1
|
Subudhi S, Saha K, Mudgil D, Sarangi PK, Srivastava RK, Sarma MK. Biomethanol production from renewable resources: a sustainable approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:7432-7448. [PMID: 37667122 DOI: 10.1007/s11356-023-29616-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
The abundant availability of various kinds of biomass and their use as feedstock for the production of gaseous and liquid biofuels has been considered a viable, eco-friendly, and sustainable mode of energy generation. Gaseous fuels like biogas and liquid fuels, e.g., bioethanol, biodiesel, and biomethanol derived from biological sources, have been theorized to produce numerous industrially relevant organic compounds replacing the traditional practice of employing fossil fuels as a raw material. Among the biofuels explored, biomethanol has shown promising potential to be a future product addressing multifactorial issues concerning sustainable energy and associated process developments. The presented mini-review has explored the importance and application of biomethanol as a value-added product. The biomethanol production process was well reviewed by focusing on different thermochemical and biochemical conversion processes. Syngas and biogas have been acknowledged as potential resources for biomethanol synthesis. The emphasis on biochemical processes is laid on the principal metabolic pathways and enzymatic machinery involved or used by microbial physiology to convert feedstock into biomethanol under normal temperature and pressure conditions. The advantage of minimizing the cost of production by utilizing suggested modifications to the overall process of biomethanol production that involves metabolic and genetic engineering in microbial strains used in the production process has been delineated. The challenges that exist in our current knowledge domain, impeding large-scale commercial production potential of biomethanol at a cost-effective rate, and strategies to overcome them along with its future scenarios have also been pointed out.
Collapse
Affiliation(s)
- Sanjukta Subudhi
- Advanced Biofuels Program, The Energy and Resources Institute, Darbari Seth Block, Habitat Place, Lodhi Road, New Delhi, 110 003, India.
| | - Koel Saha
- Advanced Biofuels Program, The Energy and Resources Institute, Darbari Seth Block, Habitat Place, Lodhi Road, New Delhi, 110 003, India
| | - Divya Mudgil
- Advanced Biofuels Program, The Energy and Resources Institute, Darbari Seth Block, Habitat Place, Lodhi Road, New Delhi, 110 003, India
| | - Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal, 795004, Manipur, India
| | - Rajesh K Srivastava
- Department of Biotechnology, Gitam School of Technology, GITAM (Deemed to Be University), Visakhapatnam, 530045, India
| | - Mrinal Kumar Sarma
- Advanced Biofuels Program, The Energy and Resources Institute, Darbari Seth Block, Habitat Place, Lodhi Road, New Delhi, 110 003, India
| |
Collapse
|
2
|
Bokad A, Telang M. A Patent Landscape on Methane Oxidizing Bacteria (MOB) or Methanotrophs. Recent Pat Biotechnol 2025; 19:301-318. [PMID: 39350426 DOI: 10.2174/0118722083316359240915173125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 05/13/2025]
Abstract
Methane-oxidizing bacteria (MOB) or methanotrophs are a category of bacteria that rely on methane as their primary carbon and energy source. Methane is the second most abundant greenhouse gas after carbon dioxide and is comparatively far more potent in trapping heat in the atmosphere. MOBs are important microorganisms in the global carbon cycle where they play a crucial role in the oxidation of methane. The present review provides a comprehensive patent landscape on technology development using MOB. The first patent in this technology domain was recorded in 1971, with a notable surge in activity observed in 2020. A detailed patent analysis revealed that the early inventions were mainly focused on the production of various metabolites and bioremediation using MOB. In the later years, patents were filed in the area of identification of various species of MOB and their large-scale production. From 2010 onwards, consistent patent filing was observed in the genetic engineering of MOB to enhance their methane oxidizing capacity. The United States and China have emerged as the global leaders in terms of patent filing in this technology space. Precigen Inc. and Exxon Research Engineering Co., US were the top patent assignees followed by the University of Tsinghua and Calysta Inc. The Highest number of patent applications have claimed metabolite production by using MOB followed by their use in bioremediation. Methylosinus has emerged as the predominant microorganism of choice for methane oxidation applications.
Collapse
Affiliation(s)
- Abhishek Bokad
- CSIR-URDIP (Council of Scientific & Industrial Research - Unit for Research & Development of Information Products), S.No. 113 & 114, NCL Estate, Pashan Road, Pune 411008, Maharashtra, India
| | - Manasi Telang
- CSIR-URDIP (Council of Scientific & Industrial Research - Unit for Research & Development of Information Products), S.No. 113 & 114, NCL Estate, Pashan Road, Pune 411008, Maharashtra, India
| |
Collapse
|
3
|
Baldo H, Ruiz-Valencia A, Cornette de Saint Cyr L, Ramadier G, Petit E, Belleville MP, Sanchez-Marcano J, Soussan L. Methane biohydroxylation into methanol by Methylosinus trichosporium OB3b: possible limitations and formate use during reaction. Front Bioeng Biotechnol 2024; 12:1422580. [PMID: 39253703 PMCID: PMC11381948 DOI: 10.3389/fbioe.2024.1422580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/29/2024] [Indexed: 09/11/2024] Open
Abstract
Methane (CH4) hydroxylation into methanol (MeOH) by methanotrophic bacteria is an attractive and sustainable approach to producing MeOH. The model strain Methylosinus trichosporium OB3b has been reported to be an efficient hydroxylating biocatalyst. Previous works have shown that regardless of the bioreactor design or operation mode, MeOH concentration reaches a threshold after a few hours, but there are no investigations into the reasons behind this phenomenon. The present work entails monitoring both MeOH and formate concentrations during CH4 hydroxylation, where neither a gaseous substrate nor nutrient shortage was evidenced. Under the assayed reaction conditions, bacterial stress was shown to occur, but methanol was not responsible for this. Formate addition was necessary to start MeOH production. Nuclear magnetic resonance analyses with 13C-formate proved that the formate was instrumental in regenerating NADH; formate was exhausted during the reaction, but increased quantities of formate were unable to prevent MeOH production stop. The formate mass balance showed that the formate-to-methanol yield was around 50%, suggesting a cell regulation phenomenon. Hence, this study presents the possible physiological causes that need to be investigated further. Finally, to the best of our knowledge, this study shows that the reaction can be achieved in the native bacterial culture (i.e., culture medium containing added methanol dehydrogenase inhibitors) by avoiding the centrifugation steps while limiting the hands-on time and water consumption.
