1
|
Mohana P, Singh A, Rashid F, Singh S, Kaur K, Rana R, Bedi PMS, Bedi N, Kaur R, Arora S. Inhibition of Virulence Associated Traits by β-Sitosterol Isolated from Hibiscus rosa-sinensis Flowers Against Candida albicans: Mechanistic Insight and Molecular Docking Studies. J Microbiol 2024; 62:1165-1175. [PMID: 39503955 DOI: 10.1007/s12275-024-00174-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 12/18/2024]
Abstract
The emerging drug resistance and lack of safer and more potent antifungal agents make Candida infections another hot topic in the healthcare system. At the same time, the potential of plant products in developing novel antifungal drugs is also in the limelight. Considering these facts, we have investigated the different extracts of the flowers of Hibiscus rosa-sinensis of the Malvaceae family for their antifungal efficacy against five different pathogenic Candida strains. Among the various extracts, the chloroform extract showed the maximum zone of inhibition (26.6 ± 0.5 mm) against the Candida albicans strain. Furthermore, the chloroform fraction was isolated, and a sterol compound was identified as β-sitosterol. Mechanistic studies were conducted to understand the mechanism of action, and the results showed that β-sitosterol has significant antifungal activity and is capable of interrupting biofilm formation and acts by inhibiting ergosterol biosynthesis in Candida albicans cells. Microscopic and molecular docking studies confirmed these findings. Overall, the study validates the antifungal efficacy of Candida albicans due to the presence of β-sitosterol which can act as an effective constituent for antifungal drug development individually or in combination.
Collapse
Affiliation(s)
- Pallvi Mohana
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Farhana Rashid
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Sharabjit Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Rupali Rana
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | | | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Rajinder Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| |
Collapse
|
2
|
Xu L, Gurung B, Gu C, Wang S, Gu T. A New Convenient Method to Assess Antibiotic Resistance and Antimicrobial Efficacy against Pathogenic Clostridioides difficile Biofilms. Antibiotics (Basel) 2024; 13:728. [PMID: 39200028 PMCID: PMC11350819 DOI: 10.3390/antibiotics13080728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Clostridioides difficile is a widely distributed anaerobic pathogen. C. difficile infection is a serious problem in healthcare. Its biofilms have been found to exhibit biocorrosivity, albeit very little, but sufficient for it to correlate with biofilm growth/health. This work demonstrated the use of a disposable electrochemical biofilm test kit using two solid-state electrodes (a 304 stainless steel working electrode, and a graphite counter electrode, which also served as the reference electrode) in a 10 mL serum vial. It was found that the C. difficile 630∆erm Adp-4 mutant had a minimum inhibitory concentration (MIC) for vancomycin twice that of the 630∆erm wild type strain in biofilm prevention (2 ppm vs. 1 ppm by mass) on 304 stainless steel. Glutaraldehyde, a commonly used hospital disinfectant, was found ineffective at 2% (w/w) for the prevention of C. difficile 630∆erm wild type biofilm formation, while tetrakis(hydroxymethyl)phosphonium sulfate (THPS) disinfectant was very effective at 100 ppm for both biofilm prevention and biofilm killing. These antimicrobial efficacy data were consistent with sessile cell count and biofilm imaging results. Furthermore, the test kit provided additional transient biocide treatment information. It showed that vancomycin killed C. difficile 630∆erm wild type biofilms in 2 d, while THPS only required minutes.
