1
|
Baek SH, Lee JW, Ho TC, Park Y, Ata SM, Yun HJ, Gang G, Getachew AT, Chun BS, Lee SG, Cao L. A comparative study of extraction methods for recovery of bioactive components from brown algae Sargassum serratifolium. Food Sci Biotechnol 2025; 34:237-244. [PMID: 39758719 PMCID: PMC11695544 DOI: 10.1007/s10068-024-01649-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/06/2024] [Accepted: 06/19/2024] [Indexed: 01/07/2025] Open
Abstract
Species of Sargassum genus are known to be rich sources of bioactive compounds. However, there is a lack of studies comparing extraction methods for these bioactive components. This study aimed to compare the total phenolic contents, total antioxidant capacity, tyrosinase inhibitory effect, sargahydroquinoic acid (SHQA) and sargachromenol (SCM), two algal meroterpenoids, of Sargassum serratifolium extracts acquired by different extraction methods. The methods employed in this study included conventional solid-liquid extraction using methanol (SME), supercritical fluid extraction using CO2 with ethanol as a co-solvent (SC-CO2 + ethanol), and pressurized liquid extraction (PLE) at two temperatures (25 and 100 °C). PLE at 100 °C (PLE100) exhibited the highest total yield, total phenolic content, total antioxidant capacity and tyrosinase inhibitory activity. Notably, SME resulted in the highest recovery of both SHQA and SCM. Compared to SME, PLE100 exhibited a two-fold increase in antioxidant capacity but a minimal increase in phenolic content.
Collapse
Affiliation(s)
- Su Hyeon Baek
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Korea
| | - Joo Won Lee
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Korea
| | - Truc Cong Ho
- PL MICROMED Co., Ltd., Yangsan-si, Gyeongsangnam-do Korea
| | - Yena Park
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
| | - Shymaa M. Ata
- Department of Home Economics, School of Specific Education, Menofia University, Menofia, Egypt
| | - Hyun Jung Yun
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan, Korea
| | - Gyoungok Gang
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
| | - Adane Tilahun Getachew
- Research Group for Bioactives-Analysis and Application, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Byung-Soo Chun
- Department of Food Science and Technology, Pukyong National University, Busan, Korea
| | - Sang Gil Lee
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Korea
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
| | - Lei Cao
- Department of Food Science and Biotechnology, Gachon University, Seongnam, Korea
| |
Collapse
|
2
|
Catarino MD, Silva-Reis R, Chouh A, Silva S, Braga SS, Silva AMS, Cardoso SM. Applications of Antioxidant Secondary Metabolites of Sargassum spp. Mar Drugs 2023; 21:172. [PMID: 36976221 PMCID: PMC10052768 DOI: 10.3390/md21030172] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Sargassum is one of the largest and most diverse genus of brown seaweeds, comprising of around 400 taxonomically accepted species. Many species of this genus have long been a part of human culture with applications as food, feed, and remedies in folk medicine. Apart from their high nutritional value, these seaweeds are also a well-known reservoir of natural antioxidant compounds of great interest, including polyphenols, carotenoids, meroterpenoids, phytosterols, and several others. Such compounds provide a valuable contribution to innovation that can translate, for instance, into the development of new ingredients for preventing product deterioration, particularly in food products, cosmetics or biostimulants to boost crops production and tolerance to abiotic stress. This manuscript revises the chemical composition of Sargassum seaweeds, highlighting their antioxidant secondary metabolites, their mechanism of action, and multiple applications in fields, including agriculture, food, and health.
