1
|
Marques PAC, Guerra NB, Dos Santos LS, Mussagy CU, Pegorin Brasil GS, Burd BS, Su Y, da Silva Sasaki JC, Scontri M, de Lima Lopes Filho PE, Silva GR, Miranda MCR, Ferreira ES, Primo FL, Fernandes MA, Crotti AEM, He S, Forster S, Ma C, de Barros NR, de Mendonça RJ, Jucaud V, Li B, Herculano RD, Floriano JF. Natural rubber latex-based biomaterials for drug delivery and regenerative medicine: Trends and directions. Int J Biol Macromol 2024; 267:131666. [PMID: 38636755 DOI: 10.1016/j.ijbiomac.2024.131666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/23/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Natural Rubber Latex (NRL) has shown to be a promising biomaterial for use as a drug delivery system to release various bioactive compounds. It is cost-effective, easy to handle, biocompatible, and exhibits pro-angiogenic and pro-healing properties for both soft and hard tissues. NRL releases compounds following burst and sustained release kinetics, exhibiting first-order release kinetics. Moreover, its pore density can be adjusted for tailored kinetics profiles. In addition, biotechnological applications of NRL in amblyopia, smart mattresses, and neovaginoplasty have demonstrated success. This comprehensive review explores NRL's diverse applications in biotechnology and biomedicine, addressing challenges in translating research into clinical practice. Organized into eight sections, the review emphasizes NRL's potential in wound healing, drug delivery, and metallic nanoparticle synthesis. It also addresses the challenges in enhancing NRL's physical properties and discusses its interactions with the human immune system. Furthermore, examines NRL's potential in creating wearable medical devices and biosensors for neurological disorders. To fully explore NRL's potential in addressing important medical conditions, we emphasize throughout this review the importance of interdisciplinary research and collaboration. In conclusion, this review advances our understanding of NRL's role in biomedical and biotechnological applications, offering insights into its diverse applications and promising opportunities for future development.
Collapse
Affiliation(s)
- Paulo Augusto Chagas Marques
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, km 235, 13560-970 Sao Carlos, SP, Brazil
| | | | - Lindomar Soares Dos Santos
- Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, 3900 Bandeirantes Avenue, 14.040-901 Ribeirão Preto, SP, Brazil
| | - Cassamo Ussemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile
| | - Giovana Sant'Ana Pegorin Brasil
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; São Paulo State University (UNESP), Post-Graduate Program in Biotechnology, Institute of Chemistry, 14800-903 Araraquara, SP, Brazil
| | - Betina Sayeg Burd
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; São Paulo State University (UNESP), Post-Graduate Program in Biotechnology, Institute of Chemistry, 14800-903 Araraquara, SP, Brazil
| | - Yanjin Su
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Josana Carla da Silva Sasaki
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; São Paulo State University (UNESP), Post-Graduate Program in Biotechnology, Institute of Chemistry, 14800-903 Araraquara, SP, Brazil
| | - Mateus Scontri
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | | | - Glaucio Ribeiro Silva
- Federal Institute of Education, Science, and Technology of Minas Gerais, s/n São Luiz Gonzaga Street, 35577-010 Formiga, Minas Gerais, Brazil
| | - Matheus Carlos Romeiro Miranda
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), Rua Prof. Artur Riedel, 275, 09972-270 Diadema, SP, Brazil
| | - Ernando Silva Ferreira
- State University of Feira de Santana (UEFS), Department of Physics, s/n Transnordestina Highway, 44036-900 Feira de Santana, BA, Brazil
| | - Fernando Lucas Primo
- Bionanomaterials and Bioengineering Group, Department of Biotechnology and Bioprocesses Engineering, São Paulo State University (UNESP), Faculty of Pharmaceutical Sciences, Araraquara, 14800-903, São Paulo, Brazil
| | - Mariza Aires Fernandes
- Bionanomaterials and Bioengineering Group, Department of Biotechnology and Bioprocesses Engineering, São Paulo State University (UNESP), Faculty of Pharmaceutical Sciences, Araraquara, 14800-903, São Paulo, Brazil
| | - Antônio Eduardo Miller Crotti
- Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, 3900 Bandeirantes Avenue, 14.040-901 Ribeirão Preto, SP, Brazil
| | - Siqi He
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | - Samuel Forster
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | - Changyu Ma
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | - Ricardo José de Mendonça
- Department of Biochemistry, Pharmacology and Physiology, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Rondinelli Donizetti Herculano
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA.
