1
|
Elshazly EH, Nasr A, Elnosary ME, Gouda GA, Mohamed H, Song Y. Identifying the Anti-MERS-CoV and Anti-HcoV-229E Potential Drugs from the Ginkgo biloba Leaves Extract and Its Eco-Friendly Synthesis of Silver Nanoparticles. Molecules 2023; 28:1375. [PMID: 36771041 PMCID: PMC9919260 DOI: 10.3390/molecules28031375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
The present study aimed to estimate the antiviral activities of Ginkgo biloba (GB) leaves extract and eco-friendly free silver nanoparticles (Ag NPs) against the MERS-CoV (Middle East respiratory syndrome-coronavirus) and HCoV-229E (human coronavirus 229E), as well as isolation and identification of phytochemicals from GB. Different solvents and high-performance liquid chromatography (HPLC) were used to extract and identify flavonoids and phenolic compounds from GB leaves. The green, silver nanoparticle synthesis was synthesized from GB leaves aqueous extract and investigated for their possible effects as anti-coronaviruses MERS-CoV and HCoV-229E using MTT assay protocol. To verify the synthesis of Ag NPs, several techniques were employed, including X-ray diffraction (XRD), scan, transmission electron microscopy, FT-IR, and UV-visible spectroscopy. The highest contents of flavonoids and phenolic compounds were recorded for acetone, methanol, and ethanol as mixtures with water, in addition to pure water. HPLC flavonoids were detected as apegenin, luteolin, myricetin, and catechin, while HPLC phenolic compounds were pyrogallol, caffeic acid, gallic acid, and ellagic acid. In addition, our results revealed that Ag NPs were produced through the shift from yellow to dark brown. TEM examination of Ag NPs revealed spherical nanoparticles with mean sizes ranging from 5.46 to 19.40 nm and an average particle diameter of 11.81 nm. A UV-visible spectrophotometric investigation revealed an absorption peak at λ max of 441.56 nm. MTT protocol signified the use of GB leaves extract as an anti-coronavirus to be best from Ag NPs because GB extract had moderate anti-MERS-CoV with SI = 8.94, while had promising anti-HCov-229E, with an SI of 21.71. On the other hand, Ag NPs had a mild anti-MERS-CoV with SI = 4.23, and a moderate anti-HCoV-229E, with an SI of 7.51.
Collapse
Affiliation(s)
- Ezzat H. Elshazly
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Alyaa Nasr
- Department of Botany and Microbiology, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Egypt
| | - Mohamed E. Elnosary
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
| | - Gamal A. Gouda
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Hassan Mohamed
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
2
|
Saadh MJ. Silver nanoparticles inhibit goatpox virus replication. Arch Virol 2023; 168:32. [PMID: 36604362 DOI: 10.1007/s00705-022-05667-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/31/2022] [Indexed: 01/07/2023]
Abstract
No effective drugs against goatpox virus (GTPV) exist despite the high morbidity and mortality (up to 100%) caused by this virus. In this study, the antiviral activity of silver nanoparticles (AgNPs) against GTPV, a member of the genus Capripoxvirus, was evaluated. Piper betle leaf extract was used as a reducing agent during the biological synthesis of AgNPs from silver nitrate. The AgNPs were characterized using ultraviolet/visible (UV/vis) absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). AgNPs were tested at different concentrations as antiviral agents against GTPV, and the reduction in the median tissue culture infectious dose (TCID50/mL) was used to quantitate antiviral activity. AgNPs caused significant inhibition of GTPV replication by preventing virus entry into the host cell. Pre-treatment of cells with AgNPs caused a slight reduction in infectivity, but this did not significantly correlate with the effect on virus attachment. AgNPs also appeared to significantly reduce the viral genome copy number. This study demonstrates that the AgNPs are capable of inhibiting GTPV replication in vitro.