Collapse
Affiliation(s)
- Marcelo D. Catarino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rita Silva-Reis
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amina Chouh
- Laboratory of Microbiological Engineering and Application, Department of Biochemistry and Molecular and Cellular Biology, Faculty of Nature and Life Sciences, University of Mentouri Brothers Constantine 1, Constantine 25017, Algeria
- Biotechnology Research Center CRBT, Constantine 25016, Algeria
| | - Sónia Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana S. Braga
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Wang H, Qi H, Zhang SY, Song WS, Zhang LQ, Xiang WS, Wang JD. Sarubicinols A-C, Cytotoxic Benzoxazoles from a Streptomyces. JOURNAL OF NATURAL PRODUCTS 2022; 85:1167-1173. [PMID: 35213166 DOI: 10.1021/acs.jnatprod.1c00820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A chemical investigation of Streptomyces sp. Hu186 afforded two known quinone antibiotics, sarubicin A (1) and sarubicin B (2), together with three unusual variants, sarubicinols A-C (3-5), and two new 1,4-naphthoquinone metabolites, sarubicin B1 (6) and sarubicin B2 (7). Compounds 3-5 possess a rare 2-oxabicyclo [2.2.2] substructure and a benzoxazole ring system. Their structures were elucidated using 1D and 2D nuclear magnetic resonance and high-resolution electrospray ionization mass spectrometry data. The absolute configurations of the side-chain moieties in 4 and 5 were solved by electronic circular dichroism calculations. Compounds 1-7 showed moderate cytotoxic activity against four tumor cell lines.
Collapse
Affiliation(s)
- Han Wang
- Life Science and Biotechnology Research Center, School of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Huan Qi
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, People's Republic of China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, People's Republic of China
| | - Wen-Shuai Song
- Life Science and Biotechnology Research Center, School of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Li-Qin Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, People's Republic of China
| | - Wen-Sheng Xiang
- Life Science and Biotechnology Research Center, School of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Ji-Dong Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, People's Republic of China
| |
Collapse
|
4
|
Tziveleka LA, Tammam MA, Tzakou O, Roussis V, Ioannou E. Metabolites with Antioxidant Activity from Marine Macroalgae. Antioxidants (Basel) 2021; 10:1431. [PMID: 34573063 PMCID: PMC8470618 DOI: 10.3390/antiox10091431] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) attack biological molecules, such as lipids, proteins, enzymes, DNA, and RNA, causing cellular and tissue damage. Hence, the disturbance of cellular antioxidant homeostasis can lead to oxidative stress and the onset of a plethora of diseases. Macroalgae, growing in stressful conditions under intense exposure to UV radiation, have developed protective mechanisms and have been recognized as an important source of secondary metabolites and macromolecules with antioxidant activity. In parallel, the fact that many algae can be cultivated in coastal areas ensures the provision of sufficient quantities of fine chemicals and biopolymers for commercial utilization, rendering them a viable source of antioxidants. This review focuses on the progress made concerning the discovery of antioxidant compounds derived from marine macroalgae, covering the literature up to December 2020. The present report presents the antioxidant potential and biogenetic origin of 301 macroalgal metabolites, categorized according to their chemical classes, highlighting the mechanisms of antioxidative action when known.
Collapse
Affiliation(s)
- Leto-Aikaterini Tziveleka
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (M.A.T.); (O.T.); (V.R.)
| | - Mohamed A. Tammam
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (M.A.T.); (O.T.); (V.R.)
- Department of Biochemistry, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Olga Tzakou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (M.A.T.); (O.T.); (V.R.)
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (M.A.T.); (O.T.); (V.R.)
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (M.A.T.); (O.T.); (V.R.)
| |
Collapse
|
5
|
Rushdi MI, Abdel-Rahman IAM, Saber H, Attia EZ, Abdelraheem WM, Madkour HA, Hassan HM, Elmaidomy AH, Abdelmohsen UR. Pharmacological and natural products diversity of the brown algae genus Sargassum. RSC Adv 2020; 10:24951-24972. [PMID: 35517468 PMCID: PMC9055232 DOI: 10.1039/d0ra03576a] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/13/2020] [Indexed: 12/22/2022] Open
Abstract
Sargassum (F. Sargassaceae) is an important seaweed excessively distributed in tropical and subtropical regions.