Collapse
Affiliation(s)
- Lingjun Xu
- Department of Chemical & Biomolecular Engineering, Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Bijay Gurung
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45071, USA
| | - Chris Gu
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45071, USA
| | - Shaohua Wang
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45071, USA
- Infectious and Tropical Disease Institute, Ohio University, Athens, OH 45071, USA
| | - Tingyue Gu
- Department of Chemical & Biomolecular Engineering, Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
3
|
Jimoh AA, Booysen E, van Zyl L, Trindade M. Do biosurfactants as anti-biofilm agents have a future in industrial water systems? Front Bioeng Biotechnol 2023; 11:1244595. [PMID: 37781531 PMCID: PMC10540235 DOI: 10.3389/fbioe.2023.1244595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Biofilms are bacterial communities embedded in exopolymeric substances that form on the surfaces of both man-made and natural structures. Biofilm formation in industrial water systems such as cooling towers results in biofouling and biocorrosion and poses a major health concern as well as an economic burden. Traditionally, biofilms in industrial water systems are treated with alternating doses of oxidizing and non-oxidizing biocides, but as resistance increases, higher biocide concentrations are needed. Using chemically synthesized surfactants in combination with biocides is also not a new idea; however, these surfactants are often not biodegradable and lead to accumulation in natural water reservoirs. Biosurfactants have become an essential bioeconomy product for diverse applications; however, reports of their use in combating biofilm-related problems in water management systems is limited to only a few studies. Biosurfactants are powerful anti-biofilm agents and can act as biocides as well as biodispersants. In laboratory settings, the efficacy of biosurfactants as anti-biofilm agents can range between 26% and 99.8%. For example, long-chain rhamnolipids isolated from Burkholderia thailandensis inhibit biofilm formation between 50% and 90%, while a lipopeptide biosurfactant from Bacillus amyloliquefaciens was able to inhibit biofilms up to 96% and 99%. Additionally, biosurfactants can disperse preformed biofilms up to 95.9%. The efficacy of antibiotics can also be increased by between 25% and 50% when combined with biosurfactants, as seen for the V9T14 biosurfactant co-formulated with ampicillin, cefazolin, and tobramycin. In this review, we discuss how biofilms are formed and if biosurfactants, as anti-biofilm agents, have a future in industrial water systems. We then summarize the reported mode of action for biosurfactant molecules and their functionality as biofilm dispersal agents. Finally, we highlight the application of biosurfactants in industrial water systems as anti-fouling and anti-corrosion agents.
Collapse
Affiliation(s)
| | | | | | - Marla Trindade
- Department of Biotechnology, Institute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
4
|
Xu L, Kijkla P, Kumseranee S, Punpruk S, Gu T. Electrochemical Assessment of Mitigation of Desulfovibrio ferrophilus IS5 Corrosion against N80 Carbon Steel and 26Cr3Mo Steel Using a Green Biocide Enhanced by a Nature-Mimicking Biofilm-Dispersing Peptide. Antibiotics (Basel) 2023; 12:1194. [PMID: 37508290 PMCID: PMC10376645 DOI: 10.3390/antibiotics12071194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
MIC (microbiologically influenced corrosion) is problematic in many industries, especially in the oil and gas industry. In this work, N80 carbon steel for pipelines was tested with 26Cr3Mo chromium pipeline steel for comparison in SRB (sulfate-reducing bacterium) MIC mitigation using a THPS (tetrakis hydroxymethyl phosphonium sulfate)-based commercial biocide (Biotreat 5475 with 75-80% THPS by mass). Peptide A, a nature-mimicking synthetic cyclic peptide (cys-ser-val-pro-tyr-asp-tyr-asn-trp-tyr-ser-asn-trp-cys) with biofilm dispersal ability was used as a biocide enhancer. Metal coupons covered with 3-d old Desulfovibrio ferrophilus IS5 biofilms were immersed in different biocide solutions. After 1-h treatment, 200 ppm Biotreat 5475, 200 ppm Biotreat 5475 + 200 nM (360 ppb) Peptide A, and 400 ppm Biotreat 5475 achieved 0.5-log, 1.7-log and 1.9-log reductions in sessile cell count on N80, and 0.7-log, 1.7-log, and 1.8-log on 26Cr3Mo, respectively. The addition of 200 nM Peptide A cut the THPS biocide dosage by nearly half. Biocide injection tests in electrochemical glass cells after 1 h exhibited 15%, 70%, and 72% corrosion inhibition efficiency (based on corrosion current density) on N80, and 27%, 79%, 75% on 26Cr3Mo, respectively. Linear polarization resistance and electrochemical impedance spectrometry results also indicated antimicrobial efficacies.