Collapse
|
3
|
Patra B, Deep SK, Rosalin R, Pradhan SN. Flavored Food Additives on the Leaves of Piper betle L.: A Human Health Perspective. Appl Biochem Biotechnol 2022; 194:4439-4461. [PMID: 35386064 DOI: 10.1007/s12010-022-03912-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/14/2022] [Indexed: 02/08/2023]
Abstract
Natural products and traditional ethnomedicines are of great effect in therapeutics. Such types of medicine have been practiced in certain areas of the world to treat different health conditions. This pilot investigation aims to review the cumulative health effect of addendums used in betel quid such as areca nut, lime, and tobacco-associated betel quid chewing and without tobacco-associated chewing. This review shows that betel leaf extract and its essential oil could inhibit growth of microbes and damage different gram-positive and gram-negative bacteria as well as various fungus species. Some studies concluded that the combination of Piper leaves essential oil with antibiotics have potential effect on oral microorganisms. Long-term consumption of betel quid with tobacco is known to cause cancer, chromosomal aberrations, and pharynx tumors. However, consumption of betel leaf without tobacco has health benefits because of ethnomedicinal properties. Its essential is oil utilized as raw material for perfumes and mouth fresheners manufacturing. Scientific researches on this plant revealed that it possesses many beneficial activities to be used for developing novel drugs. However, compounds of betel leaves have beneficial natural antioxidant. Chewing and intake of leaves have effect on moving parts of salivary gland which is the main step of digestion. Its components also act as heartbeat regulators in relaxing the blood vessels to reduce hypertension. So this review discussed the natural compounds of betel leaves which is used as traditional medicine to further develop drug discovery.
Collapse
Affiliation(s)
- Biswajit Patra
- School of Life Sciences, Sambalpur University, Sambalpur, Odisha, India
| | - Saroj Kumar Deep
- School of Life Sciences, Sambalpur University, Sambalpur, Odisha, India
| | - Rosina Rosalin
- Department of Botany, Baruneswar Mohavidyalaya, Jajpur, Odisha, India
| | | |
Collapse
|
4
|
Biswas P, Anand U, Saha SC, Kant N, Mishra T, Masih H, Bar A, Pandey DK, Jha NK, Majumder M, Das N, Gadekar VS, Shekhawat MS, Kumar M, Radha, Proćków J, Lastra JMPDL, Dey A. Betelvine (Piper betle L.): A comprehensive insight into its ethnopharmacology, phytochemistry, and pharmacological, biomedical and therapeutic attributes. J Cell Mol Med 2022; 26:3083-3119. [PMID: 35502487 PMCID: PMC9170825 DOI: 10.1111/jcmm.17323] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/28/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022] Open
Abstract
Piper betle L. (synonym: Piper betel Blanco), or betel vine, an economically and medicinally important cash crop, belongs to the family Piperaceae, often known as the green gold. The plant can be found all over the world and is cultivatedprimarily in South East Asian countries for its beautiful glossy heart-shaped leaves, which are chewed or consumed as betelquidand widely used in Chinese and Indian folk medicine, as carminative, stimulant,astringent, against parasitic worms, conjunctivitis, rheumatism, wound, etc., andis also used for religious purposes. Hydroxychavicol is the most important bioactive compound among the wide range of phytoconstituents found in essential oil and extracts. The pharmacological attributes of P. betle are antiproliferation, anticancer, neuropharmacological, analgesic, antioxidant, antiulcerogenic, hepatoprotective, antifertility, antibacterial, antifungal and many more. Immense attention has been paid to nanoformulations and their applications. The application of P. betle did not show cytotoxicity in preclinical experiments, suggesting that it could serve as a promising therapeutic candidate for different diseases. The present review comprehensively summarizes the botanical description, geographical distribution, economic value and cultivation, ethnobotanical uses, preclinical pharmacological properties with insights of toxicological, clinical efficacy, and safety of P. betle. The findings suggest that P. betle represents an orally active and safe natural agent that exhibits great therapeutic potential for managing various human medical conditions. However, further research is needed to elucidate its underlying molecular mechanisms of action, clinical aspects, structure-activity relationships, bioavailability and synergistic interactions with other drugs.