Collapse
Affiliation(s)
- Mohammed I. Rushdi
- Department of Pharmacognosy
- Faculty of Pharmacy
- South Valley University
- Qena
- Egypt
| | | | - Hani Saber
- Department of Botany and Microbiology
- Faculty of Science
- South Valley University
- Qena
- Egypt
| | - Eman Zekry Attia
- Department of Pharmacognosy
- Faculty of Pharmacy
- Minia University
- 61519 Minia
- Egypt
| | - Wedad M. Abdelraheem
- Department of Medical Microbiology and Immunology
- Faculty of Medicine
- Minia University
- 61519 Minia
- Egypt
| | - Hashem A. Madkour
- Department of Marine and Environmental Geology
- National Institute of Oceanography and Fisheries
- 84511 Hurghada
- Egypt
| | - Hossam M. Hassan
- Department of Pharmacognosy
- Faculty of Pharmacy
- Beni-Suef University
- Beni-Suef
- Egypt
| | - Abeer H. Elmaidomy
- Department of Pharmacognosy
- Faculty of Pharmacy
- Beni-Suef University
- Beni-Suef
- Egypt
| | | |
Collapse
|
6
|
Johnson M, Kanimozhi SA, Joy Jeba Malar TR, Shibila T, Freitas PR, Tintino SR, Menezes IRA, da Costa JGM, Coutinho HDM. The antioxidative effects of bioactive products from Sargassum polycystum C. Agardh and Sargassum duplicatum J. Agardh against inflammation and other pathological issues. Complement Ther Med 2019; 46:19-23. [PMID: 31519278 DOI: 10.1016/j.ctim.2019.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/13/2019] [Accepted: 06/23/2019] [Indexed: 10/26/2022] Open
Abstract
The present study was aimed to determine the phenol, total flavonoids and antioxidant potentials of Sargassum polycystum C. Agardh and Sargassum duplicatum J. Agardh from south east coast of Tamil Nadu and India using DPPH, phophomolybdenum and hydrogen peroxide scavenging activity. The total phenols, total flavonoids and antioxidant activities of S. polycystum and S. duplicatum were determined. Highest phenols (33.49 and 149.52 mg GAE/g) were observed in chloroform extracts of S. polycystum and methanolic extracts of S. duplicatum. The acetone extracts of S. polycystumand S. duplicatum demonstrated maximum amount of flavonoids compared to other studied extracts. Maximum amount of phosphomolybdenum reduction was observed in acetone extracts of S. polycystum and methanolic extracts of S. duplicatum. The DPPH radical scavenging activity of different extracts of S. polycystum and S. duplicatum were as follows acetone > chloroform > Petroleum ether > methanol and acetone > chloroform > methanol >Petroleum ether respectively. The H2O2 scavenging activity of S. polycystum extracts were as follows Petroleum ether extracts of S. polycystum (67.9%) > acetone (67.3%) > chloroform (58.6%) > methanol (51.78%). Acetone extracts of S. duplicatum showed maximum inhibition (90.39%) followed by petroleum ether, chloroform and methanolic extracts (75.11, 72.37 and 54.59%) respectively. The present study results confirmed the antioxidant properties of the two selected brown seaweeds viz., S. polycytum and S. duplicatum. The total phenols, flavonoids and alkaloids may be responsible for the antioxidant activities.
Collapse
Affiliation(s)
- M Johnson
- Centre for Plant Biotechnology, Department of Botany, St. Xavier's College (Autonomous), Palayamkottai, 627 002, Tamil Nadu, India
| | - S Asha Kanimozhi
- Centre for Plant Biotechnology, Department of Botany, St. Xavier's College (Autonomous), Palayamkottai, 627 002, Tamil Nadu, India
| | - T Renisheya Joy Jeba Malar
- Centre for Plant Biotechnology, Department of Botany, St. Xavier's College (Autonomous), Palayamkottai, 627 002, Tamil Nadu, India
| | - T Shibila
- Centre for Plant Biotechnology, Department of Botany, St. Xavier's College (Autonomous), Palayamkottai, 627 002, Tamil Nadu, India
| | - P R Freitas
- Department of Biological Chemistry, Centre of Biological Science and Health, Regional University of Cariri - URCA, 63105-000, Crato, CE, Brazil
| | - S R Tintino
- Department of Biological Chemistry, Centre of Biological Science and Health, Regional University of Cariri - URCA, 63105-000, Crato, CE, Brazil
| | - I R A Menezes
- Department of Biological Chemistry, Centre of Biological Science and Health, Regional University of Cariri - URCA, 63105-000, Crato, CE, Brazil
| | - J G M da Costa
- Department of Biological Chemistry, Centre of Biological Science and Health, Regional University of Cariri - URCA, 63105-000, Crato, CE, Brazil
| | - H D M Coutinho
- Department of Biological Chemistry, Centre of Biological Science and Health, Regional University of Cariri - URCA, 63105-000, Crato, CE, Brazil.
