1
|
Gauthier AC, Villeneuve MÉ, Cournoyer M, Mathieu ME. Intensity and Appreciation of Sweet Taste Solutions Are Modulated by High-Intensity Aerobic Exercise in Adolescent Athletic Males. Pediatr Exerc Sci 2025; 37:182-189. [PMID: 38925531 DOI: 10.1123/pes.2024-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE Exercise seems to influence taste, but the effect of exercise on specific tastes is still to be elucidated among youths. METHODS Athlete boys aged 14-16 years were recruited. Participants (n = 19) ages ranged 14.7 (0.7) years, weight 59.6 (7.8) kg, and height of 173.4 (7.9) cm. Distinct taste tests were administered using low and high concentrations of sweet, salty, and bitter solutions before and after a 30-minute aerobic exercise session (70%-90% of estimated maximal heart rate). McNemmar tests, standard paired t tests, Wilcoxon signed-rank tests, and Cohen d effect size tests were used to analyze taste identification, intensity, and appreciation. RESULTS There were no significant differences in taste identification capacities after exercise. Participants perceived more intense (P = .037) and appreciated better (P = .004) the low-concentration sweet solution after exercise. Taste appreciation was increased for the high-concentration sweet solution (P = .009) after exercise. Effect sizes were moderate (0.516-0.776). Possible effects were noted for the intensity of salty solutions (P = .0501 and .0543). CONCLUSION Following an exercise session, participants had increased perceived intensity and appreciation of sweet solutions. This adds new insights into how exercise influences taste in youths, a topic less documented compared with adults, suggesting further research into its impact on dietary choices is needed.
Collapse
Affiliation(s)
- Alexandre-Charles Gauthier
- Faculty of Medicine, School of Kinesiology and Physical Activity Sciences, Université de Montréal, Montréal, QC,Canada
| | - Marc-Étienne Villeneuve
- Faculty of Medicine, School of Kinesiology and Physical Activity Sciences, Université de Montréal, Montréal, QC,Canada
| | - Mathieu Cournoyer
- Faculty of Medicine, School of Kinesiology and Physical Activity Sciences, Université de Montréal, Montréal, QC,Canada
| | - Marie-Eve Mathieu
- Faculty of Medicine, School of Kinesiology and Physical Activity Sciences, Université de Montréal, Montréal, QC,Canada
- Centre de recherche du CHU Sainte-Justine, Montréal, QC,Canada
| |
Collapse
|
2
|
Lv J, Geng A, Pan Z, Wei L, Zou Q, Zhang Z, Cui F. iBitter-GRE: A Novel Stacked Bitter Peptide Predictor with ESM-2 and Multi-View Features. J Mol Biol 2025; 437:169005. [PMID: 39954778 DOI: 10.1016/j.jmb.2025.169005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/08/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Accurate identification of bitter peptides is essential for research. Although models using sequence information have evolved in the context of bitter peptides, there is still room for improvement in their predictive performance. In the present study, we introduced a novel predictive tool, iBitter-GRE, designed to improve the accuracy of bitter peptide identification. Our model uses ESM-2 and traditional descriptors capture the physical and biochemical properties of bitter peptides for feature extraction. To expand the model's learning capabilities, we adopted a stacking approach to integrate multiple learners. Feature contributions were analyzed using SHAP values. Validation by domain experts confirmed that our model effectively identifies the key biochemical characteristics of bitter peptides. Benchmark experiments showed that iBitter-GRE achieves higher accuracy than existing methods. To assist the researchers, we created a web server accessible at http://www.bioai-lab.com/iBitter-GRE. We believe that iBitter-GRE is a valuable tool for the discovery and identification of bitter peptides.