Collapse
Affiliation(s)
- Protha Biswas
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Suchismita Chatterjee Saha
- Department of Zoology, Nabadwip Vidyasagar College (Affiliated to the University of Kalyani), Nabadwip, West Bengal, India
| | - Nishi Kant
- Department of Biotechnology, School of Health and Allied Science, ARKA Jain University, Jamshedpur, Jharkhand, India
| | - Tulika Mishra
- Department of Botany, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Harison Masih
- Department of Industrial Microbiology, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India
| | - Ananya Bar
- Department of Zoology, Wilson College (Affiliated to University of Mumbai), Mumbai, Maharashtra, India
| | - Devendra Kumar Pandey
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Madhumita Majumder
- Department of Botany, Raidighi College (Affiliated to University of Calcutta), Raidighi, West Bengal, India
| | - Neela Das
- Department of Botany, Rishi Bankim Chandra College (Affiliated to the West Bengal State University), Naihati, West Bengal, India
| | - Vijaykumar Shivaji Gadekar
- Zoology Department, Sangola College (Affiliated to Punyashlok Ahilyadevi Holkar Solapur University), Solapur, Maharashtra, India
| | - Mahipal S Shekhawat
- Plant Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - José M Pérez de la Lastra
- Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones científicas (CSIS), Santa Cruz de Tenerife, Spain
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
5
|
Bapat MS, Singh H, Shukla SK, Singh PP, Vo DVN, Yadav A, Goyal A, Sharma A, Kumar D. Evaluating green silver nanoparticles as prospective biopesticides: An environmental standpoint. CHEMOSPHERE 2022; 286:131761. [PMID: 34375828 DOI: 10.1016/j.chemosphere.2021.131761] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/12/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The current method of agriculture entails the usage of excessive amounts of pesticides and fertilizers. The blatant use of conventional pesticides and fertilizers over several decades has led to their bioaccumulation with adverse effects on soil biodiversity and the development of resistance by pests. With the decline in clinically useful antibiotics and increase in multi drug resistant microbes, it is imperative to develop new and effective antimicrobial therapies. Growing awareness and demand for efficacious biorational pesticides are on the rise. Silver nanoparticles are widely known antimicrobials and have been in use for several purposes for a long time. This work reviews the implications of applying silver nanoparticles in agriculture and their possible consequences. The physiological and biochemical changes in plants due to the uptake of silver nanoparticles as a consequence of its morphology, capping biomolecules and method of application are comprehensively discussed in this review article. Studies on tolerance levels or stress due to silver nanoparticles by variation in concentration/doses on diverse flora and fauna are also analyzed here. Further, phytotoxicity and genotoxicity due to the metal as well as its transformation in soil, water and sludge are taken into account. We also gauge the potential of biogenic silver nanoparticles-viable antimicrobial agents for enhanced applications in agriculture as biopesticides.
Collapse
Affiliation(s)
- Malini S Bapat
- Cummins College of Engineering for Women, Affiliated to Savitribai Phule Pune University, Pune, 411052, India.