Collapse
Affiliation(s)
- Héloïse Baldo
- Institut Européen des Membranes, IEM-UMR 5635, Univ. Montpellier, ENSCM, CNRS, Montpellier, France
| | - Azariel Ruiz-Valencia
- Institut Européen des Membranes, IEM-UMR 5635, Univ. Montpellier, ENSCM, CNRS, Montpellier, France
| | | | - Guillaume Ramadier
- Institut Européen des Membranes, IEM-UMR 5635, Univ. Montpellier, ENSCM, CNRS, Montpellier, France
| | - Eddy Petit
- Institut Européen des Membranes, IEM-UMR 5635, Univ. Montpellier, ENSCM, CNRS, Montpellier, France
| | - Marie-Pierre Belleville
- Institut Européen des Membranes, IEM-UMR 5635, Univ. Montpellier, ENSCM, CNRS, Montpellier, France
| | - José Sanchez-Marcano
- Institut Européen des Membranes, IEM-UMR 5635, Univ. Montpellier, ENSCM, CNRS, Montpellier, France
| | - Laurence Soussan
- Institut Européen des Membranes, IEM-UMR 5635, Univ. Montpellier, ENSCM, CNRS, Montpellier, France
| |
Collapse
|
4
|
Oshkin IY, Tikhonova EN, Suleimanov RZ, Ashikhmin AA, Ivanova AA, Pimenov NV, Dedysh SN. All Kinds of Sunny Colors Synthesized from Methane: Genome-Encoded Carotenoid Production by Methylomonas Species. Microorganisms 2023; 11:2865. [PMID: 38138009 PMCID: PMC10745290 DOI: 10.3390/microorganisms11122865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Carotenoids are secondary metabolites that exhibit antioxidant properties and are characterized by a striking range of colorations from red to yellow. These natural pigments are synthesized by a wide range of eukaryotic and prokaryotic organisms. Among the latter, carotenoid-producing methanotrophic bacteria, which display fast growth on methane or natural gas, are of particular interest as potential producers of a feed protein enriched with carotenoids. Until recently, Methylomonas strain 16a and Methylomonas sp. ZR1 remained the only representatives of the genus for which detailed carotenoid profile was determined. In this study, we analyzed the genome sequences of five strains of Methylomonas species whose pigmentation varied from white and yellow to orange and red, and identified carotenoids produced by these bacteria. Carotenoids synthesized using four pigmented strains included C30 fraction, primarily composed of 4,4'-diaplycopene-4,4'-dioic acid and 4,4'-diaplycopenoic acid, as well as C40 fraction with the major compound represented by 1,1'-dihydroxy-3,4-didehydrolycopene. The genomes of studied Methylomonas strains varied in size between 4.59 and 5.45 Mb and contained 4201-4735 protein-coding genes. These genomes and 35 reference Methylomonas genomes available in the GenBank were examined for the presence of genes encoding carotenoid biosynthesis. Genomes of all pigmented Methylomonas strains harbored genes necessary for the synthesis of 4,4'-diaplycopene-4,4'-dioic acid. Non-pigmented "Methylomonas montana" MW1T lacked the crtN gene required for carotenoid production. Nearly all strains possessed phytoene desaturases, which explained their ability to naturally synthesize lycopene. Thus, members of the genus Methylomonas can potentially be considered as producers of C30 and C40 carotenoids from methane.
Collapse
Affiliation(s)
- Igor Y. Oshkin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia
| | - Ekaterina N. Tikhonova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia
| | - Ruslan Z. Suleimanov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia
| | - Aleksandr A. Ashikhmin
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Anastasia A. Ivanova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia
| | - Nikolai V. Pimenov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia
| | - Svetlana N. Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia
| |
Collapse
|
5
|
Thi Quynh Le H, Yeol Lee E. Methanotrophs: Metabolic versatility from utilization of methane to multi-carbon sources and perspectives on current and future applications. BIORESOURCE TECHNOLOGY 2023:129296. [PMID: 37302766 DOI: 10.1016/j.biortech.2023.129296] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/13/2023]
Abstract
The development of biorefineries for a sustainable bioeconomy has been driven by the concept of utilizing environmentally friendly and cost-effective renewable energy sources. Methanotrophic bacteria with a unique capacity to utilize methane as a carbon and energy source can serve as outstanding biocatalysts to develop C1 bioconversion technology. By establishing the utilization of diverse multi-carbon sources, integrated biorefinery platforms can be created for the concept of the circular bioeconomy. An understanding of physiology and metabolism could help to overcome challenges for biomanufacturing. This review summaries fundamental gaps for methane oxidation and the capability to utilize multi-carbon sources in methanotrophic bacteria. Subsequently, breakthroughs and challenges in harnessing methanotrophs as robust microbial chassis for industrial biotechnology were compiled and overviewed. Finally, capabilities to exploit the inherent advantages of methanotrophs to synthesize various target products in higher titers are proposed.
Collapse
Affiliation(s)
- Hoa Thi Quynh Le
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
6
|
Dummer N, Willock DJ, He Q, Howard MJ, Lewis RJ, Qi G, Taylor SH, Xu J, Bethell D, Kiely CJ, Hutchings GJ. Methane Oxidation to Methanol. Chem Rev 2023; 123:6359-6411. [PMID: 36459432 PMCID: PMC10176486 DOI: 10.1021/acs.chemrev.2c00439] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 12/04/2022]
Abstract
The direct transformation of methane to methanol remains a significant challenge for operation at a larger scale. Central to this challenge is the low reactivity of methane at conditions that can facilitate product recovery. This review discusses the issue through examination of several promising routes to methanol and an evaluation of performance targets that are required to develop the process at scale. We explore the methods currently used, the emergence of active heterogeneous catalysts and their design and reaction mechanisms and provide a critical perspective on future operation. Initial experiments are discussed where identification of gas phase radical chemistry limited further development by this approach. Subsequently, a new class of catalytic materials based on natural systems such as iron or copper containing zeolites were explored at milder conditions. The key issues of these technologies are low methane conversion and often significant overoxidation of products. Despite this, interest remains high in this reaction and the wider appeal of an effective route to key products from C-H activation, particularly with the need to transition to net carbon zero with new routes from renewable methane sources is exciting.