| |
Collapse
|
7
|
Phylogenetic Tree Analysis of the Cold-Hot Nature of Traditional Chinese Marine Medicine for Possible Anticancer Activity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4365715. [PMID: 28191021 PMCID: PMC5278566 DOI: 10.1155/2017/4365715] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/30/2016] [Accepted: 12/04/2016] [Indexed: 11/25/2022]
Abstract
Traditional Chinese Marine Medicine (TCMM) represents one of the medicinal resources for research and development of novel anticancer drugs. In this study, to investigate the presence of anticancer activity (AA) displayed by cold or hot nature of TCMM, we analyzed the association relationship and the distribution regularity of TCMMs with different nature (613 TCMMs originated from 1,091 species of marine organisms) via association rules mining and phylogenetic tree analysis. The screened association rules were collected from three taxonomy groups: (1) Bacteria superkingdom, Phaeophyceae class, Fucales order, Sargassaceae family, and Sargassum genus; (2) Viridiplantae kingdom, Streptophyta phylum, Malpighiales class, and Rhizophoraceae family; (3) Holothuroidea class, Aspidochirotida order, and Holothuria genus. Our analyses showed that TCMMs with closer taxonomic relationship were more likely to possess anticancer bioactivity. We found that the cluster pattern of marine organisms with reported AA tended to cluster with cold nature TCMMs. Moreover, TCMMs with salty-cold nature demonstrated properties for softening hard mass and removing stasis to treat cancers, and species within Metazoa or Viridiplantae kingdom of cold nature were more likely to contain AA properties. We propose that TCMMs from these marine groups may enable focused bioprospecting for discovery of novel anticancer drugs derived from marine bioresources.
Collapse
|
8
|
Yang EJ, Moon JY, Kim SS, Yang KW, Lee WJ, Lee NH, Hyun CG. Jeju seaweeds suppress lipopolysaccharide-stimulated proinflammatory response in RAW 264.7 murine macrophages. Asian Pac J Trop Biomed 2014; 4:529-37. [PMID: 25183272 DOI: 10.12980/apjtb.4.2014c1099] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 06/25/2014] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To investigate the anti-inflammatory effects of Jeju seaweeds on macrophage RAW 264.7 cells under lipopolysaccharide (LPS) stimulation. METHODS Ethyl acetate fractions were prepared from five different types of Jeju seaweeds, Dictyopteris divaricata (D. divaricata), Dictyopteris prolifera (D. prolifera), Prionitis cornea (P. cornea), Grateloupia lanceolata (G. lanceolata), and Grateloupia filicina (G. filicina). They were screened for inhibitory effects on proinflammatory mediators and cytokines such as nitric oxide (NO), prostaglandin E2, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6). RESULTS Our results revealed that D. divaricata, D. prolifera, P. cornea, G. lanceolata, and G. filicina potently inhibited LPS-stimulated NO production (IC50 values were 18.0, 38.36, 38.43, 32.81 and 37.14 µg/mL, respectively). Consistent with these findings, D. divaricata, D. prolifera, P. cornea, and G. filicina also reduced the LPS-induced and prostaglandin E2 production in a concentration-dependent manner. Expectedly, they suppressed the expression of inducible NO synthase and cyclooxygenase-2 at the protein level in a dose-dependent manner in the RAW 264.7 cells, as determined by western blotting. In addition, the levels of TNF-α and IL-6, released into the medium, were also reduced by D. divaricata, D. prolifera, P. cornea, G. lanceolata, and G. filicina in a dose-dependent manner (IC50 values for TNF-α were 16.11, 28.21, 84.27, 45.52 and 74.75 µg/mL, respectively; IC50 values for IL-6 were 37.35, 80.08, 103.28, 62.53 and 84.28 µg/mL, respectively). The total phlorotannin content was measured by the Folin-Ciocalteu method and expressed as phloroglucinol equivalents. The content was 92.0 µg/mg for D. divaricata, 151.8 µg/mg for D. prolifera, 57.2 µg/mg for P. cornea, 53.0 µg/mg for G. lanceolata, and 40.2 µg/mg for G. filicina. CONCLUSIONS Thus, these findings suggest that Jeju seaweed extracts have potential therapeutic applications for inflammatory responses.
