1
|
Mac TT, Fauquier T, Jullien N, Romanet P, Etchevers H, Barlier A, Castinetti F, Brue T. Modeling corticotroph deficiency with pituitary organoids supports the functional role of NFKB2 in human pituitary differentiation. eLife 2024; 12:RP90875. [PMID: 39607428 PMCID: PMC11604219 DOI: 10.7554/elife.90875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
Deficient Anterior pituitary with common Variable Immune Deficiency (DAVID) syndrome results from NFKB2 heterozygous mutations, causing adrenocorticotropic hormone deficiency (ACTHD) and primary hypogammaglobulinemia. While NFKB signaling plays a crucial role in the immune system, its connection to endocrine symptoms is unclear. We established a human disease model to investigate the role of NFKB2 in pituitary development by creating pituitary organoids from CRISPR/Cas9-edited human induced pluripotent stem cells (hiPSCs). Introducing homozygous TBX19K146R/K146R missense pathogenic variant in hiPSC, an allele found in congenital isolated ACTHD, led to a strong reduction of corticotrophs number in pituitary organoids. Then, we characterized the development of organoids harboring NFKB2D865G/D865G mutations found in DAVID patients. NFKB2D865G/D865G mutation acted at different levels of development with mutant organoids displaying changes in the expression of genes involved on pituitary progenitor generation (HESX1, PITX1, LHX3), hypothalamic secreted factors (BMP4, FGF8, FGF10), epithelial-to-mesenchymal transition, lineage precursors development (TBX19, POU1F1) and corticotrophs terminal differentiation (PCSK1, POMC), and showed drastic reduction in the number of corticotrophs. Our results provide strong evidence for the direct role of NFKB2 mutations in the endocrine phenotype observed in patients leading to a new classification of a NFKB2 variant of previously unknown clinical significance as pathogenic in pituitary development.
Collapse
Affiliation(s)
- Thi Thom Mac
- Aix-Marseille University, INSERM, UMR1251, Marseille Medical Genetics, Institut MarMaRaMarseilleFrance
- Hanoi Medical University HospitalHanoiViet Nam
| | - Teddy Fauquier
- Aix-Marseille University, INSERM, UMR1251, Marseille Medical Genetics, Institut MarMaRaMarseilleFrance
| | - Nicolas Jullien
- Aix-Marseille University, CNRS, UMR7051, Institut de NeuroPhysiopathologieMarseilleFrance
| | - Pauline Romanet
- Aix-Marseille University, INSERM, UMR1251, Marseille Medical Genetics, Institut MarMaRaMarseilleFrance
- Aix-Marseille University, APHM, INSERM, MMG, Laboratory of Molecular Biology, La Conception Hospital, Institut MarMaRaMarseilleFrance
| | - Heather Etchevers
- Aix-Marseille University, INSERM, UMR1251, Marseille Medical Genetics, Institut MarMaRaMarseilleFrance
| | - Anne Barlier
- Aix-Marseille University, INSERM, UMR1251, Marseille Medical Genetics, Institut MarMaRaMarseilleFrance
- Aix-Marseille University, APHM, INSERM, MMG, Laboratory of Molecular Biology, La Conception Hospital, Institut MarMaRaMarseilleFrance
- Aix Marseille University, APHM, INSERM, MMG, Department of Endocrinology, La Conception Hospital, Institut MarMaRaMarseilleFrance
| | - Frederic Castinetti
- Aix-Marseille University, INSERM, UMR1251, Marseille Medical Genetics, Institut MarMaRaMarseilleFrance
- Aix Marseille University, APHM, INSERM, MMG, Department of Endocrinology, La Conception Hospital, Institut MarMaRaMarseilleFrance
| | - Thierry Brue
- Aix-Marseille University, INSERM, UMR1251, Marseille Medical Genetics, Institut MarMaRaMarseilleFrance
- Aix Marseille University, APHM, INSERM, MMG, Department of Endocrinology, La Conception Hospital, Institut MarMaRaMarseilleFrance
| |
Collapse
|
2
|
Jiang Y, Chen C, Randolph LN, Ye S, Zhang X, Bao X, Lian XL. Generation of pancreatic progenitors from human pluripotent stem cells by small molecules. Stem Cell Reports 2021; 16:2395-2409. [PMID: 34450037 PMCID: PMC8452541 DOI: 10.1016/j.stemcr.2021.07.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/20/2022] Open
Abstract
Human pluripotent stem cell (hPSC)-derived pancreatic progenitors (PPs) provide promising cell therapies for type 1 diabetes. Current PP differentiation requires a high amount of Activin A during the definitive endoderm (DE) stage, making it economically difficult for commercial ventures. Here we identify a dose-dependent role for Wnt signaling in controlling DE differentiation without Activin A. While high-level Wnt activation induces mesodermal formation, low-level Wnt activation by a small-molecule inhibitor of glycogen synthase kinase 3 is sufficient for DE differentiation, yielding SOX17+FOXA2+ DE cells. BMP inhibition further enhances this DE differentiation, generating over 87% DE cells. These DE cells could be further differentiated into PPs and functional β cells. RNA-sequencing analysis of PP differentiation from hPSCs revealed expected transcriptome dynamics and new gene regulators during our small-molecule PP differentiation protocol. Overall, we established a robust growth-factor-free protocol for generating DE and PP cells, facilitating scalable production of pancreatic cells for regenerative applications.