Collapse
Affiliation(s)
- Nicholas
F. Dummer
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CardiffCF10 3AT, United
Kingdom
| | - David J. Willock
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CardiffCF10 3AT, United
Kingdom
| | - Qian He
- Department
of Materials Science and Engineering, National
University of Singapore, Singapore117575, Singapore
| | - Mark J. Howard
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CardiffCF10 3AT, United
Kingdom
| | - Richard J. Lewis
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CardiffCF10 3AT, United
Kingdom
| | - Guodong Qi
- National
Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic
Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology,
Chinese Academy of Sciences, Wuhan430071, P. R. China
- University
of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Stuart H. Taylor
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CardiffCF10 3AT, United
Kingdom
| | - Jun Xu
- National
Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic
Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology,
Chinese Academy of Sciences, Wuhan430071, P. R. China
- University
of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Don Bethell
- Department
of Chemistry, University of Liverpool, Crown Street, LiverpoolL69 7ZD, United
Kingdom
| | - Christopher J. Kiely
- Department
of Materials Science and Engineering, Lehigh
University, 5 East Packer
Avenue, Bethlehem, Pennsylvania18015, United States
| | - Graham J. Hutchings
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CardiffCF10 3AT, United
Kingdom
| |
Collapse
|
7
|
van Steen E, Guo J, Hytoolakhan Lal Mahomed N, Leteba GM, Mahlaba SVL. Selective, Aerobic Oxidation of Methane to Formaldehyde over Platinum ‐ a Perspective. ChemCatChem 2023. [DOI: 10.1002/cctc.202201238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
8
|
Chen YY, Ishikawa M, Hori K. A novel inverse membrane bioreactor for efficient bioconversion from methane gas to liquid methanol using a microbial gas-phase reaction. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:16. [PMID: 36732825 PMCID: PMC9893580 DOI: 10.1186/s13068-023-02267-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/21/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Methane (CH4), as one of the major energy sources, easily escapes from the supply chain into the atmosphere, because it exists in a gaseous state under ambient conditions. Compared to carbon dioxide (CO2), CH4 is 25 times more potent at trapping radiation; thus, the emission of CH4 to the atmosphere causes severe global warming and climate change. To mitigate CH4 emissions and utilize them effectively, the direct biological conversion of CH4 into liquid fuels, such as methanol (CH3OH), using methanotrophs is a promising strategy. However, supplying biocatalysts in an aqueous medium with CH4 involves high energy consumption due to vigorous agitation and/or bubbling, which is a serious concern in methanotrophic processes, because the aqueous phase causes a very large barrier to the delivery of slightly soluble gases. RESULTS An inverse membrane bioreactor (IMBR), which combines the advantages of gas-phase bioreactors and membrane bioreactors, was designed and constructed for the bioconversion of CH4 into CH3OH in this study. In contrast to the conventional membrane bioreactor with bacterial cells that are immersed in an aqueous phase, the filtered cells were placed to face a gas phase in the IMBR to supply CH4 directly from the gas phase to bacterial cells. Methylococcus capsulatus (Bath), a representative methanotroph, was used to demonstrate the bioconversion of CH4 to CH3OH in the IMBR. Cyclopropanol was supplied from the aqueous phase as a selective inhibitor of methanol dehydrogenase, preventing further CH3OH oxidation. Sodium formate was added as an electron donor to generate NADH, which is necessary for CH3OH production. After optimizing the inlet concentration of CH4, the mass of cells, the cyclopropanol concentration, and the gas flow rate, continuous CH3OH production can be achieved over 72 h with productivity at 0.88 mmol L-1 h-1 in the IMBR, achieving a longer operation period and higher productivity than those using other types of membrane bioreactors reported in the literature. CONCLUSIONS The IMBR can facilitate the development of gas-to-liquid (GTL) technologies via microbial processes, allowing highly efficient mass transfer of substrates from the gas phase to microbial cells in the gas phase and having the supplement of soluble chemicals convenient.
Collapse
Affiliation(s)
- Yan-Yu Chen
- grid.27476.300000 0001 0943 978XDepartment of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, 464-8603 Japan
| | - Masahito Ishikawa
- grid.27476.300000 0001 0943 978XDepartment of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, 464-8603 Japan
| | - Katsutoshi Hori
- grid.27476.300000 0001 0943 978XDepartment of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, 464-8603 Japan
| |
Collapse
|
9
|
Aoun AE, Rasouli V, Khetib Y. Assessment of Advanced Technologies to Capture Gas Flaring in North Dakota. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2023. [DOI: 10.1007/s13369-023-07611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
10
|
An Overview on Methanotrophs and the Role of Methylosinus trichosporium OB3b for Biotechnological Applications. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0046-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Bak SY, Kang SG, Choi KH, Park YR, Lee EY, Park BJ. Phase-transfer biocatalytic methane-to-methanol conversion using the spontaneous phase-separable membrane μCSTR. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Gęsicka A, Oleskowicz-Popiel P, Łężyk M. Recent trends in methane to bioproduct conversion by methanotrophs. Biotechnol Adv 2021; 53:107861. [PMID: 34710553 DOI: 10.1016/j.biotechadv.2021.107861] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 12/26/2022]
Abstract
Methane is an abundant and low-cost gas with high global warming potential and its use as a feedstock can help mitigate climate change. Variety of valuable products can be produced from methane by methanotrophs in gas fermentation processes. By using methane as a sole carbon source, methanotrophic bacteria can produce bioplastics, biofuels, feed additives, ectoine and variety of other high-value chemical compounds. A lot of studies have been conducted through the years for natural methanotrophs and engineered strains as well as methanotrophic consortia. These have focused on increasing yields of native products as well as proof of concept for the synthesis of new range of chemicals by metabolic engineering. This review shows trends in the research on key methanotrophic bioproducts since 2015. Despite certain limitations of the known production strategies that makes commercialization of methane-based products challenging, there is currently much attention placed on the promising further development.