| | - Hema Singh
- Defence Institute of Advanced Technology, Girinagar, Pune, 411025, India
| | - Sudheesh K Shukla
- Department of Biomedical Engineering, School of Biological Engineering and Life Sciences, Shobhit University, Meerut, 250110, India
| | | | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam
| | - Alpa Yadav
- Department of Applied Chemistry, School of Vocational Studies & Applied Sciences, Gautam Budha University, Greater Noida, Uttar Pradesh, 201308, India
| | - Abhineet Goyal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ajit Sharma
- School of Chemical Engineering and Physical Science, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Deepak Kumar
- School of Chemical Engineering and Physical Science, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
6
|
Ahmad B, Shireen F, Rauf A, Shariati MA, Bashir S, Patel S, Khan A, Rebezov M, Khan MU, Mubarak MS, Zhang H. Phyto-fabrication, purification, characterisation, optimisation, and biological competence of nano-silver. IET Nanobiotechnol 2021; 15:1-18. [PMID: 34694726 PMCID: PMC8675842 DOI: 10.1049/nbt2.12007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/25/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022] Open
Abstract
Published studies indicate that virtually any kind of botanical material can be exploited to make biocompatible, safe, and cost-effective silver nanoparticles. This hypothesis is supported by the fact that plants possess active bio-ingredients that function as powerful reducing and coating agents for Ag+. In this respect, a phytomediation method provides favourable monodisperse, crystalline, and spherical particles that can be easily purified by ultra-centrifugation. However, the characteristics of the particles depend on the reaction conditions. Optimal reaction conditions observed in different experiments were 70-95 °C and pH 5.5-8.0. Green silver nanoparticles (AgNPs) have remarkable physical, chemical, optical, and biological properties. Research findings revealed the versatility of silver particles, ranging from exploitation in topical antimicrobial ointments to in vivo prosthetic/organ implants. Advances in research on biogenic silver nanoparticles have led to the development of sophisticated optical and electronic materials with improved efficiency in a compact configuration. So far, eco-toxicity of these nanoparticles is a big challenge, and no reliable method to improve the toxicity has been reported. Therefore, there is a need for reliable models to evaluate the effect of these nanoparticles on living organisms.
Collapse
Affiliation(s)
- Bashir Ahmad
- Center of Biotechnology and MicrobiologyUniversity of PeshawarPeshawarKhyber PakhtunkhwaPakistan
| | - Farah Shireen
- Center of Biotechnology and MicrobiologyUniversity of PeshawarPeshawarKhyber PakhtunkhwaPakistan
| | - Abdur Rauf
- Department of ChemistryUniversity of Swabi, SwabiAnbarKhyber PakhtunkhwaPakistan
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University)MoscowRussian Federation
| | - Shumaila Bashir
- Department of PharmacyUniversity of PeshawarPeshawarKhyber PakhtunkhwaPakistan
| | - Seema Patel
- Bioinformatics and Medical Informatics Research CenterSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Ajmal Khan
- Oman Medicinal Plants and Marine ProductsUniversity of NizwaNizwaOman
| | - Maksim Rebezov
- K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University)MoscowRussian Federation
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of SciencesMoscowRussian Federation
- A. M. Prokhorov General Physics InstituteRussian Academy of ScienceMoscowRussian Federation
| | - Muhammad Usman Khan
- Bioproducts Sciences and Engineering Laboratory (BSEL)Washington State UniversityRichlandWasingtonUSA
- Department of Energy Systems EngineeringFaculty of Agricultural Engineering and TechnologyUniversity of AgricultureFaisalabadPakistan
| | | | - Haiyuan Zhang
- Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
| |
Collapse
|
7
|
Thirumagal N, Jeyakumari AP. Photocatalytic and antibacterial activities of AgNPs from Mesua Ferrea seed. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03650-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
8
|
Ijaz M, Zafar M, Iqbal T. Green synthesis of silver nanoparticles by using various extracts: a review. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1808680] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Mohsin Ijaz
- Department of Physics, University of Otago, Dunedin, New Zealand
| | - Maria Zafar
- Department of Physics, Faculty of Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Tahir Iqbal
- Department of Physics, Faculty of Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| |
Collapse
|
9
|