| | - Juliana Ferreira Floriano
- School of Science, São Paulo State University (UNESP), 17033-360 Bauru, SP, Brazil; Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; National Heart and Lung Institute, Imperial College London, SW7 2AZ London, UK.
| |
Collapse
|
2
|
Borges FA, de Camargo Drago B, Baggio LO, de Barros NR, Sant'Ana Pegorin Brasil G, Scontri M, Mussagy CU, da Silva Ribeiro MC, Milori DMBP, de Morais CP, Marangoni BS, Nicolodelli G, Mecwan M, Mandal K, Guerra NB, Menegatti CR, Herculano RD. Metronidazole-loaded gold nanoparticles in natural rubber latex as a potential wound dressing. Int J Biol Macromol 2022; 211:568-579. [PMID: 35533848 DOI: 10.1016/j.ijbiomac.2022.05.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/19/2022]
Abstract
Gold nanoparticles (AuNPs) have shown interesting properties and specific biofunctions, providing benefits and new opportunities for controlled release systems. In this research, we demonstrated the use of natural rubber latex (NRL) from Hevea brasiliensis as a carrier of AuNPs and the antibiotic metronidazole (MET). We prepared AuNP-MET-NRL and characterized by physicochemical, biological and in vitro release assays. The effect of AuNPs on MET release was evaluated using UV-Vis and Laser-Induced Breakdown Spectroscopy (LIBS) techniques. AuNPs synthesized by Turkevich and Frens method resulted in a spherical shape with diameters of 34.8 ± 5.5 nm. We verified that there was no emergence or disappearance of new vibrational bands. Qualitatively and quantitatively, we showed that the MET crystals dispersed throughout the NRL. The Young's modulus and elongation values at dressing rupture were in the range appropriate for human skin application. 64.70% of the AuNP-MET complex was released within 100 h, exhibiting a second-order exponential release profile. The LIBS technique allowed monitoring of the AuNP release, indicating the Au emission peak reduction at 267.57 nm over time. Moreover, the dressing displayed an excellent hemocompatibility and fibroblast cell viability. These results demonstrated that the AuNP-MET-NRL wound dressing is a promising approach for dermal applications.
Collapse
Affiliation(s)
- Felipe Azevedo Borges
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Bruno de Camargo Drago
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, Araraquara, SP, Brazil; São Paulo State University (UNESP), Post-Graduate Program in Biotechnology, Institute of Chemistry, Araraquara, SP, Brazil
| | - Luís Otávio Baggio
- São Paulo State University (UNESP), Department of Biotechnology, School of Sciences, Humanities and Languages, Assis, SP, Brazil
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd., Los Angeles, USA
| | - Giovana Sant'Ana Pegorin Brasil
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, Araraquara, SP, Brazil; São Paulo State University (UNESP), Post-Graduate Program in Biotechnology, Institute of Chemistry, Araraquara, SP, Brazil
| | - Mateus Scontri
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Cassamo Ussemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile
| | | | | | | | - Bruno Spolon Marangoni
- Federal University of Mato Grosso do Sul (UFMS), Institute of Physics, Campo Grande, MS, Brazil
| | - Gustavo Nicolodelli
- Federal University of Santa Catarina (UFSC), Department of Physics, Center for Physical Sciences and Mathematics (CFM), Florianópolis, SC, Brazil
| | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd., Los Angeles, USA
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd., Los Angeles, USA
| | - Nayrim Brizuela Guerra
- Area of Exact Sciences and Engineering, University of Caxias do Sul (UCS), Caxias do Sul, RS, Brazil
| | | | - Rondinelli Donizetti Herculano
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, Araraquara, SP, Brazil; São Paulo State University (UNESP), Department of Biotechnology, School of Sciences, Humanities and Languages, Assis, SP, Brazil; Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd., Los Angeles, USA.
