, Devesa-Rey R, Cruz JM, Moldes AB. Optimization of extraction conditions and fatty acid characterization of Lactobacillus pentosus cell-bound biosurfactant/bioemulsifier. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:313-20. [PMID: 24798413 DOI: 10.1002/jsfa.6720] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/28/2014] [Accepted: 04/28/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND There is currently much interest in the use of natural biosurfactants and bioemulsifiers, mainly in the cosmetic, pharmaceutical and food industries. However, there are no studies on the optimization of the extraction conditions of cell-bound biosurfactants. In this work, a biosurfactant with emulsifier properties was extracted from Lactobacillus pentosus cells, under different extraction conditions, and characterized. RESULTS During extraction, the most influential independent variable, concerning the emulsifying capacity of biosurfactant, was the operation time, followed by temperature and salt concentration. Biosurfactant from L. pentosus was evaluated by Fourier transform infrared spectroscopy and the composition of fatty acids was analyzed by gas chromatography-mass spectrometry. The hydrophobic chain of the biosurfactant from L. pentosus comprises 548 g kg(-1) linoelaidic acid (C18:2), 221 g kg(-1) oleic or elaidic acid (C18:1), 136 g kg(-1) palmitic acid (C16) and 95 g kg(-1) stearic acid (C18). In addition, emulsions of water and rosemary oil were stabilized with a biosurfactant produced by L. pentosus and compared with emulsions stabilized with polysorbate 20. CONCLUSION The optimum extraction conditions of biosurfactant were achieved at 45 °C at 120 min and using 9 g kg(-1) of salt. In all the assays biosurfactant from L. pentosus yielded more stable emulsions and higher emulsion volumes than polysorbate 20.
Collapse
Affiliation(s)
- Xanel Vecino
- Chemical Engineering Department, School of Industrial Engineering (EEI), University of Vigo, Campus As Lagoas-Marcosende, 36310, Vigo-Pontevedra, Spain
| | | | | | | | | |
Collapse
|
43
|
Haba E, Bouhdid S, Torrego-Solana N, Marqués AM, Espuny MJ, García-Celma MJ, Manresa A. Rhamnolipids as emulsifying agents for essential oil formulations: antimicrobial effect against Candida albicans and methicillin-resistant Staphylococcus aureus. Int J Pharm 2014; 476:134-41. [PMID: 25269010 DOI: 10.1016/j.ijpharm.2014.09.039] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/16/2014] [Accepted: 09/26/2014] [Indexed: 01/01/2023]
Abstract
This work examines the influence of essential oil composition on emulsification with rhamnolipids and their use as therapeutic antimicrobial agents against two opportunistic pathogens, methicillin-resistant Staphylococcus aureus (MRSA) and Candida albicans. Rhamnolipids, produced by Pseudomonas aeruginosa, with waste frying oil as the carbon source, were composed of eight rhamnolipid homologues. The rhamnolipid mixture was used to produce emulsions containing essential oils (EOs) of Melaleuca alternifolia, Cinnamomum verum, Origanum compactum and Lavandula angustifolia using the titration method. Ternary phase diagrams were designed to evaluate emulsion stability, which differed depending on the essential oil. The in vitro antimicrobial activity of the EOs alone and the emulsions was evaluated. The antimicrobial activity presented by the essential oils alone increased with emulsification. The surface properties of rhamnolipids contribute to the positive dispersion of EOs and thus increase their availability and antimicrobial activity against C. albicans and S. aureus. Therefore, rhamnolipid-based emulsions represent a promising approach to the development of EO delivery systems.
Collapse
Affiliation(s)
- Ester Haba
- Unitat de Microbiologia, Facultat de Farmàcia, Universitat de Barcelona, Joan XXIII s/n, 08028 Barcelona, Spain
| | - Samira Bouhdid
- Département de Phytologie, Institut National des Plantes Médicinales et Aromatiques, Université Sidi Mohamed Ben Abdellah-Fès, Morocco
| | - Noelia Torrego-Solana
- Unitat de Microbiologia, Facultat de Farmàcia, Universitat de Barcelona, Joan XXIII s/n, 08028 Barcelona, Spain
| | - A M Marqués
- Unitat de Microbiologia, Facultat de Farmàcia, Universitat de Barcelona, Joan XXIII s/n, 08028 Barcelona, Spain
| | - M José Espuny
- Unitat de Microbiologia, Facultat de Farmàcia, Universitat de Barcelona, Joan XXIII s/n, 08028 Barcelona, Spain
| | - M José García-Celma
- Department of Pharmacy and Pharmaceutical Technology, R+D Associated Unit to CSIC, Faculty of Pharmacy, University of Barcelona, Joan XXIII s/n, 08028 Barcelona, Spain
| | - Angeles Manresa
- Unitat de Microbiologia, Facultat de Farmàcia, Universitat de Barcelona, Joan XXIII s/n, 08028 Barcelona, Spain.