Collapse
Affiliation(s)
- Lingjun Xu
- Department of Chemical & Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, OH 45701, USA
| | - Pruch Kijkla
- PTT Exploration and Production, Bangkok 10900, Thailand
| | | | | | - Tingyue Gu
- Department of Chemical & Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
5
|
Control of Multidrug-Resistant Pathogenic Staphylococci Associated with Vaginal Infection Using Biosurfactants Derived from Potential Probiotic Bacillus Strain. FERMENTATION 2022. [DOI: 10.3390/fermentation8010019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Biosurfactants exhibit antioxidant, antibacterial, antifungal, and antiviral activities. They can be used as therapeutic agents and in the fight against infectious diseases. Moreover, the anti-adhesive properties against several pathogens point to the possibility that they might serve as an anti-adhesive coating agent for medical inserts and prevent nosocomial infections, without using synthetic substances. In this study, the antimicrobial, antibiofilm, cell surface hydrophobicity, and antioxidative activities of biosurfactant extracted from Bacillus sp., against four pathogenic strains of Staphylococcus spp. associated with vaginal infection, were studied. Our results have shown that the tested biosurfactant possesses a promising antioxidant potential, and an antibacterial potency against multidrug clinical isolates of Staphylococcus, with an inhibitory diameter ranging between 27 and 37 mm, and a bacterial growth inhibition at an MIC of 1 mg/ mL, obtained. The BioSa3 was highly effective on the biofilm formation of different tested pathogenic strains. Following their treatment by BioSa3, a significant decrease in bacterial attachment (p < 0.05) was justified by the reduction in the optical (from 0.709 to 0.111) following their treatment by BioSa3. The antibiofilm effect can be attributed to its ability to alter the membrane physiology of the tested pathogens to cause a significant decrease (p < 0.05) of over 50% of the surface hydrophobicity. Based on the obtained result of the bioactivities in the current study, BioSa3 is a good candidate in new therapeutics to better control multidrug-resistant bacteria and overcome bacterial biofilm-associated infections by protecting surfaces from microbial contamination.
Collapse
|
6
|
Rocha VAL, de Castilho LVA, Castro RDPVD, Teixeira DB, Magalhães AV, Abreu FDA, Cypriano JBS, Gomez JGC, Freire DMG. Antibiofilm effect of mono-rhamnolipids and di-rhamnolipids on carbon steel submitted to oil produced water. Biotechnol Prog 2021; 37:e3131. [PMID: 33511791 DOI: 10.1002/btpr.3131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/27/2020] [Accepted: 01/16/2021] [Indexed: 11/07/2022]
Abstract
The objective of this study was to compare the potential of mono-rhamnolipids (mono-RML) and di-rhamnolipids (di-RML) against biofilm formation on carbon steel coupons submitted to oil produced water for 14 days. The antibiofilm effect of the RML on the coupons was analyzed by scanning electron microscopy (SEM) and by epifluorescence microscopy, and the contact angle was measured using a goniometer. SEM analysis results showed that all RML congeners had effective antibiofilm action, as well as preliminary anticorrosion evaluation confirmed that all RML congeners prevented the metal deterioration. In more detail, epifluorescence microscopy showed that mono-RML were the most efficient congeners in preventing microorganism's adherence on the carbon steel metal. Image analyses indicate the presence of 15.9%, 3.4%, and <0.1% of viable particles in di-RML, mono/di-RML and mono-RML pretreatments, respectively, in comparison to control samples. Contact angle results showed that the crude carbon steel coupon presented hydrophobic character favoring hydrophobic molecules adhesion. We calculated the theoretical polarity of the RML congeners and verified that mono-RML (log P = 3.63) presented the most hydrophobic character. This had perfect correspondence to contact angle results, since mono-RML conditioning (58.2°) more significantly changed the contact angle compared with the conditioning with one of the most common surfactants used on oil industry (29.4°). Based on the results, it was concluded that rhamnolipids are efficient molecules to be used to avoid biofilm on carbon steel metal when submitted to oil produced water and that a higher proportion of mono-rhamnolipids is more indicated for this application.