Khan S, Singh S, Gaikwad S, Nawani N, Junnarkar M, Pawar SV. Optimization of process parameters for the synthesis of silver nanoparticles from Piper betle leaf aqueous extract, and evaluation of their antiphytofungal activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27221-27233. [PMID: 31065983 DOI: 10.1007/s11356-019-05239-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/22/2019] [Indexed: 05/24/2023]
Abstract
Biological methods offer eco-friendly and cost-effective alternatives for the synthesis of silver nanoparticles (AgNPs). The present study highlights a green process where AgNPs were synthesized and optimized by using silver nitrate (AgNO3) and the aqueous extract of Piper betle (Pbet) leaf as the reducing and capping agent. The stable and optimized process for the synthesis of Pbet-AgNPs was exposure of reaction mixture into the sunlight for 40 min, pH 9.0, and 2 mM AgNO3 using 1:4 diluted Pbet leaf aqueous extract. The optimized Pbet-AgNPs were characterized by UV-visible spectroscopy, high-resolution field emission scanning electron microscopy (FE-SEM), X-ray diffractometry (XRD), and Fourier-transform infrared spectroscopy (FTIR). The prepared Pbet-AgNPs were spherical in shape with size in the range of 6-14 nm. These nanoparticles were stable for 6 months in aqueous solution at room temperature under dark conditions. The biogenic synthesized Pbet-AgNPs are found to have significant antifungal activity against plant pathogenic fungi, Alternaria brassicae and Fusarium solani. Synthesized Pbet-AgNPs potentially reduced the fungal growth in a dose-dependent manner. Microscopic observation of treated mycelium showed that Pbet-AgNPs could disrupt the mycelium cell wall and induce cellular permeability. Protein leakage assay supports these findings. Overall, this study revealed the efficacy of green synthesized AgNPs to control the plant fungal pathogens. Pbet leaves are a rich source of phenolic biomolecule(s). It was hypothesized that these biomolecule(s) mediated metal reduction reactions. In this context, the present work investigates the phytobiomolecule(s) of the aqueous extract of Pbet leaves using high-resolution liquid chromatography-mass spectroscopy (HR-LCMS) method. The analysis revealed that eugenol, chavicol, and hydroxychavicol were present in the Pbet aqueous extract.
Collapse
Affiliation(s)
- Sadaf Khan
- Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, 411033, India
| | - Simran Singh
- Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, 411033, India
| | - Swapnil Gaikwad
- Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, 411033, India.
| | - Neelu Nawani
- Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, 411033, India
| | - Manisha Junnarkar
- Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, 411033, India
| | - Sarika Vishnu Pawar
- Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, 411033, India.
| |
Collapse
|
10
|
Mtambo S, Krishna S, Sershen, Govender P. Physico-chemical, antimicrobial and anticancer properties of silver nanoparticles synthesised from organ-specific extracts of Bidens pilosa L. SOUTH AFRICAN JOURNAL OF BOTANY 2019; 126:196-206. [DOI: 10.1016/j.sajb.2019.07.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
|
11
|
Titus D, Samuel EJJ. Photocatalytic Degradation of Azo Dye Using Biogenic SnO2 Nanoparticles with Antifungal Property: RSM Optimization and Kinetic Study. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01585-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Plant-Mediated Green Synthesis of Nanostructures: Mechanisms, Characterization, and Applications. INTERFACE SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1016/b978-0-12-813586-0.00006-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Qurat-Ul-Ain, Sarfraz RA, Qayyum A. Mechanism of action of bio-inspired nanosilver particles. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2018. [DOI: 10.1680/jbibn.17.00026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nanotechnology is gaining prime importance in the present era due to modeling of metals in nanoparticles (NPs) by biological methods, but nowadays, researchers are designing the exact mode of action of nanomaterials on plants. NPs are fabricated by different physical and chemical methods, but biological methods are preferred due to their simplicity and non-toxic nature. The current development of biomimetic NP synthesis is a more reliable, economically favorable and eco-friendly method for the treatment of different diseases. NPs fabricated by traditional methods have shown a lot of demerits, so the green route to the formation of metallic NPs is advantageous compared to the use of microbes. Secondary metabolites in the plant have active chemical constituents which can act as capping and reducing agents, thereby enhancing the rate of reduction and stabilizations of NPs. In this review, a major focus is given to biogenic silver NPs’ mechanism of action toward cancer and microbes.