Collapse
Affiliation(s)
- Eun-Jin Yang
- Cosmetic Science Center, Department of Chemistry, Jeju National University, Jeju 690-756, Korea ; Jeju Technopark, Ara-1-dong, Jeju-si, Jeju 690-121, Korea
| | - Ji-Young Moon
- Cosmetic Science Center, Department of Chemistry, Jeju National University, Jeju 690-756, Korea ; Jeju Technopark, Ara-1-dong, Jeju-si, Jeju 690-121, Korea
| | - Sang Suk Kim
- Cosmetic Science Center, Department of Chemistry, Jeju National University, Jeju 690-756, Korea ; Citrus Research Station, National Institute of Horticultural & Herbal Science, RDA, Jeju 699-946, Korea
| | - Kyong-Wol Yang
- Jeju Love Co., Ltd., 542-5 Haengwon-ri, Gujwa-eup, Jeju 695-975, Korea
| | - Wook Jae Lee
- Jeju Technopark, Ara-1-dong, Jeju-si, Jeju 690-121, Korea
| | - Nam Ho Lee
- Cosmetic Science Center, Department of Chemistry, Jeju National University, Jeju 690-756, Korea
| | - Chang-Gu Hyun
- Cosmetic Science Center, Department of Chemistry, Jeju National University, Jeju 690-756, Korea ; LINC Agency, Jeju National University, Ara-1-dong, Jeju 690-756, Korea
| |
Collapse
|
9
|
Yang EJ, Ham YM, Yang KW, Lee NH, Hyun CG. Sargachromenol from Sargassum micracanthum inhibits the lipopolysaccharide-induced production of inflammatory mediators in RAW 264.7 macrophages. ScientificWorldJournal 2013; 2013:712303. [PMID: 24194688 PMCID: PMC3806450 DOI: 10.1155/2013/712303] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/29/2013] [Indexed: 12/31/2022] Open
Abstract
During our ongoing screening program designed to determine the anti-inflammatory potential of natural compounds, we isolated sargachromenol from Sargassum micracanthum. In the present study, we investigated the anti-inflammatory effects of sargachromenol on lipopolysaccharide (LPS)-induced inflammation in murine RAW 264.7 macrophage cells and the underlying mechanisms. Sargachromenol significantly inhibited the LPS-induced production of nitric oxide (NO) and prostaglandin E₂ (PGE₂) in a dose-dependent manner. It also significantly inhibited the protein expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in a dose-dependent manner in LPS-stimulated macrophage cells. Further analyses showed that sargachromenol decreased the cytoplasmic loss of inhibitor κBα (IκBα) protein. These results suggest that sargachromenol may exert its anti-inflammatory effects on LPS-stimulated macrophage cells by inhibiting the activation of the NF-κB signaling pathway. In conclusion, to our knowledge, this is the first study to show that sargachromenol isolated from S. micracanthum has an effective anti-inflammatory activity. Therefore, sargachromenol might be useful for cosmetic, food, or medical applications requiring anti-inflammatory properties.