Collapse
Affiliation(s)
- Aleksandra Gęsicka
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Piotr Oleskowicz-Popiel
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| | - Mateusz Łężyk
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| |
Collapse
|
13
|
Hu L, Guo S, Yan X, Zhang T, Xiang J, Fei Q. Exploration of an Efficient Electroporation System for Heterologous Gene Expression in the Genome of Methanotroph. Front Microbiol 2021; 12:717033. [PMID: 34421878 PMCID: PMC8373458 DOI: 10.3389/fmicb.2021.717033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/07/2021] [Indexed: 11/20/2022] Open
Abstract
One-carbon (C1) substrates such as methane and methanol have been considered as the next-generation carbon source in industrial biotechnology with the characteristics of low cost, availability, and bioconvertibility. Recently, methanotrophic bacteria naturally capable of converting C1 substrates have drawn attractive attention for their promising applications in C1-based biomanufacturing for the production of chemicals or fuels. Although genetic tools have been explored for metabolically engineered methanotroph construction, there is still a lack of efficient methods for heterologous gene expression in methanotrophs. Here, a rapid and efficient electroporation method with a high transformation efficiency was developed for a robust methanotroph of Methylomicrobium buryatense 5GB1. Based on the homologous recombination and high transformation efficiency, gene deletion and heterologous gene expression can be simultaneously achieved by direct electroporation of PCR-generated linear DNA fragments. In this study, the influence of several key parameters (competent cell preparation, electroporation condition, recovery time, and antibiotic concentration) on the transformation efficiency was investigated for optimum conditions. The maximum electroporation efficiency of 719 ± 22.5 CFU/μg DNA was reached, which presents a 10-fold improvement. By employing this method, an engineered M. buryatense 5GB1 was constructed to biosynthesize isobutyraldehyde by replacing an endogenous fadE gene in the genome with a heterologous kivd gene. This study provides a potential and efficient strategy and method to facilitate the cell factory construction of methanotrophs.
Collapse
Affiliation(s)
- Lizhen Hu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Shuqi Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xin Yan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Tianqing Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jing Xiang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, China.,Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
14
|
Li X, Lee HS, Wang Z, Lee J. State-of-the-art management technologies of dissolved methane in anaerobically-treated low-strength wastewaters: A review. WATER RESEARCH 2021; 200:117269. [PMID: 34091220 DOI: 10.1016/j.watres.2021.117269] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
The recent advancement in low temperature anaerobic processes shows a great promise for realizing low-energy-cost, sustainable mainstream wastewater treatment. However, the considerable loss of the dissolved methane from anaerobically-treated low-strength wastewater significantly compromises the energy potential of the anaerobic processes and poses an environmental risk. In this review, the promises and challenges of existing and emerging technologies for dissolved methane management are examined: its removal, recovery, and on-site reuse. It begins by describing the working principles of gas-stripping and biological oxidation for methane removal, membrane contactors and vacuum degassers for methane recovery, and on-site biological conversion of dissolved methane into electricity or value-added biochemicals as direct energy sources or energy-compensating substances. A comparative assessment of these technologies in the three categories is presented based on methane treating efficiency, energy-production potential, applicability, and scalability. Finally, current research needs and future perspectives are highlighted to advance the future development of an economically and technically sustainable methane-management technology.
Collapse
Affiliation(s)
- Xuesong Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Hyung-Sool Lee
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jongho Lee
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z4.
| |
Collapse
|
15
|
Transcriptomic and Metabolomic Responses to Carbon and Nitrogen Sources in Methylomicrobium album BG8. Appl Environ Microbiol 2021; 87:e0038521. [PMID: 33893121 DOI: 10.1128/aem.00385-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methanotrophs use methane as their sole carbon and energy source and represent an attractive platform for converting single-carbon feedstocks into value-added compounds. Optimizing these species for biotechnological applications involves choosing an optimal growth substrate based on an understanding of cellular responses to different nutrients. Although many studies of methanotrophs have examined growth rate, yield, and central carbon flux in cultures grown with different carbon and nitrogen sources, few studies have examined more global cellular responses to different media. Here, we evaluated global transcriptomic and metabolomic profiles of Methylomicrobium album BG8 when grown with methane or methanol as the carbon source and nitrate or ammonium as the nitrogen source. We identified five key physiological changes during growth on methanol: M. album BG8 cultures upregulated transcripts for the Entner-Doudoroff and pentose phosphate pathways for sugar catabolism, produced more ribosomes, remodeled the phospholipid membrane, activated various stress response systems, and upregulated glutathione-dependent formaldehyde detoxification. When using ammonium, M. album BG8 upregulated hydroxylamine dehydrogenase (haoAB) and overall central metabolic activity, whereas when using nitrate, cultures upregulated genes for nitrate assimilation and conversion. Overall, we identified several nutrient source-specific responses that could provide a valuable basis for future research on the biotechnological optimization of these species. IMPORTANCE Methanotrophs are gaining increasing interest for their biotechnological potential to convert single-carbon compounds into value-added products such as industrial chemicals, fuels, and bioplastics. Optimizing these species for biotechnological applications requires a detailed understanding of how cellular activity and metabolism vary across different growth substrates. Although each of the two most commonly used carbon sources (methane or methanol) and nitrogen sources (ammonium or nitrate) in methanotroph growth media have well-described advantages and disadvantages in an industrial context, their effects on global cellular activity remain poorly characterized. Here, we comprehensively describe the transcriptomic and metabolomic changes that characterize the growth of an industrially promising methanotroph strain on multiple combinations of carbon and nitrogen sources. Our results represent a more holistic evaluation of cellular activity than previous studies of core metabolic pathways and provide a valuable basis for the future biotechnological optimization of these species.
Collapse
|
16
|
Time scale analysis & characteristic times in microscale-based bio-chemical processes: Part II – Bioreactors with immobilized cells, and process flowsheet analysis. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Chen YY, Soma Y, Ishikawa M, Takahashi M, Izumi Y, Bamba T, Hori K. Metabolic alteration of Methylococcus capsulatus str. Bath during a microbial gas-phase reaction. BIORESOURCE TECHNOLOGY 2021; 330:125002. [PMID: 33770731 DOI: 10.1016/j.biortech.2021.125002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
This study demonstrates the metabolic alteration of Methylococcus capsulatus (Bath), a representative bacterium among methanotrophs, in microbial gas-phase reactions. For comparative metabolome analysis, a bioreactor was designed to be capable of supplying gaseous substrates and liquid nutrients continuously. Methane degradation by M. capsulatus (Bath) was more efficient in a gas-phase reaction operated in the bioreactor than in an aqueous phase reaction operated in a batch reactor. Metabolome analysis revealed remarkable alterations in the metabolism of cells in the gas-phase reaction; in particular, pyruvate, 2-ketoglutarate, some amino acids, xanthine, and hypoxanthine were accumulated, whereas 2,6-diaminopimelate was decreased. Based on the results of metabolome analysis, cells in the gas-phase reaction seemed to alter their metabolism to reduce the excess ATP and NADH generated upon increased availability of methane and oxygen. Our findings will facilitate the development of efficient processes for methane-based bioproduction with low energy consumption.