Collapse
Affiliation(s)
- Qurat-Ul-Ain
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Raja Adil Sarfraz
- Department of Chemistry and Officer In-charge Central Hi-tech lab, University of Agriculture, Faisalabad, Pakistan
| | - Abdul Qayyum
- Department of Chemistry, College of Science, Shantou University, Guangdong, P.R. China
| |
Collapse
|
14
|
Rudramurthy GR, Swamy MK, Sinniah UR, Ghasemzadeh A. Nanoparticles: Alternatives Against Drug-Resistant Pathogenic Microbes. Molecules 2016; 21:E836. [PMID: 27355939 PMCID: PMC6273897 DOI: 10.3390/molecules21070836] [Citation(s) in RCA: 272] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 01/17/2023] Open
Abstract
Antimicrobial substances may be synthetic, semisynthetic, or of natural origin (i.e., from plants and animals). Antimicrobials are considered "miracle drugs" and can determine if an infected patient/animal recovers or dies. However, the misuse of antimicrobials has led to the development of multi-drug-resistant bacteria, which is one of the greatest challenges for healthcare practitioners and is a significant global threat. The major concern with the development of antimicrobial resistance is the spread of resistant organisms. The replacement of conventional antimicrobials by new technology to counteract antimicrobial resistance is ongoing. Nanotechnology-driven innovations provide hope for patients and practitioners in overcoming the problem of drug resistance. Nanomaterials have tremendous potential in both the medical and veterinary fields. Several nanostructures comprising metallic particles have been developed to counteract microbial pathogens. The effectiveness of nanoparticles (NPs) depends on the interaction between the microorganism and the NPs. The development of effective nanomaterials requires in-depth knowledge of the physicochemical properties of NPs and the biological aspects of microorganisms. However, the risks associated with using NPs in healthcare need to be addressed. The present review highlights the antimicrobial effects of various nanomaterials and their potential advantages, drawbacks, or side effects. In addition, this comprehensive information may be useful in the discovery of broad-spectrum antimicrobial drugs for use against multi-drug-resistant microbial pathogens in the near future.
Collapse
Affiliation(s)
| | - Mallappa Kumara Swamy
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Darul Ehsan 43400, Malaysia.
| | - Uma Rani Sinniah
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Darul Ehsan 43400, Malaysia.
| | - Ali Ghasemzadeh
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Darul Ehsan 43400, Malaysia.
| |
Collapse
|
15
|
Velmurugan P, Sivakumar S, Song Y, Jang S. Crystallization of silver metal by extract of Prunus×yedoensis Matsumura blossoms and its potential characterization. J IND ENG CHEM 2015. [DOI: 10.1016/j.jiec.2015.05.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Naidu BVK, Venkataram B, Sankar SS, Kumar AS. Synthesis of Silver Nanoparticles Using Setaria italica (Foxtail Millets) Husk and Its Antimicrobial Activity. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/rjnn.2015.6.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. INTERNATIONAL NANO LETTERS 2012. [DOI: 10.1186/2228-5326-2-32] [Citation(s) in RCA: 1314] [Impact Index Per Article: 101.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
K. Verma A, Singh V, Vikas P. Application of Nanotechnology as a Tool in Animal Products Processing and Marketing: An Overview. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/ajft.2012.445.451] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Annadurai G, Karthiga P, Soranam R. Alpha-mangostin, the Major Compound from Garcinia mangostana Linn. Responsible for Synthesis of Ag Nanoparticles: Its Characterization and Evaluation Studies. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/rjnn.2012.46.57] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Yadav S, Kumari A, Kumar V. Nanotechnology: A Tool to Enhance Therapeutic Values of Natural Plant Products. TRENDS IN MEDICAL RESEARCH 2012; 7:34-42. [DOI: 10.3923/tmr.2012.34.42] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|