Collapse
Affiliation(s)
- Vanessa Alves Lima Rocha
- Biochemical Department, Microbial Biotechnology Laboratory, Federal University of Rio de Janeiro-Institute of Chemistry, Rio de Janeiro, RJ, Brazil
| | - Lívia Vieira Araujo de Castilho
- Biochemical Department, Microbial Biotechnology Laboratory, Federal University of Rio de Janeiro-Institute of Chemistry, Rio de Janeiro, RJ, Brazil.,Ocean Engineering Department, Subsea Technology Laboratory, Federal University of Rio de Janeiro-COPPE Institute, Rio de Janeiro, RJ, Brazil
| | - Rui de Paula Vieira de Castro
- Biochemical Department, Microbial Biotechnology Laboratory, Federal University of Rio de Janeiro-Institute of Chemistry, Rio de Janeiro, RJ, Brazil
| | - Douglas Braga Teixeira
- Biochemical Department, Microbial Biotechnology Laboratory, Federal University of Rio de Janeiro-Institute of Chemistry, Rio de Janeiro, RJ, Brazil
| | - Augusto Vieira Magalhães
- Biochemical Department, Microbial Biotechnology Laboratory, Federal University of Rio de Janeiro-Institute of Chemistry, Rio de Janeiro, RJ, Brazil
| | - Fernanda de Avila Abreu
- General Microbiology Department, Cell Biology and Magnetotaxis Laboratory, Federal University of Rio de Janeiro-Institute of Microbiology, Rio de Janeiro, RJ, Brazil
| | - Jefferson Bomfim Silva Cypriano
- General Microbiology Department, Cell Biology and Magnetotaxis Laboratory, Federal University of Rio de Janeiro-Institute of Microbiology, Rio de Janeiro, RJ, Brazil
| | | | - Denise Maria Guimarães Freire
- Biochemical Department, Microbial Biotechnology Laboratory, Federal University of Rio de Janeiro-Institute of Chemistry, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
7
|
Toushik SH, Mizan MFR, Hossain MI, Ha SD. Fighting with old foes: The pledge of microbe-derived biological agents to defeat mono- and mixed-bacterial biofilms concerning food industries. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Biosurfactants: Eco-Friendly and Innovative Biocides against Biocorrosion. Int J Mol Sci 2020; 21:ijms21062152. [PMID: 32245097 PMCID: PMC7139319 DOI: 10.3390/ijms21062152] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
Corrosion influenced by microbes, commonly known as microbiologically induced corrosion (MIC), is associated with biofilm, which has been one of the problems in the industry. The damages of industrial equipment or infrastructures due to corrosion lead to large economic and environmental problems. Synthetic chemical biocides are now commonly used to prevent corrosion, but most of them are not effective against the biofilms, and they are toxic and not degradable. Biocides easily kill corrosive bacteria, which are as the planktonic and sessile population, but they are not effective against biofilm. New antimicrobial and eco-friendly substances are now being developed. Biosurfactants are proved to be one of the best eco-friendly anticorrosion substances to inhibit the biocorrosion process and protect materials against corrosion. Biosurfactants have recently became one of the important products of bioeconomy with multiplying applications, while there is scare knowledge on their using in biocorrosion treatment. In this review, the recent findings on the application of biosurfactants as eco-friendly and innovative biocides against biocorrosion are highlighted.
Collapse
|
9
|
Rocha VAL, de Castilho LVA, de Castro RPV, Teixeira DB, Magalhães AV, Gomez JGC, Freire DMG. Comparison of mono-rhamnolipids and di-rhamnolipids on microbial enhanced oil recovery (MEOR) applications. Biotechnol Prog 2020; 36:e2981. [PMID: 32083814 DOI: 10.1002/btpr.2981] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 12/24/2022]
Abstract
Rhamnolipids (RMLs) have more effectiveness for specific uses according to their homologue proportions. Thus, the novelty of this work was to compare mono-RMLs and di-RMLs physicochemical properties on microbial enhanced oil recovery (MEOR) applications. For this, RML produced by three strains of Pseudomonas aeruginosa containing different homologues proportion were used: a mainly mono-RMLs producer (mono-RMLs); a mainly di-RMLs producer (di-RMLs), and the other one that produces relatively balanced amounts of mono-RML and di-RML homologues (mono/di-RML). For mono-RML, the most abundant molecules were Rha-C10 C10 (m/z 503.3), for di-RML were RhaRha-C10 C10 (m/z 649.4) and for Mono/di-RML were Rha-C10 C10 (m/z 503.3) and RhaRha-C10 C10 (m/z 649.4). All RMLs types presented robustness under high temperature and variation of salinity and pH, and high ability for oil displacement, foam stability, wettability reversal and were classified as safe for environment according to the European Union Directive No. 67/548/EEC. For all these properties, it was observed a highlight for mono-RML. Mono-RML presented the lowest surface tension (26.40 mN/m), interfacial tension (1.14 mN/m), and critical micellar concentration (CMC 27.04 mg/L), the highest emulsification index (EI24 100%) and the best wettability reversal (100% with 25 ppm). In addition, mono-RML showed the best acute toxicity value (454 mg/L), making its application potential even more attractive. Based on the results, it was concluded that all RMLs homologues studied have potential for MEOR applications. However, results showed that mono-RML stood out and have the best mechanism of oil incorporation in micelles due their most effective surface-active physicochemical features.