Collapse
Affiliation(s)
- Yan-Yu Chen
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yuki Soma
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masahito Ishikawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Katsutoshi Hori
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| |
Collapse
|
18
|
Guerrero-Cruz S, Vaksmaa A, Horn MA, Niemann H, Pijuan M, Ho A. Methanotrophs: Discoveries, Environmental Relevance, and a Perspective on Current and Future Applications. Front Microbiol 2021; 12:678057. [PMID: 34054786 PMCID: PMC8163242 DOI: 10.3389/fmicb.2021.678057] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Methane is the final product of the anaerobic decomposition of organic matter. The conversion of organic matter to methane (methanogenesis) as a mechanism for energy conservation is exclusively attributed to the archaeal domain. Methane is oxidized by methanotrophic microorganisms using oxygen or alternative terminal electron acceptors. Aerobic methanotrophic bacteria belong to the phyla Proteobacteria and Verrucomicrobia, while anaerobic methane oxidation is also mediated by more recently discovered anaerobic methanotrophs with representatives in both the bacteria and the archaea domains. The anaerobic oxidation of methane is coupled to the reduction of nitrate, nitrite, iron, manganese, sulfate, and organic electron acceptors (e.g., humic substances) as terminal electron acceptors. This review highlights the relevance of methanotrophy in natural and anthropogenically influenced ecosystems, emphasizing the environmental conditions, distribution, function, co-existence, interactions, and the availability of electron acceptors that likely play a key role in regulating their function. A systematic overview of key aspects of ecology, physiology, metabolism, and genomics is crucial to understand the contribution of methanotrophs in the mitigation of methane efflux to the atmosphere. We give significance to the processes under microaerophilic and anaerobic conditions for both aerobic and anaerobic methane oxidizers. In the context of anthropogenically influenced ecosystems, we emphasize the current and potential future applications of methanotrophs from two different angles, namely methane mitigation in wastewater treatment through the application of anaerobic methanotrophs, and the biotechnological applications of aerobic methanotrophs in resource recovery from methane waste streams. Finally, we identify knowledge gaps that may lead to opportunities to harness further the biotechnological benefits of methanotrophs in methane mitigation and for the production of valuable bioproducts enabling a bio-based and circular economy.
Collapse
Affiliation(s)
- Simon Guerrero-Cruz
- Catalan Institute for Water Research (ICRA), Girona, Spain
- Universitat de Girona, Girona, Spain
| | - Annika Vaksmaa
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, ’t Horntje, Netherlands
| | - Marcus A. Horn
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
| | - Helge Niemann
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, ’t Horntje, Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
- Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Maite Pijuan
- Catalan Institute for Water Research (ICRA), Girona, Spain
- Universitat de Girona, Girona, Spain
| | - Adrian Ho
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
- Division of Applied Life Sciences, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
19
|
Bartosiewicz M, Rzepka P, Lehmann MF. Tapping Freshwaters for Methane and Energy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4183-4189. [PMID: 33666422 DOI: 10.1021/acs.est.0c06210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Energy supply limits development through fuel constraints and climatic effects. Production of renewable energy is a central pillar of sustainability but will need to play an increasingly important role in energy generation in order to mitigate fossil-fuel based greenhouse-gas emissions. Global freshwaters represent a vast reservoir of biomass and biogenic CH4. Here we demonstrate the great potential for the optimized use of this nonfossil carbon as a source of energy that is replenishable within a human lifetime. The feasibility of up-scaled adsorption-driven technologies to capture and refine aqueous CH4 still awaits verification, yet recent estimates of global freshwater CH4 production imply that the worldwide energy demand could be satisfied by using the "biofuel" building up in lakes and wetlands. Biogenic CH4 is mostly generated from biomass produced through atmospheric CO2 uptake. Its exploitation in freshwaters can thus secure large amounts of carbon-neutral energy, helping to sustain the planetary equilibrium.
Collapse
Affiliation(s)
- Maciej Bartosiewicz
- Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
| | - Przemyslaw Rzepka
- Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Moritz F Lehmann
- Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
20
|
Shahzadi I, Al-Ghamdi MA, Nadeem MS, Sajjad M, Ali A, Khan JA, Kazmi I. Scale-up fermentation of Escherichia coli for the production of recombinant endoglucanase from Clostridium thermocellum. Sci Rep 2021; 11:7145. [PMID: 33785771 PMCID: PMC8009960 DOI: 10.1038/s41598-021-86000-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/01/2021] [Indexed: 02/01/2023] Open
Abstract
Endoglucanase (EC 3.2.1.4) catalysing the hydrolysis of β-1.4-glycosidic linkage of cellulose molecules is an enzyme of tremendous industrial importance. The present study describes a response surface methodology based predicted model to deduce a set of fermentation conditions for optimum growth and activity of recombinant endoglucanase in E. coli BL21 (DE3). Numerous significant parameters including fermentation media composition, temperature (Celsius), pH and agitation rate (rpm) were analysed systemically by employing central composite design. This effort reports highly efficient recombinant endoglucanase overproduction (6.9 gl-1 of biomass) with 30% expression by E. coli in modified M9NG media incubated at 37 °C and pH 7 agitated at 200 rpm. Addition of 3 mM glucose and 24 mM glycerol in the M9NG media has shown positive effect on the enzyme yield and activity. The CMCase activity experimentally estimated was found to be 1185 U/mg with the optimized parameters. The outcomes of both the responses by the predicted quadratic model were found in consensus with the obtained values. Our results well depicted the favourable conditions to further scale-up the volumetric yield of other relevant recombinant enzymes and proteins.