Collapse
Affiliation(s)
- Jingwei Lv
- School of Computer Science and Technology, Hainan University, Haikou 570228, China
| | - Aoyun Geng
- School of Computer Science and Technology, Hainan University, Haikou 570228, China
| | - Zhuoyu Pan
- International Business School, Hainan University, Haikou 570228, China
| | - Leyi Wei
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Science, Macao Polytechnic University, Macao SAR, China; School of Informatics, Xiamen University, Xiamen, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China; Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China
| | - Zilong Zhang
- School of Computer Science and Technology, Hainan University, Haikou 570228, China
| | - Feifei Cui
- School of Computer Science and Technology, Hainan University, Haikou 570228, China.
| |
Collapse
|
3
|
Bae JH, Kang H. Longitudinal Analysis of Sweet Taste Preference Through Genetic and Phenotypic Data Integration. Foods 2024; 13:3370. [PMID: 39517154 PMCID: PMC11545761 DOI: 10.3390/foods13213370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Understanding the genetic basis of sweet taste preference is crucial for potential implications in diet-related health outcomes, such as obesity. This study identified genes and single nucleotide polymorphisms (SNPs) associated with sweet taste preferences over time. Data from the American Nurses' Health Study (NHS1) and Health Professionals Follow-up Study (HPFS) cohorts were analyzed. Using tools like PLINK and METAL for genetic associations and FUMA for functional annotation, the study identified eight SNPs associated with sweet taste preferences. Notably, rs80115239 and rs12878143 were identified as key determinants of the highest and lowest associations with sweet taste preferences, respectively. Individuals with the rs80115239 (AA) genotype displayed a higher preference for sweet tastes, including chocolate and cake, but a lower preference for physical activity, fruits, and vegetables, particularly in females from the NHS1 cohort, linking this genotype to a higher obesity risk. Conversely, those with the rs12878143 (CC) genotype preferred fruits, vegetables, coffee, and tea, with a lower preference for sweetened beverages, but the correlation with obesity risk was less clear due to inconsistent data. In conclusion, these findings highlight the genetic influences on sweet taste preference and their potential role in personalized dietary recommendations and obesity management strategies.
Collapse
Affiliation(s)
| | - Hyunju Kang
- Department of Food Science and Nutrition, Keimyung University, Daegu 42601, Republic of Korea;
| |
Collapse
|
4
|
Kim HY, Choi JH. TAS2R38 bitterness receptor genetic variation is associated with diet quality in Koreans. Appetite 2024; 200:107561. [PMID: 38905855 DOI: 10.1016/j.appet.2024.107561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/19/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
Genetic variation in the bitter taste receptor gene taste receptor type 2, member 38 (TAS2R38) is associated with an individual's bitter taste sensitivity, food preference and consumption, which may also influence overall diet quality. This study aims to determine whether the TAS2R38 bitter taste receptor genetic variation is associated with overall diet quality using the Korean Healthy Eating Index (KHEI). A total of 41,839 individuals from the Korean Genome and Epidemiology Study were analyzed for their TAS2R38 diplotypes (rs713598, rs1726866, and rs10246939), general characteristics, and KHEI scores by obesity status. Results revealed that in the non-obese group, individuals with the AVI/AVI diplotype had a significantly higher score of 'ratio of white meat to red meat' than individuals with the PAV/* diplotype (3.89 ± 3.23 vs. 3.79 ± 3.18, adjusted p = 0.029). However, obese individuals with the PAV/* diplotype showed a significantly higher level of the mean score of 'moderation' (19.32 ± 5.82 vs. 18.92 ± 5.80, adjusted p = 0.026) and total KHEI score (61.07 ± 12.19 vs. 60.52 ± 12.29, adjusted p = 0.008) than those with the AVI/AVI diplotype. Finally, an interactive effect between bitterness genetic variation and obesity level was observed in those scores of 'ratio of white meat to red meat' (adjusted p = 0.007), 'moderation' (adjusted p = 0.013), and total KEHI (adjusted p = 0.007). In conclusion, TAS2R38 genetic variation is associated with overall diet quality in Koreans, which is more evident in the obese group.
Collapse
Affiliation(s)
- Hae Young Kim
- Department of Food Science and Nutrition, Keimyung University, Daegu, 42601, South Korea
| | - Jeong-Hwa Choi
- Department of Food Science and Nutrition, Keimyung University, Daegu, 42601, South Korea.