Collapse
Affiliation(s)
- Eun-Jin Yang
- Jeju Biodiversity Research Institute (JBRI), Jeju Technopark, Jeju 699-943, Republic of Korea
| | - Young Min Ham
- Jeju Biodiversity Research Institute (JBRI), Jeju Technopark, Jeju 699-943, Republic of Korea
| | - Kyong-Wol Yang
- Jeju Love Co., Ltd., 542-5 Haengwon-ri, Gujwa-eup, Jeju 695-975, Republic of Korea
| | - Nam Ho Lee
- Cosmetic Science Center, Department of Chemistry, Jeju National University, Jeju 690-756, Republic of Korea
| | - Chang-Gu Hyun
- Cosmetic Science Center, Department of Chemistry, Jeju National University, Jeju 690-756, Republic of Korea
- LINC Agency, Jeju National University, Ara-1-dong, Jeju 690-756, Republic of Korea
| |
Collapse
|
10
|
Yang EJ, Ham YM, Lee WJ, Lee NH, Hyun CG. Anti-inflammatory effects of apo-9'-fucoxanthinone from the brown alga, Sargassum muticum. ACTA ACUST UNITED AC 2013; 21:62. [PMID: 23889890 PMCID: PMC3733608 DOI: 10.1186/2008-2231-21-62] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/12/2013] [Indexed: 12/16/2022]
Abstract
Background The marine environment is a unique source of bioactive natural products, of which Sargassum muticum (Yendo) Fensholt is an important brown algae distributed in Jeju Island, Korea. S. muticum is a traditional Korean food stuff and has pharmacological functions including anti-inflammatory effects. However, the active ingredients from S. muticum have not been characterized. Methods Bioguided fractionation of the ethanolic extract of S. muticum, collected from Jeju island, led to the isolation of a norisoprenoid. Its structure was determined by analysis of the spectroscopic data. In vitro anti-inflammatory activity and mechanisms of action of this compound were examined using lipopolysaccharide (LPS)-stimulated RAW 264.7 cells through ELISA assays and Western blot analysis. Results Apo-9′-fucoxanthinone, belonging to the norisoprenoid family were identified. Apo-9′-fucoxanthinone effectively suppressed LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production. This compound also exerted their anti-inflammatory actions by down-regulating of NF-κB activation via suppression of IκB-α in macrophages. Conclusions This is the first report describing effective anti-inflammatory activity for apo-9’-fucoxanthinone′-fucoxanthnone isolated from S. muticum. Apo-9′-fucoxanthinone may be a good candidate for delaying the progression of human inflammatory diseases and warrants further studies.
Collapse
Affiliation(s)
- Eun-Jin Yang
- Department of Chemistry, Cosmetic Science Center, Jeju National University, Jeju 690-756, Korea.
| | | | | | | | | |
Collapse
|
11
|
Abstract
SIGNIFICANCE Oxidative stress resulting from excessive reactive oxygen/nitrogen/electrophilic species (ROS/RNS/RES) can lead to diseases such as cancer. The health benefits of dietary fruits and vegetables with antioxidant potential have received a great deal of attention. On the other hand, marine botanicals have been less well characterized and still remain as terra incognita. RECENT ADVANCES In some parts of the world, appreciable quantities of seaweeds are consumed on a daily basis. Along with current globalization, cuisines using seaweeds are now being used throughout the world, sometimes considered as healthy delicacies. Thus, it is relevant to explore the medicinal and pharmacological properties of seaweeds, as well as the health ramifications of this dietary practice. CRITICAL ISSUES We currently review the antioxidant potential of seaweed components such as sulfated polysaccharides, phenolic compounds (phlorotannins and bromophenols), and fucoxanthins. In addition to seaweeds, the chemistry and antioxidant activities of some marine fungi and bacteria are described. Since antioxidants are considered promising cancer chemopreventive agents, the in vitro, in vivo, and clinical aspects of antioxidant marine products are presented, and potential implications are discussed. FUTURE DIRECTIONS Although some data suggest that health benefits are derived from the consumption of marine natural products, further epidemiological or clinical studies are needed to strengthen these observations. In addition, many studies have demonstrated the antioxidant effects of seaweeds with in vitro models, but further characterization of bioavailability is necessary to suggest the significance of these responses. It is also important to define the safety of some seaweeds containing inorganic arsenics.