Collapse
Affiliation(s)
- Iram Shahzadi
- grid.440564.70000 0001 0415 4232Institute of Molecular Biology and Biotechnology, University of Lahore, Defence Road Campus, Lahore, 54590 Pakistan
| | - Maryam A. Al-Ghamdi
- grid.412125.10000 0001 0619 1117Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Muhammad Shahid Nadeem
- grid.412125.10000 0001 0619 1117Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Muhammad Sajjad
- grid.440564.70000 0001 0415 4232Institute of Molecular Biology and Biotechnology, University of Lahore, Defence Road Campus, Lahore, 54590 Pakistan ,grid.11173.350000 0001 0670 519XSchool of Biological Sciences, University of the Punjab, Lahore, 54590 Pakistan
| | - Asif Ali
- grid.440564.70000 0001 0415 4232Institute of Molecular Biology and Biotechnology, University of Lahore, Defence Road Campus, Lahore, 54590 Pakistan
| | - Jalaluddin Azam Khan
- grid.412125.10000 0001 0619 1117Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Imran Kazmi
- grid.412125.10000 0001 0619 1117Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| |
Collapse
|
21
|
Ito H, Yoshimori K, Ishikawa M, Hori K, Kamachi T. Switching Between Methanol Accumulation and Cell Growth by Expression Control of Methanol Dehydrogenase in Methylosinus trichosporium OB3b Mutant. Front Microbiol 2021; 12:639266. [PMID: 33828540 PMCID: PMC8019695 DOI: 10.3389/fmicb.2021.639266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/28/2021] [Indexed: 01/17/2023] Open
Abstract
Methanotrophs have been used to convert methane to methanol at ambient temperature and pressure. In order to accumulate methanol using methanotrophs, methanol dehydrogenase (MDH) must be downregulated as it consumes methanol. Here, we describe a methanol production system wherein MDH expression is controlled by using methanotroph mutants. We used the MxaF knockout mutant of Methylosinus trichosporium OB3b. It could only grow with MDH (XoxF) which has a cerium ion in its active site and is only expressed by bacteria in media containing cerium ions. In the presence of 0 μM copper ion and 25 μM cerium ion, the mutant grew normally. Under conditions conducive to methanol production (10 μM copper ion and 0 μM cerium ion), cell growth was inhibited and methanol accumulated (2.6 μmol·mg−1 dry cell weight·h−1). The conversion efficiency of the accumulated methanol to the total amount of methane added to the reaction system was ~0.3%. The aforementioned conditions were repeatedly alternated by modulating the metal ion composition of the bacterial growth medium.
Collapse
Affiliation(s)
- Hidehiro Ito
- Department of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan.,Department of Biomolecular Engineering, Nagoya University, Nagoya, Japan
| | - Kosei Yoshimori
- Department of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Masahito Ishikawa
- Department of Biomolecular Engineering, Nagoya University, Nagoya, Japan
| | - Katsutoshi Hori
- Department of Biomolecular Engineering, Nagoya University, Nagoya, Japan
| | - Toshiaki Kamachi
- Department of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
22
|
Geinitz B, Hüser A, Mann M, Büchs J. Gas Fermentation Expands the Scope of a Process Network for Material Conversion. CHEM-ING-TECH 2020. [DOI: 10.1002/cite.202000086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Bertram Geinitz
- RWTH Aachen University, AVT – Biochemical Engineering Forckenbeckstraße 51 52074 Aachen Germany
| | - Aline Hüser
- RWTH Aachen University, AVT – Biochemical Engineering Forckenbeckstraße 51 52074 Aachen Germany
| | - Marcel Mann
- RWTH Aachen University, AVT – Biochemical Engineering Forckenbeckstraße 51 52074 Aachen Germany
| | - Jochen Büchs
- RWTH Aachen University, AVT – Biochemical Engineering Forckenbeckstraße 51 52074 Aachen Germany
| |
Collapse
|
23
|
Scull G, Brown AC. Development of novel microenvironments for promoting enhanced wound healing. CURRENT TISSUE MICROENVIRONMENT REPORTS 2020; 1:73-87. [PMID: 33748773 PMCID: PMC7968354 DOI: 10.1007/s43152-020-00009-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Nonhealing wounds are a significant issue facing the healthcare industry. Materials that modulate the wound microenvironment have the potential to improve healing outcomes. RECENT FINDINGS A variety of acellular and cellular scaffolds have been developed for regulating the wound microenvironment, including materials for controlled release of antimicrobials and growth factors, materials with inherent immunomodulative properties, and novel colloidal-based scaffolds. Scaffold construction methods include electrospinning, 3D printing, decellularization of extracellular matrix, or a combination of techniques. Material application methods include layering or injecting at the wound site. SUMMARY Though these techniques show promise for repairing wounds, all material strategies thus far struggle to induce regeneration of features such as sweat glands and hair follicles. Nonetheless, innovative technologies currently in the research phase may facilitate future attainment of these features. Novel methods and materials are constantly arising for the development of microenvironments for enhanced wound healing.
Collapse
Affiliation(s)
- Grant Scull
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Raleigh, NC 27695
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695
| | - Ashley C. Brown
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Raleigh, NC 27695
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
24
|
Zhou X, Ning K, Ling B, Chen X, Cheng H, Lu B, Gao Z, Xu J. Multiple Injections of Autologous Adipose-Derived Stem Cells Accelerate the Burn Wound Healing Process and Promote Blood Vessel Regeneration in a Rat Model. Stem Cells Dev 2020; 28:1463-1472. [PMID: 31530229 DOI: 10.1089/scd.2019.0113] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Stem cell-based therapies have the potential to heal burn wounds, but thus far have had limited success in clinical practice. This study aimed to test and improve the therapeutic effects of adipose-derived stem cells (ASCs) on burn wound healing in a rat model. We also explored the role of ASCs in burn wound healing We first isolated the autologous ASCs of each Sprague-Dawley rat used in this experiment and expanded them in vitro. Then, a 2-cm2 burn wound was made on the dorsal skin of each rat using a specialized heating iron. The treated rats received either one or three injections of 2 × 106 green fluorescent protein-labeled autologous ASCs, and the control rats received injections of the same volume of phosphate-buffered saline. A digital camera was employed to capture images of the wound area. We explored the role of ASCs in burn wound healing by cell tracing, evaluation of blood vessel number, analysis of a rat cytokine array panel, and cell proliferation in vivo. Multiple injections of autologous ASCs accelerated the wound healing process more efficiently compared with that observed in the control treatment. A rat cytokine array test showed that transplanting ASCs led to significantly elevated expression of VEGF. Therefore, angiogenesis was significantly improved in ASC-treated rats, as more microvessels were observed in the wound skin of the experimental rats than in that of the control rats. Transplanted ASCs not only survived in the wound bed but also participated in the blood vessel regeneration process. ASCs also accelerated the wound healing process by increasing the rate of cell proliferation in the wound skin. Our data suggest that autologous ASCs transplantation accelerated the burn wound healing process and promoted blood vessel regeneration. ASCs could potentially be used in burn wound healing treatment.