Collapse
Affiliation(s)
- Yuqian Jiang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Chuanxin Chen
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Lauren N Randolph
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Songtao Ye
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Xin Zhang
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Xiaojun Lance Lian
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA; Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
3
|
Li S, Liu Y, McCann J, Ravnic DJ, Gimble JM, Hayes DJ. Hybrid adipose graft materials synthesized from chemically modified adipose extracellular matrix. J Biomed Mater Res A 2021; 110:156-163. [PMID: 34263999 DOI: 10.1002/jbm.a.37273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 12/17/2022]
Abstract
Decellularized extracellular matrix (ECM) from tissues is a promising biomaterial that can provide a complex 3D microenvironment capable of modulating cell response and tissue regeneration. In this study, we have integrated the decellularized thiolated adipose-derived ECM, at different concentrations, with polyethylene glycol (PEG) using Michael addition between thiol and acrylate moieties. The potential for this material to support adipogenic differentiation of human adipose-derived stem cells was evaluated by encapsulating cells in hydrogels with increasing concentrations of chemically modified ECM (mECM). Our results demonstrated a positive correlation between the ECM content in the hydrogels and cell proliferation, adipogenic marker expression, and lipid formation and accumulation. Furthermore, we have shown host cell infiltration and enhanced adipogenesis in vivo after implantation. These findings support the graft as a potential alternative for adipose tissue regeneration.
Collapse
Affiliation(s)
- Shue Li
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Yiming Liu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jacob McCann
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Dino J Ravnic
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Jeffrey M Gimble
- Obatala Sciences, Inc., Advanced Materials Research Institute, University of New Orleans, New Orleans, Louisiana, USA
| | - Daniel J Hayes
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.,Material Research Institute, The Pennsylvania State University, University Park, Pennsylvania, USA.,The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
4
|
Disease Modeling Using 3D Organoids Derived from Human Induced Pluripotent Stem Cells. Int J Mol Sci 2018; 19:ijms19040936. [PMID: 29561796 PMCID: PMC5979503 DOI: 10.3390/ijms19040936] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/13/2018] [Accepted: 03/21/2018] [Indexed: 12/12/2022] Open
Abstract
The rising interest in human induced pluripotent stem cell (hiPSC)-derived organoid culture has stemmed from the manipulation of various combinations of directed multi-lineage differentiation and morphogenetic processes that mimic organogenesis. Organoids are three-dimensional (3D) structures that are comprised of multiple cell types, self-organized to recapitulate embryonic and tissue development in vitro. This model has been shown to be superior to conventional two-dimensional (2D) cell culture methods in mirroring functionality, architecture, and geometric features of tissues seen in vivo. This review serves to highlight recent advances in the 3D organoid technology for use in modeling complex hereditary diseases, cancer, host–microbe interactions, and possible use in translational and personalized medicine where organoid cultures were used to uncover diagnostic biomarkers for early disease detection via high throughput pharmaceutical screening. In addition, this review also aims to discuss the advantages and shortcomings of utilizing organoids in disease modeling. In summary, studying human diseases using hiPSC-derived organoids may better illustrate the processes involved due to similarities in the architecture and microenvironment present in an organoid, which also allows drug responses to be properly recapitulated in vitro.
Collapse
|