Collapse
Affiliation(s)
- Eun-Jung Park
- College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720, USA
| | | |
Collapse
|
12
|
Shin WS, Oh S, An SW, Park GM, Kwon D, Ham J, Lee S, Park BG. 5E- and 5Z-farnesylacetones from Sargassum siliquastrum as novel selective L-type calcium channel blockers. Vascul Pharmacol 2013; 58:299-306. [PMID: 23416245 DOI: 10.1016/j.vph.2013.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 01/23/2013] [Accepted: 02/04/2013] [Indexed: 11/21/2022]
Abstract
A specific blocker of L-type Ca(2+) channels may be useful in decreasing arterial tone by reducing the open-state probability of L-type Ca(2+) channels. The aim of the present study was to evaluate the farnesylacetones, which are major active constituents of Sargassum siliquastrum, regarding their vasodilatation efficacies, selectivities toward L-type Ca(2+) channels, and in vivo antihypertensive activities. The application of 5E-(farnesylacetone 311) or 5Z-farnesylacetone (farnesylacetone 312) induced concentration-dependent vasodilatation effects on the basilar artery that was pre-contracted with depolarization and showed an ignorable potential role of endothelial-derived nitric oxide. We also tested farnesylacetone 311 or 312 to determine their pharmacological profiles for the blockade of native L-type Ca(2+) channels in basilar arterial smooth muscle cells (BASMCs) and ventricular myocytes (VMCs), cloned L- (α1C/β2a/α2δ), N- (α1B/β1b/α2δ), and T-type Ca(2+) channels (α1G, α1H, and α1I). Farnesylacetone 311 or 312 showed greater selectivity toward the L-type Ca(2+) channels among the tested voltage-gated Ca(2+) channels. The ranked order of the potency for farnesylacetone 311 was cloned α1C≒L-type (BASMC)≒L-type (VMCs)>α1B>α1H>α1I>α1G and that for farnesylacetone 312 was cloned α1C≒L-type (BASMCs)≒L-type (VMCs)>α1H>α1G>α1B>α1I. The oral administration of the farnesylacetone 311 (80mg/kg) conferred potent, long-lasting antihypertensive activity in spontaneous hypertensive rats, but it did not alter the heart rate.
Collapse
Affiliation(s)
- Woon-Seob Shin
- Department of Microbiology, College of Medicine, Kwandong University, Gangneung, 210-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Kim JA, Ahn BN, Kong CS, Kim SK. Protective effect of chromene isolated from Sargassum horneri against UV-A-induced damage in skin dermal fibroblasts. Exp Dermatol 2012; 21:630-1. [PMID: 22775999 DOI: 10.1111/j.1600-0625.2012.01535.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Skin homoeostasis is interrupted during UV-A irradiation. How the UV-A-altered skin components influences photoageing of skin should be investigated using human in vitro models that are important for understanding skin ageing. In this study, chromene compound, sargachromenol, was isolated from Sargassum horneri, and its potency on inhibition of photoageing was investigated in UV-A-irradiated dermal fibroblasts. Effects of sargachromenol on the prevention of photoageing were evaluated by measuring ROS production, membrane protein oxidation, lipid peroxidation and ageing-related gene expression in UV-A-irradiated human skin dermal fibroblasts. The results indicated that treatment with sargachromenol suppressed the collagenase matrix metalloproteinases (MMPs), MMP-1, MMP-2 and MMP-9 expression without any cytotoxicity and phototoxicity. It was further found that these inhibitions were because of increase in the expression of TIMP-1 and TIMP-2 genes. Furthermore, we confirmed that the UV-A-induced transcriptions of AP-1 signalling pathway were regulated by sargachromenol treatment in UV-A-irradiated dermal fibroblasts.