Collapse
Affiliation(s)
- Xiaolong Zhou
- East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ke Ning
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Bin Ling
- The Second People's Hospital of Yunnan Province, Kunming, China
| | - Xu Chen
- Eighth People's Hospital Affiliated to Jiangsu University, Shanghai, China
| | - Hongbin Cheng
- Department of Cell Transplantation, General Hospital of Chinese People's Armed, Beijing, China
| | - Bing Lu
- East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhengliang Gao
- Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Xu
- East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Rzelewska-Piekut M, Regel-Rosocka M. Technology of large volume alcohols, carboxylic acidsand esters. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2019-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Paper describes industrial synthesis of the most important alcohols (methanol and ethanol), organic acids (acetic and lactic), and fatty acid methyl esters (biodiesel). Also, current industrial solutions and global trends in manufacturing of these chemicals are presented. Moreover, several alternative production technologies of these chemical compounds are discussed, which might successfully replace current commercial methods in the future.
Collapse
Affiliation(s)
- Martyna Rzelewska-Piekut
- Institute of Chemical Technology and Engineering , Poznań University of Technology , ul. Berdychowo 4 , Poznań 60-965 , Poland
| | - Magdalena Regel-Rosocka
- Institute of Chemical Technology and Engineering , Poznań University of Technology , ul. Berdychowo 4 , Poznań 60-965 , Poland
| |
Collapse
|
26
|
Islam J, Chilkoor G, Jawaharraj K, Dhiman SS, Sani R, Gadhamshetty V. Vitamin-C-enabled reduced graphene oxide chemistry for tuning biofilm phenotypes of methylotrophs on nickel electrodes in microbial fuel cells. BIORESOURCE TECHNOLOGY 2020; 300:122642. [PMID: 31911315 DOI: 10.1016/j.biortech.2019.122642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
This study reports the use of multi-layered reduced graphene oxide (rGO) coating on porous nickel foam (NF) electrodes for enhancing biofilm growth of Rhodobacter Sphaeroides spp fed with methanol in microbial fuel cells (CH3OH-MFCs). Electrochemical methods were used to assess the methylotrophic activity on rGO/NF electrodes. The power density and current density offered by rGO/NF (1200 mW m-2 and 680 mA m-2) were 220-fold and 540-fold higher compared to bare NF (5.50 mW m-2 and 1.26 mA m-2), respectively. Electrochemical impedance spectroscopy results show that rGO/NF suppresses charge transfer resistance to CH3OH oxidation by 40-fold compared to the control. This improved performance is due to the ability of rGO coatings to decrease the wetting contact angle (improve the hydrophilicity) of NF from 1280 to 00. A preliminary cost analysis was carried out to assess the viability of rGO/NF electrodes via vitamin-C-enabled graphene oxide chemistry for CH3OH-MFCs applications.
Collapse
Affiliation(s)
- Jamil Islam
- Civil and Environmental Engineering, South Dakota School of Mines and Technology, 501 E. St. Joseph Street, Rapid City, SD 57701, USA; BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Govinda Chilkoor
- Civil and Environmental Engineering, South Dakota School of Mines and Technology, 501 E. St. Joseph Street, Rapid City, SD 57701, USA; 2-Dimensional Materials for Biofilm Engineering Science and Technology (2DBEST) Center, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Kalimuthu Jawaharraj
- Civil and Environmental Engineering, South Dakota School of Mines and Technology, 501 E. St. Joseph Street, Rapid City, SD 57701, USA; BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Saurabh Sudha Dhiman
- Civil and Environmental Engineering, South Dakota School of Mines and Technology, 501 E. St. Joseph Street, Rapid City, SD 57701, USA; Chemical and Biological Engineering, South Dakota School of Mines and Technology, 501 E. St. Joseph Street, Rapid City, SD 57701, USA; BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Rajesh Sani
- Chemical and Biological Engineering, South Dakota School of Mines and Technology, 501 E. St. Joseph Street, Rapid City, SD 57701, USA; BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; 2-Dimensional Materials for Biofilm Engineering Science and Technology (2DBEST) Center, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Venkataramana Gadhamshetty
- Civil and Environmental Engineering, South Dakota School of Mines and Technology, 501 E. St. Joseph Street, Rapid City, SD 57701, USA; BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; 2-Dimensional Materials for Biofilm Engineering Science and Technology (2DBEST) Center, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA.
| |
Collapse
|
27
|
Comparing the Nature of Active Sites in Cu-loaded SAPO-34 and SSZ-13 for the Direct Conversion of Methane to Methanol. Catalysts 2020. [DOI: 10.3390/catal10020191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
On our route towards a more sustainable future, the use of stranded and underutilized natural gas to produce chemicals would be a great aid in mitigating climate change, due to the reduced CO2 emissions in comparison to using petroleum. In this study, we investigate the performance of Cu-exchanged SSZ-13 and SAPO-34 microporous materials in the stepwise, direct conversion of methane to methanol. With the use of X-ray absorption spectroscopy, infrared (in combination with CO adsorption) and Raman spectroscopy, we compared the structure–activity relationships for the two materials. We found that SSZ-13 performed significantly better than SAPO-34 at the standard conditions. From CH4-TPR, it is evident that SAPO-34 requires a higher temperature for CH4 oxidation, and by changing the CH4 loading temperature from 200 to 300 °C, the yield (μmol/g) of SAPO-34 was increased tenfold. As observed from spectroscopy, both three- and four-fold coordinated Cu-species were formed after O2-activation; among them, the active species for methane activation. The Cu speciation in SAPO-34 is distinct from that in SSZ-13. These deviations can be attributed to several factors, including the different framework polarities, and the amount and distribution of ion exchange sites.