Collapse
Affiliation(s)
- Vanessa A L Rocha
- Biochemical Department, Laboratory of Microbial Biotechnology, Federal University of Rio de Janeiro-Institute of Chemistry, Rio de Janeiro, Brazil
| | - Lívia V A de Castilho
- Biochemical Department, Laboratory of Microbial Biotechnology, Federal University of Rio de Janeiro-Institute of Chemistry, Rio de Janeiro, Brazil.,Ocean Engineering Department, Subsea Technology Laboratory, Federal University of Rio de Janeiro-COPPE Institute, Rio de Janeiro, Brazil
| | - Rui P V de Castro
- Biochemical Department, Laboratory of Microbial Biotechnology, Federal University of Rio de Janeiro-Institute of Chemistry, Rio de Janeiro, Brazil
| | - Douglas B Teixeira
- Biochemical Department, Laboratory of Microbial Biotechnology, Federal University of Rio de Janeiro-Institute of Chemistry, Rio de Janeiro, Brazil
| | - Augusto V Magalhães
- Biochemical Department, Laboratory of Microbial Biotechnology, Federal University of Rio de Janeiro-Institute of Chemistry, Rio de Janeiro, Brazil
| | - José G C Gomez
- Laboratory of Bioproducts, University of São Paulo-Institute of Biomedical Sciences, São Paulo, Brazil
| | - Denise M G Freire
- Biochemical Department, Laboratory of Microbial Biotechnology, Federal University of Rio de Janeiro-Institute of Chemistry, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Production of Mannosylerythritol Lipids (MELs) to be Used as Antimicrobial Agents Against S. aureus ATCC 6538. Curr Microbiol 2020; 77:1373-1380. [PMID: 32123984 PMCID: PMC7334285 DOI: 10.1007/s00284-020-01927-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 02/17/2020] [Indexed: 11/12/2022]
Abstract
Antimicrobial resistance (AMR) is a current major health issue, both for the high rates of resistance observed in bacteria that cause common infections and for the complexity of the consequences of AMR. Pathogens like Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Mycobacterium tuberculosis among others are clear examples of antibiotic-resistant threats. Biosurfactants have recently emerged as a potential new generation of anti-adhesive and anti-biofilm agents; mannosylerythritol lipids (MELs) are biosurfactants produced by a range of fungi. A range of structural variants of MELs can be formed and the proportion of each isomer in the fermentation depends on the yeast used, the carbon substrate used for growth and the duration of the fermentation. In order to allow assessment of the possible functions of MELs as antimicrobial molecules, small quantities of MEL were produced by controlled fermentation. Fermentations of the yeast Pseudozyma aphidis using rapeseed oil as a carbon source yielded up to 165 gMELs/kgSubstrate. The MELs formed by this strain was a mixture of MEL-A, MEL-B, MEL-C and MEL-D. The MELs produced were tested against S. aureus ATCC 6538 on pre-formed biofilm and on co-incubation biofilm experiments on silicone discs; showing a disruption of biomass, reduction of the biofilm metabolic activity and a bacteriostatic/bactericidal effect confirmed by a release of oxygen uptake \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p_{{{\text{O}}_{2} }}$$\end{document}pO2, the reduction of citrate synthase activity and scanning electron microscopy. The results show that MELs are promising antimicrobial molecules for biomedical technological applications that could be studied in detail in large-scale systems and in conjunction with animal tissue models.