| |
Collapse
|
3
|
Guerra NB, Sant'Ana Pegorin G, Boratto MH, de Barros NR, de Oliveira Graeff CF, Herculano RD. Biomedical applications of natural rubber latex from the rubber tree Hevea brasiliensis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112126. [PMID: 34082943 DOI: 10.1016/j.msec.2021.112126] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/13/2022]
Abstract
The past decades have witnessed tremendous progress in biomaterials in terms of functionalities and applications. To realize various functions such as tissue engineering, tissue repair, and controlled release of therapeutics, a biocompatible and biologically active material is often needed. However, it is a difficult task to find either synthetic or natural materials suitable for in vivo applications. Nature has provided us with the natural rubber latex from the rubber tree Hevea brasiliensis, a natural polymer that is biocompatible and has been proved as inducing tissue repair by enhancing the vasculogenesis process, guiding and recruiting cells responsible for osteogenesis, and acting as a solid matrix for controlled drug release. It would be extremely useful if medical devices can be fabricated with materials that have these biological properties. Recently, various types of natural rubber latex-based biomedical devices have been developed to enhance tissue repair by taking advantage of its biological properties. Most of them were used to enhance tissue repair in chronic wounds and critical bone defects. Others were used to design drug release systems to locally release therapeutics in a sustained and controlled manner. Here, we summarize recent progress made in these areas. Specifically, we compare various applications and their performance metrics. We also discuss critical problems with the use of natural rubber latex in biomedical applications and highlight future opportunities for biomedical devices produced either with pre-treated natural rubber latex or with proteins purified from the natural rubber latex.
Collapse
Affiliation(s)
- Nayrim Brizuela Guerra
- Area of Exact Sciences and Engineering, University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, BR
| | - Giovana Sant'Ana Pegorin
- Department of Biotechnology and Bioprocess Engineering, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km01 Araraquara-Jaú Road, Araraquara, São Paulo, Brazil
| | - Miguel Henrique Boratto
- Department of Physics, São Paulo State University (UNESP), School of Sciences, Bauru, São Paulo, Brazil
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), 11570 West Olympic Boulevard, Los Angeles, CA 90064, USA.
| | | | - Rondinelli Donizetti Herculano
- Department of Biotechnology and Bioprocess Engineering, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km01 Araraquara-Jaú Road, Araraquara, São Paulo, Brazil
| |
Collapse
|
4
|
Gemeinder JLP, Barros NRD, Pegorin GS, Singulani JDL, Borges FA, Arco MCGD, Giannini MJSM, Almeida AMF, Salvador SLDS, Herculano RD. Gentamicin encapsulated within a biopolymer for the treatment of Staphylococcus aureus and Escherichia coli infected skin ulcers. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 32:93-111. [PMID: 32897812 DOI: 10.1080/09205063.2020.1817667] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Skin wound infection requires carefully long-term treatment with an immense financial burden to healthcare systems worldwide. Various strategies such as drug delivery systems using polymer matrix from natural source have been used to enhance wound healing. Natural rubber latex (NRL) from Hevea brasiliensis has shown angiogenic and tissue repair properties. Gentamicin sulfate (GS) is a broad-spectrum antibiotic which inhibits the growth of a wide variety of microorganisms and, because of this, it has also been applied topically for treatment of local infections. The aim of this study was to develop a GS release system using NRL as matrix for Staphylococcus aureus and Escherichia coli infected skin ulcers treatment, without changing drug antibiotic properties. The matrix did not change the GS antimicrobial activity against S. aureus and E. coli strains. Moreover, the NRL-GS biomembrane did not exhibit hemolytic activity, being non-toxic to red blood cells. The eluates of NRL-GS biomembranes and GS solutions did not significantly reduce the survival of Caenorhabditis elegans worms for 24 h at any of the tested concentrations. Thus, these results emphasize that the NRL-GS biomembrane proved to be a promising biomaterial for future studies on the development of dressings for topical uses, inexpensive and practicable, keeping drug antibiotic properties against pathogens and to reduce the side effects.