Collapse
|
28
|
Wang S, An Z, Wang ZW. Bioconversion of methane to chemicals and fuels by methane-oxidizing bacteria. ADVANCES IN BIOENERGY 2020. [DOI: 10.1016/bs.aibe.2020.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Singh R, Ryu J, Kim SW. Microbial consortia including methanotrophs: some benefits of living together. J Microbiol 2019; 57:939-952. [PMID: 31659683 DOI: 10.1007/s12275-019-9328-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/30/2019] [Accepted: 09/25/2019] [Indexed: 01/13/2023]
Abstract
With the progress of biotechnological research and improvements made in bioprocessing with pure cultures, microbial consortia have gained recognition for accomplishing biological processes with improved effectiveness. Microbes are indispensable tool in developing bioprocesses for the production of bioenergy and biochemicals while utilizing renewable resources due to technical, economic and environmental advantages. They communicate with specific cohorts in close proximity to promote metabolic cooperation. Use of positive microbial associations has been recognized widely, especially in food industries and bioremediation of toxic compounds and waste materials. Role of microbial associations in developing sustainable energy sources and substitutes for conventional fuels is highly promising with many commercial prospects. Detoxification of chemical contaminants sourced from domestic, agricultural and industrial wastes has also been achieved through microbial catalysis in pure and co-culture systems. Methanotrophs, the sole biological sink of greenhouse gas methane, catalyze the methane monooxygenasemediated oxidation of methane to methanol, a high energy density liquid and key platform chemical to produce commodity chemical compounds and their derivatives. Constructed microbial consortia have positive effects, such as improved biomass, biocatalytic potential, stability etc. In a methanotroph-heterotroph consortium, non-methanotrophs provide key nutrient factors and alleviate the toxicity from the culture. Non-methanotrophic organisms biologically stimulate the growth and activity of methanotrophs via production of growth stimulators. However, methanotrophs in association with co-cultured microorganisms are in need of further exploration and thorough investigation to study their interaction mode and application with improved effectiveness.
Collapse
Affiliation(s)
- Rajendra Singh
- Department of Environmental Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Jaewon Ryu
- Department of Energy Convergence, Chosun University, Gwangju, 61452, Republic of Korea
| | - Si Wouk Kim
- Department of Environmental Engineering, Chosun University, Gwangju, 61452, Republic of Korea. .,Department of Energy Convergence, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
30
|
Biological conversion of propane to 2-propanol using group I and II methanotrophs as biocatalysts. ACTA ACUST UNITED AC 2019; 46:675-685. [DOI: 10.1007/s10295-019-02141-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022]
Abstract
Abstract
Propane is the main component of liquefied petroleum gas and is derived from crude oil processing. Methanotrophic bacteria can convert various alkanes using methane monooxygenase enzyme to primary alcohols. These are further oxidized to various aldehydes by alcohol dehydrogenases or methanol dehydrogenases. In this study, 2-propanol was produced from propane using the whole cells of Methylosinus trichosporium OB3b, Methylomicrobium alcaliphilum 20Z, and Methylomonas sp. DH-1 as the biocatalysts. The biocatalytic process of converting propane to 2-propanol was optimized by the use of several inhibitors and additives, such as EDTA, sodium phosphate, and sodium formate to prevent oxidation of 2-propanol to acetone and to enhance conversion of propane to propanol. The maximum titer of 2-propanol was 0.424 g/L, 0.311 g/L, and 0.610 g/L for Methylomonas sp. DH-1, M. alcaliphilum 20Z, and M. trichosporium OB3b whole cells, respectively. These results showed that type I and type II methanotrophs could be used as the potent biocatalyst for conversion of propane to propanol.
Collapse
|
31
|
Development and Optimization of the Biological Conversion of Ethane to Ethanol Using Whole-Cell Methanotrophs Possessing Methane Monooxygenase. Molecules 2019; 24:molecules24030591. [PMID: 30736408 PMCID: PMC6384962 DOI: 10.3390/molecules24030591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 12/28/2022] Open
Abstract
The biological production of ethanol from ethane for the utilization of ethane in natural gas was investigated under ambient conditions using whole-cell methanotrophs possessing methane monooxygenase. Several independent variables including ethane concentration and biocatalyst amounts, among other factors, were optimized for the enhancement of ethane-to-ethanol bioconversion. We obtained 0.4 g/L/h of volumetric productivity and 0.52 g/L of maximum titer in optimum batch reaction conditions. In this study, we demonstrate that the biological gas-to-liquid conversion of ethane to ethanol has potent technical feasibility as a new application of ethane gas.
Collapse
|
32
|
Bio-conversion of methane into high profit margin compounds: an innovative, environmentally friendly and cost-effective platform for methane abatement. World J Microbiol Biotechnol 2019; 35:16. [PMID: 30617555 DOI: 10.1007/s11274-018-2587-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/31/2018] [Indexed: 01/04/2023]
Abstract
Despite the environmental relevance of CH4 and forthcoming stricter regulations, the development of cost-efficient and environmentally friendly technologies for CH4 abatement is still limited. To date, one of the most promising solutions for the mitigation of this important GHG consists of the bioconversion of CH4 into bioproducts with a high profit margin. In this context, methanotrophs have been already proven as cell-factories of some of the most expensive products synthesized by microorganisms. In the case of ectoine (1000 $ kg-1), already described methanotrophic genera such as Methylomicrobium can accumulate up to 20% (ectoine wt-1) using methane as the only carbon source. Moreover, α-methanotrophs, such as Methylosynus and Methylocystis, are able to store bioplastic concentrations up to 50-60% of their total cell content. More than that, methanotrophs are one of the greatest potential producers of methanol and exopolysaccharides. Although this methanotrophic factory could be enhanced throughout metabolic engineering, the valorization of CH4 into valuable metabolites has been already consistently demonstrated under continuous and discontinuous mode, producing more than one compound in the same bioprocess, and using both, single strains and specific consortia. This review states the state-of-the-art of this innovative biotechnological platform by assessing its potential and current limitations.
Collapse
|