| |
Collapse
|
5
|
Peng YC, Wu J, He X, Dai J, Xia L, Valenzuela-Leon P, Tumas KC, Singh BK, Xu F, Ganesan S, Munir S, Calvo E, Huang R, Liu C, Long CA, Su XZ. NAD activates olfactory receptor 1386 to regulate type I interferon responses in Plasmodium yoelii YM infection. Proc Natl Acad Sci U S A 2024; 121:e2403796121. [PMID: 38809710 PMCID: PMC11161801 DOI: 10.1073/pnas.2403796121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
Olfactory receptors (Olfr) are G protein-coupled receptors that are normally expressed on olfactory sensory neurons to detect volatile chemicals or odorants. Interestingly, many Olfrs are also expressed in diverse tissues and function in cell-cell recognition, migration, and proliferation as well as immune responses and disease processes. Here, we showed that many Olfr genes were expressed in the mouse spleen, linked to Plasmodium yoelii genetic loci significantly, and/or had genome-wide patterns of LOD scores (GPLSs) similar to those of host Toll-like receptor genes. Expression of specific Olfr genes such as Olfr1386 in HEK293T cells significantly increased luciferase signals driven by IFN-β and NF-κB promoters, with elevated levels of phosphorylated TBK1, IRF3, P38, and JNK. Mice without Olfr1386 were generated using the CRISPR/Cas9 method, and the Olfr1386-/- mice showed significantly lower IFN-α/β levels and longer survival than wild-type (WT) littermates after infection with P. yoelii YM parasites. Inhibition of G protein signaling and P38 activity could affect cyclic AMP-responsive element promoter-driven luciferase signals and IFN-β mRNA levels in HEK293T cells expressing the Olfr1386 gene, respectively. Screening of malaria parasite metabolites identified nicotinamide adenine dinucleotide (NAD) as a potential ligand for Olfr1386, and NAD could stimulate IFN-β responses and phosphorylation of TBK1 and STAT1/2 in RAW264.7 cells. Additionally, parasite RNA (pRNA) could significantly increase Olfr1386 mRNA levels. This study links multiple Olfrs to host immune response pathways, identifies a candidate ligand for Olfr1386, and demonstrates the important roles of Olfr1386 in regulating type I interferon (IFN-I) responses during malaria parasite infections.
Collapse
Affiliation(s)
- Yu-chih Peng
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Jian Wu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Xiao He
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Jin Dai
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Lu Xia
- Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Disease of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410083, People’s Republic of China
| | - Paola Valenzuela-Leon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Keyla C. Tumas
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Brajesh K. Singh
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Fangzheng Xu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Sundar Ganesan
- Biological Imaging Section, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Shirin Munir
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Ruili Huang
- National Center for Advancing Translational Sciences, NIH, Bethesda, MD20892
| | - Chengyu Liu
- Transgenic Core Facility, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20892
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Xin-zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| |
Collapse
|
6
|
McClements DJ. Novel animal product substitutes: A new category of plant-based alternatives to meat, seafood, egg, and dairy products. Compr Rev Food Sci Food Saf 2024; 23:e313330. [PMID: 38551190 DOI: 10.1111/1541-4337.13330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/05/2024] [Accepted: 03/08/2024] [Indexed: 04/02/2024]
Abstract
Many consumers are adopting plant-centric diets to address the adverse effects of livestock production on the environment, health, and animal welfare. Processed plant-based foods, including animal product analogs (such as meat, seafood, egg, or dairy analogs) and traditional animal product substitutes (such as tofu, seitan, or tempeh), may not be desirable to a broad spectrum of consumers. This article introduces a new category of plant-based foods specifically designed to overcome the limitations of current animal product analogs and substitutes: novel animal product substitutes (NAPS). NAPS are designed to contain high levels of nutrients to be encouraged (such as proteins, omega-3 fatty acids, dietary fibers, vitamins, and minerals) and low levels of nutrients to be discouraged (such as salt, sugar, and saturated fat). Moreover, they may be designed to have a wide range of appearances, textures, mouthfeels, and flavors. For instance, they could be red, orange, green, yellow, blue, or beige; they could be spheres, ovals, cubes, or pyramids; they could be hard/soft or brittle/pliable; and they could be lemon, thyme, curry, or chili flavored. Consequently, there is great flexibility in creating NAPS that could be eaten in situations where animal products are normally consumed, for example, with pasta, rice, potatoes, bread, soups, or salads. This article reviews the science behind the formulation of NAPS, highlights factors impacting their appearance, texture, flavor, and nutritional profile, and discusses methods that can be used to formulate, produce, and characterize them. Finally, it stresses the need for further studies on this new category of foods, especially on their sensory and consumer aspects.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
7
|
Jo YS, Choi JH. Genetic variation in TAS2R38 bitterness receptor is associated with body composition in Korean females. Int J Food Sci Nutr 2024; 75:197-206. [PMID: 38115549 DOI: 10.1080/09637486.2023.2294682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
Bitterness-receptor gene TAS2R38 is associated with taste sensitivity and dietary behaviour, and is known to play a critical role in adiposity. However, evidence regarding body composition from a large cohort is lacking. This study aimed to ascertain whether TAS2R38 rs10246939 C > T bitterness genetic variation is associated with body composition in Korean individuals. The TAS2R38 rs10246939 genotypes, anthropometric measurements, and body composition of 1,843 males and 1,801 females from the Korean Genome and Epidemiology Study were analysed. Findings suggested that there was a significant difference in body fat components by TAS2R38 genotype. Furthermore, the bitterness genotype exhibited a positive association with adiposity markers in females. The TT genotype showed greater body mass index, body fat percentage, and degree of obesity than those with the C allele. However, such an association was not observed in males. In conclusion, this study suggests that TAS2R38 rs10246939 is associated with fat tissue markers in Korean females.