| |
Collapse
|
44
|
Vecino X, Barbosa-Pereira L, Devesa-Rey R, Cruz JM, Moldes AB. Study of the surfactant properties of aqueous stream from the corn milling industry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5451-5457. [PMID: 24877695 DOI: 10.1021/jf501386h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Corn steep liquor (CSL) is a liquid byproduct generated by the corn wet-milling industry. This agroindustrial residue is obtained when corn is digested with warm water and SO2 in the presence of different spontaneously growing microorganisms. The microbial population of CSL includes lactic acid bacteria, which are widely known to produce biosurfactants. However, there is no information available about the possible existence of surface-active compounds in CSL. In this work the surface tension activity of CSL was evaluated and the biosurfactant contained in this residue was extracted with different organic solvents and characterized. The biosurfactant obtained from CSL was analyzed by Fourier transform infrared spectroscopy, and the composition in fatty acid was analyzed by gas chromatography-mass spectrometry. The hydrophobic chain of the biosurfactant contained in CSL comprised 50-55.2% linolelaidic acid, 15.7-22.2% oleic and/or elaidic acid, 5.9-14.6% stearic acid, and 14.9-19.6% palmitic acid.
Collapse
Affiliation(s)
- X Vecino
- Chemical Engineering Department, School of Industrial Engineering (EEI), University of Vigo , Campus As Lagoas-Marcosende, 36310 Vigo-Pontevedra, Spain
| | | | | | | | | |
Collapse
|
45
|
A biosurfactant-sophorolipid acts in synergy with antibiotics to enhance their efficiency. BIOMED RESEARCH INTERNATIONAL 2013; 2013:512495. [PMID: 24089681 PMCID: PMC3782141 DOI: 10.1155/2013/512495] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/22/2013] [Accepted: 08/02/2013] [Indexed: 11/17/2022]
Abstract
Sophorolipids (SLs), biosurfactants with antimicrobial properties, have been tried to address the problem of antibiotic resistance. The synergistic action of SL and antibiotics was checked using standard microdilution and spread plate methods. With Staphylococcus aureus, SL-tetracycline combination achieved total inhibition before 4 h of exposure while tetracycline alone couldnot achieve total inhibition till the end of 6 h. The inhibition caused by exposure of bacterium to SL-tetracycline mixture was ~25% more as compared to SL alone. In spite of known robustness of gram-negative bacteria, SL-cefaclor mixture proved to be efficient against Escherichia coli which showed ~48% more inhibition within 2 h of exposure as compared to cefaclor alone. Scanning electron microscopy of the cells treated with mixture revealed bacterial cell membrane damage and pore formation. Moreover, SLs being a type of asymmetric bola, they are expected to form self-assemblies with unique functionality. This led to the speculation that SLs being amphiphilic in nature can span through the structurally alike cell membrane and facilitate the entry of drug molecules.
Collapse
|
46
|
Agrawal S, Giri TK, Tripathi DK, . A, Alexander A. A Review on Novel Therapeutic Strategies for the Enhancement of Solubility for Hydrophobic Drugs through Lipid and Surfactant Based Self Micro Emulsifying Drug Delivery System: A Novel Approach. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/ajdd.2012.143.183] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
An efficient biosurfactant-producing bacterium Selenomonas ruminantium CT2, isolated from mangrove sediment in south of Thailand. World J Microbiol Biotechnol 2012; 29:87-102. [DOI: 10.1007/s11274-012-1161-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 08/23/2012] [Indexed: 01/18/2023]
|
48
|
Saimmai A, Rukadee O, Onlamool T, Sobhon V, Maneerat S. Isolation and functional characterization of a biosurfactant produced by a new and promising strain of Oleomonas sagaranensis AT18. World J Microbiol Biotechnol 2012; 28:2973-86. [DOI: 10.1007/s11274-012-1108-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 06/11/2012] [Indexed: 10/28/2022]
|
49
|
Biodiversity and biotechnological potential of microorganisms from mangrove ecosystems: a review. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0442-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
50
|
Foam mitigation and exploitation in biosurfactant production. Biotechnol Lett 2011; 34:187-95. [PMID: 22038550 DOI: 10.1007/s10529-011-0782-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 10/13/2011] [Indexed: 10/16/2022]
Abstract
Biosurfactants could potentially outperform traditional surfactants in many applications whilst being more sustainable to source, manufacture, use and dispose of. However, currently available fermentation production methods are too inefficient to manufacture biosurfactants for these high volume markets. Foaming in an inherent issue with biosurfactant production and adds significantly to the cost of production using traditional unit operations. This review illustrates how the application of process engineering has enabled nuisance foaming to be transformed into a cost saving feature of the production system. The scope of biosurfactants and their application is discussed and the fundamentals of foam generation and control are reviewed. The range of specific phenomena associated with the interaction of foams with bioproducts is assessed. Finally, recent work which has aimed at taking advantage of some of these phenomena in order to intensify the biosurfactant production process is discussed in detail.
Collapse
|