Collapse
Affiliation(s)
- José Lúcio Pádua Gemeinder
- Department of Biotechnology, São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, São Paulo, Brazil.,Department of Biochemistry and Chemical Technology, São Paulo State University (UNESP), Institute of Chemistry, Araraquara, São Paulo, Brazil
| | - Natan Roberto de Barros
- Department of Biochemistry and Chemical Technology, São Paulo State University (UNESP), Institute of Chemistry, Araraquara, São Paulo, Brazil.,Department of Biotechnology and Bioprocesses Engineering, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Giovana Sant'Ana Pegorin
- Department of Biochemistry and Chemical Technology, São Paulo State University (UNESP), Institute of Chemistry, Araraquara, São Paulo, Brazil.,Department of Biotechnology and Bioprocesses Engineering, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Junya de Lacorte Singulani
- Department of Clinical Analysis, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Felipe Azevedo Borges
- Department of Biochemistry and Chemical Technology, São Paulo State University (UNESP), Institute of Chemistry, Araraquara, São Paulo, Brazil.,Department of Biotechnology and Bioprocesses Engineering, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Marina Constante Gabriel Del Arco
- Department of Clinical, Toxicological and Bromatological Analysis, São Paulo University (USP), School of Pharmaceutical Sciences, Ribeirão Preto, São Paulo, Brazil
| | - Maria José Soares Mendes Giannini
- Department of Clinical Analysis, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Ana Marisa Fusco Almeida
- Department of Clinical Analysis, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Sérgio Luiz de Souza Salvador
- Department of Clinical, Toxicological and Bromatological Analysis, São Paulo University (USP), School of Pharmaceutical Sciences, Ribeirão Preto, São Paulo, Brazil
| | - Rondinelli Donizetti Herculano
- Department of Biotechnology and Bioprocesses Engineering, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| |
Collapse
|
5
|
Carlos BL, Yamanaka JS, Yanagihara GR, Macedo AP, Watanabe PCA, Issa JPM, Herculano RD, Shimano AC. Effects of latex membrane on guided regeneration of long bones. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1291-1307. [DOI: 10.1080/09205063.2019.1627653] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Bruna Leonel Carlos
- Department of Biomechanics, Medicine and Locomotor Apparatus Rehabilitation, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jéssica Suzuki Yamanaka
- Department of Biomechanics, Medicine and Locomotor Apparatus Rehabilitation, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Gabriela Rezende Yanagihara
- Department of Biomechanics, Medicine and Locomotor Apparatus Rehabilitation, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana Paula Macedo
- Department of Dental Materials and Prosthesis, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Plauto Christopher Aranha Watanabe
- Department of Stomatoligy, Collective Health and Legal Dentistry, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - João Paulo Mardegan Issa
- Department of Basic and Oral Biology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Rondinelli Donizetti Herculano
- eDepartment of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences of Araraquara, Paulista State University, Araraquara, Brazil
| | - Antônio Carlos Shimano
- Department of Biomechanics, Medicine and Locomotor Apparatus Rehabilitation, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
6
|
de Barros NR, Heredia-Vieira SC, Borges FA, Benites NM, dos Reis CE, Miranda MCR, Cardoso CAL, Herculano RD. Natural rubber latex biodevice as controlled release system for chronic wounds healing. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aab33a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Carvalho FA, Uchina HS, Borges FA, Oyafuso MH, Herculano RD, Gremião MP, Santos AG. Natural membranes of Hevea brasiliensis latex as delivery system for Casearia sylvestris leaf components. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2018. [DOI: 10.1016/j.bjp.2017.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
8
|
|
9
|
Diclofenac Potassium Transdermal Patches Using Natural Rubber Latex Biomembranes as Carrier. ACTA ACUST UNITED AC 2015. [DOI: 10.1155/2015/807948] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aim of this study was to design a compound transdermal patch containing diclofenac potassium (Dic-K) using natural rubber latex (NRL) biomembrane. The NRL from Hevea brasiliensis is easily manipulated and low cost and presents high mechanical resistance. It is a biocompatible material which can stimulate natural angiogenesis and is capable of adhering cells on its surface. Recent researches have used the NRL for Transdermal Drug Delivery Systems (TDDSs). Dic-K is used for the treatment of rheumatoid arthritis and osteoarthritis and pain relief for postoperative and posttraumatic cases, as well as inflammation and edema. Results showed that the biomembrane can release Dic-K for up to 216 hours. The kinetics of the Dic-K release could be fitted with double exponential function. X-ray diffraction and Fourier Transform Infrared (FTIR) spectroscopy show some interaction by hydrogen bound. The results indicated the potential of the compound patch.
Collapse
|