Collapse
Affiliation(s)
- Jung-Ae Kim
- Department of Chemistry, Pukyong National University, Busan, Korea
| | | | | | | |
Collapse
|
14
|
Liu L, Heinrich M, Myers S, Dworjanyn SA. Towards a better understanding of medicinal uses of the brown seaweed Sargassum in Traditional Chinese Medicine: a phytochemical and pharmacological review. JOURNAL OF ETHNOPHARMACOLOGY 2012; 142:591-619. [PMID: 22683660 DOI: 10.1016/j.jep.2012.05.046] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/18/2012] [Accepted: 05/25/2012] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE For nearly 2000 years Sargassum spp., a brown seaweed, has been used in Traditional Chinese Medicine (TCM) to treat a variety of diseases including thyroid disease (e.g. goitre). AIMS OF THE REVIEW To assess the scientific evidence for therapeutic claims made for Sargassum spp. in TCM and to identify future research needs. BACKGROUND AND METHODS A systematic search for the use of Sargassum in classical TCM books was conducted and linked to a search for modern phytochemical and pharmacological data on Sargassum spp. retrieved from PubMed, Web of Knowledge, SciFinder Scholar and CNKI (in Chinese). RESULTS AND DISCUSSION The therapeutic effects of Sargassum spp. are scientifically plausible and may be explained partially by key in vivo and in vitro pharmacological activities of Sargassum, such as anticancer, anti-inflammatory, antibacterial and antiviral activities. Although the mechanism of actions is still not clear, the pharmacological activities could be mainly attributed to the major biologically active metabolites, meroterpenoids, phlorotanins and fucoidans. The contribution of iodine in Sargassum for treating thyroid related diseases seem to have been over estimated. CONCLUSIONS The bioactive compounds in Sargassum spp. appear to play a role as immunomodulators and could be useful in the treatment of thyroid related diseases such as Hashimoto's thyroiditis. Further research is required to determine both the preventative and therapeutic role of Sargassum spp. in thyroid health.
Collapse
Affiliation(s)
- Lei Liu
- Southern Cross Plant Science, Southern Cross University, PO Box 157, Lismore, NSW 2480, Australia.
| | | | | | | |
Collapse
|
15
|
Eun Kim J, Suk Kim S, Hyun CG, Ho Lee N. Antioxidative Chemical Constituents from the Stems of Cleyera japonica Thunberg. INT J PHARMACOL 2012. [DOI: 10.3923/ijp.2012.410.415] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Kim C, Lee IK, Cho GY, Oh KH, Lim YW, Yun BS. Sargassumol, a novel antioxidant from the brown alga Sargassum micracanthum. J Antibiot (Tokyo) 2012; 65:87-9. [PMID: 22068156 DOI: 10.1038/ja.2011.107] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Changmu Kim
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, Korea
| | | | | | | | | | | |
Collapse
|
17
|
Sunassee SN, Davies-Coleman MT. Cytotoxic and antioxidant marine prenylated quinones and hydroquinones. Nat Prod Rep 2012; 29:513-35. [DOI: 10.1039/c2np00086e] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
18
|
Zhao J, Huang G, Zhang M, Chen W, Jiang J. Amino Acid Composition, Molecular Weight Distribution and Antioxidant Stability of Shrimp Processing Byproduct Hydrolysate. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/ajft.2011.904.913] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Sarwar M, Attitalla IH, Abdollahi M. A Review on the Recent Advances in Pharmacological Studies on Medicinal Plants; Animal Studies are Done but Clinical Studies Needs Completing. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/ajava.2011.867.883] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Kim KN, Ham YM, Yang MS, Sam Kim D, Jae Lee W, Ho Lee N, Hyun CG. Molecular Mechanisms of Apoptosis Induced by Scytosiphon gracilis Kogame in HL-60 Cells. INT J PHARMACOL 2010. [DOI: 10.3923/ijp.2010.249.256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|