Collapse
|
11
|
Fenibo EO, Ijoma GN, Selvarajan R, Chikere CB. Microbial Surfactants: The Next Generation Multifunctional Biomolecules for Applications in the Petroleum Industry and Its Associated Environmental Remediation. Microorganisms 2019; 7:E581. [PMID: 31752381 PMCID: PMC6920868 DOI: 10.3390/microorganisms7110581] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 11/30/2022] Open
Abstract
Surfactants are a broad category of tensio-active biomolecules with multifunctional properties applications in diverse industrial sectors and processes. Surfactants are produced synthetically and biologically. The biologically derived surfactants (biosurfactants) are produced from microorganisms, with Pseudomonas aeruginosa, Bacillus subtilis Candida albicans, and Acinetobacter calcoaceticus as dominant species. Rhamnolipids, sophorolipids, mannosylerithritol lipids, surfactin, and emulsan are well known in terms of their biotechnological applications. Biosurfactants can compete with synthetic surfactants in terms of performance, with established advantages over synthetic ones, including eco-friendliness, biodegradability, low toxicity, and stability over a wide variability of environmental factors. However, at present, synthetic surfactants are a preferred option in different industrial applications because of their availability in commercial quantities, unlike biosurfactants. The usage of synthetic surfactants introduces new species of recalcitrant pollutants into the environment and leads to undesired results when a wrong selection of surfactants is made. Substituting synthetic surfactants with biosurfactants resolves these drawbacks, thus interest has been intensified in biosurfactant applications in a wide range of industries hitherto considered as experimental fields. This review, therefore, intends to offer an overview of diverse applications in which biosurfactants have been found to be useful, with emphases on petroleum biotechnology, environmental remediation, and the agriculture sector. The application of biosurfactants in these settings would lead to industrial growth and environmental sustainability.
Collapse
Affiliation(s)
- Emmanuel O. Fenibo
- World Bank Africa Centre of Excellence, Centre for Oilfield Chemical Research, University of Port Harcourt, Port Harcourt 500272, Nigeria
| | - Grace N. Ijoma
- Institute for the Development of Energy for African Sustainability, University of South Africa, Roodepoort 1709, South Africa;
| | - Ramganesh Selvarajan
- Department of Environmental Science, University of South Africa, Florida Campus, Rooderpoort 1709, South Africa
| | - Chioma B. Chikere
- Department of Microbiology, Faculty of Science, University of Port Harcourt, Port Harcourt 500272, Nigeria;
| |
Collapse
|
12
|
Acquaviva R, D'Angeli F, Malfa GA, Ronsisvalle S, Garozzo A, Stivala A, Ragusa S, Nicolosi D, Salmeri M, Genovese C. Antibacterial and anti-biofilm activities of walnut pellicle extract ( Juglans regia L.) against coagulase-negative staphylococci. Nat Prod Res 2019; 35:2076-2081. [PMID: 31397177 DOI: 10.1080/14786419.2019.1650352] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Juglans regia L. (common walnut) is a deciduous tree belonging to Juglandaceae family. Since ancient time, walnut was widely used in traditional medicine for its antioxidant, antidiabetic, antimicrobial, anti-inflammatory, anti-atherogenic and liver-protective effects. In this work, the antibacterial and anti-biofilm activities of walnuts pellicle extract against coagulase-negative staphylococci were evaluated. Qualitative chemical analysis was performed by the thin layer chromatography. UPLC-Ms/Ms was used to identify the chemical composition of J. regia extract. The total flavonoid and phenolic contents were determined by the Aluminium chloride and Folin-Ciocalteu methods, respectively. The extract showed antibacterial activity with MIC ranging from 3.60 to 461.75 µg/ml and MBC ranging from 461.75 to >461.75 µg/ml. Furthermore, it significantly reduced biofilm biomass and cell viability in a dose-dependent manner. Biological activities of J. regia extract may be due to its high flavonoid and phenolic contents. The obtained results are promising and they deserve further scientific investigations.
Collapse
Affiliation(s)
- Rosaria Acquaviva
- Department of Drug Science, Biochemistry Section, University of Catania, Catania, Italy
| | - Floriana D'Angeli
- Department of Biomedical and Biotechnological Sciences, Biochemistry Section, University of Catania, Catania, Italy
| | | | - Simone Ronsisvalle
- Department of Drug Science, Medicinal Chemistry Section, University of Catania, Catania, Italy
| | - Adriana Garozzo
- Department of Biomedical and Biotechnological Sciences, Microbiology Section, University of Catania, Catania, Italy
| | - Aldo Stivala
- Department of Biomedical and Biotechnological Sciences, Microbiology Section, University of Catania, Catania, Italy
| | - Salvatore Ragusa
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Daria Nicolosi
- Department of Biomedical and Biotechnological Sciences, Microbiology Section, University of Catania, Catania, Italy
| | - Mario Salmeri
- Department of Biomedical and Biotechnological Sciences, Microbiology Section, University of Catania, Catania, Italy
| | - Carlo Genovese
- Department of Biomedical and Biotechnological Sciences, Microbiology Section, University of Catania, Catania, Italy
| |
Collapse
|