Collapse
Affiliation(s)
- Yi-Seul Jo
- Department of Food Science and Nutrition, Keimyung University, Daegu, Korea
| | - Jeong-Hwa Choi
- Department of Food Science and Nutrition, Keimyung University, Daegu, Korea
| |
Collapse
|
8
|
Franks ZG, Nandakumar K, Santhanam L, Lester L, Walsh JM, Dalesio NM. ACE2 and TAS2R38 receptor expression in pediatric and adult patients in the nasal and oral cavity. Laryngoscope Investig Otolaryngol 2024; 9:e1207. [PMID: 38362187 PMCID: PMC10866583 DOI: 10.1002/lio2.1207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/01/2023] [Accepted: 12/10/2023] [Indexed: 02/17/2024] Open
Abstract
Objective To investigate differences in angiotensin-converting-enzyme-2 (ACE2) and bitter taste receptor (TAS2R38) expression between patient age groups and comorbidities to characterize the pathophysiology of coronavirus 19(COVID-19) pandemic. ACE2 is the receptor implicated to facilitate SARS-CoV-2 infections and levels of expression may correlate to the severity of COVID-19 infection. TAS2R38 has many non-gustatory roles in disease, with some evidence of severe COVID-19 disease in certain receptor phenotypes. Methods We conducted a prospective cohort study and collected nasal and lingual tissue from healthy pediatric (n = 22) and adult (n = 25) patients undergoing general anesthesia for elective procedures. RNA isolation and qPCR were performed with primers targeting ACE2 and TAS2R38. Results A total of 25 adult (52% male; 44% obese) and 22 pediatric (50% male; 36% obese) patients were enrolled, pediatric tissue had 43% more nasal ACE2 RNA expression than adults with a median fold change of 0.69 (IQR 0.37, 0.98) in adults and 0.99 (IQR 0.74, 1.43) in children (p < .05). There were no differences between the age groups in ACE2 expression of lingual tissue (p = .14) or TAS2R38 expression collected from either nasal (p = 049) or lingual tissue (p = .49). Stratifying for obesity yielded similar differences between nasal ACE2 expression between adults and children with median fold change of 0.56 (IQR 0.32, 0.87) in adults and 1.0 (IQR 0.82, 1.52) in children (p < .05). Conclusions ACE2 receptor expression is higher in nasal tissue collected from children compared to adults, suggesting COVID-19 infectivity is more complicated than ACE2 and TAS2R38 mRNA expression. Level of Evidence NA.
Collapse
Affiliation(s)
- Zechariah G. Franks
- Department of Otolaryngology—Head and Neck SurgeryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Kavitha Nandakumar
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Lakshmi Santhanam
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Laeben Lester
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jonathan M. Walsh
- Department of Otolaryngology—Head and Neck SurgeryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Nicholas M. Dalesio
- Department of Otolaryngology—Head and Neck SurgeryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
9
|
Huang J, Li Y, Yu C, Mo R, Zhu Z, Dong Z, Hu X, Deng W. Metabolome and Transcriptome Integrated Analysis of Mulberry Leaves for Insight into the Formation of Bitter Taste. Genes (Basel) 2023; 14:1282. [PMID: 37372462 DOI: 10.3390/genes14061282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Mulberry leaves are excellent for health care, confirmed as a 'drug homologous food' by the Ministry of Health, China. The bitter taste of mulberry leaves is one of the main problems that hinders the development of the mulberry food industry. The bitter, unique taste of mulberry leaves is difficult to eliminate by post-processing. In this study, the bitter metabolites in mulberry leaves were identified as flavonoids, phenolic acids, alkaloids, coumarins and L-amino acids by a combined analysis of the metabolome and transcriptome of mulberry leaves. The analysis of the differential metabolites showed that the bitter metabolites were diverse and the sugar metabolites were down-regulated, indicating that the bitter taste of mulberry leaves was a comprehensive reflection of various bitter-related metabolites. Multi-omics analysis showed that the main metabolic pathway related to bitter taste in mulberry leaves was galactose metabolism, indicating that soluble sugar was one of the main factors of bitter taste difference in mulberry leaves. Bitter metabolites play a great role in the medicinal and functional food of mulberry leaves, but the saccharides in mulberry leaves have a great influence on the bitter taste of mulberry. Therefore, we propose to retain bitter metabolites with drug activity in mulberry leaves and increase the content of sugars to improve the bitter taste of mulberry leaves as strategies for mulberry leaf food processing and mulberry breeding for vegetable use.
Collapse
Affiliation(s)
- Jin Huang
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yong Li
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Cui Yu
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Rongli Mo
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zhixian Zhu
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zhaoxia Dong
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xingming Hu
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Wen Deng
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| |
Collapse
|
10
|
Impact of the Gut-Brain Hormonal Axis and Enteric Peptides in the Development of Food Neophobia in Children with Genetically Determined Hypersensitivity to the Bitter Taste. GASTROINTESTINAL DISORDERS 2022. [DOI: 10.3390/gidisord4040023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective: The aim of this prospective study was to determine the role of the gut-brain hormonal axis and the effect of the enteric peptides, as well as the role of genetically determined sensitivity to the bitter taste, on the development of child food neophobia (CFN). Methods: 114 children were enrolled in the study: 43 in food neophobia group (FNG), 21 In the control group (CG) and 50 in prospective group (PG). All patients were assessed with the child food neophobia scale (CFNS), underwent an oral 6-propylthiouracil (6-PROP) test, buccal swab for bitter-taste genotyping, anthropometric measurements, and were tested for serum levels of leptin, adiponectin, insulin-like growth factor-1(IGF-1), ghrelin, and neuropeptide Y (NPY), and complete blood count (CBC); measurements were taken from a blood sample after 4 h fasting. Results: Subjects from FNG were more often hypersensitive to bitter taste (6-PROP) than CG (p = 0.001). There was no correlation between the result of genetic analysis and CFNS (p = 0.197), nor the body mass index (BMI) at the age of 18–36 months (p = 0.946) found. Correlation between 6-PRO perception and genotype have not been confirmed (p = 0.064). The score of CFNS was positively related to the serum level of NPY (p = 0.03). BMI percentile was negatively related to serum level of NPY (p = 0.03), but positively related to leptin serum level (p = 0.027). Conclusions: Bitter taste sensitivity to 6-PROP plays an important role in the development of the CFN, but correlation between 6-PROP perception and genotype have not been confirmed. Children with food neophobia due to elevated serum NPY level should be constantly monitored in order to control the nutritional status at a later age.
Collapse
|
11
|
Lang X, Adjei M, Wang C, Chen X, Li C, Wang P, Pan M, Li K, Shahzad K, Zhao W. RNA-Seq reveals the functional specificity of epididymal caput, corpus, and cauda genes of cattleyak. Anim Sci J 2022; 93:e13732. [PMID: 35543176 DOI: 10.1111/asj.13732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 12/11/2022]
Abstract
The first filial generation of the cattleyaks demonstrates hybrid vigor; however, the male cattleyaks are infertile and restrict productivity and breeding. The discovery of genes in a segment-specific approach offers valuable information and understanding concerning fertility status, yet the biology of cattleyak epididymis is still progressing. Comparative transcriptome analysis was performed on segment pairs of cattleyak epididymis. The caput versus corpus epididymis provided the highest (57.8%) differentially expressed genes (DEGs), corpus versus cauda (25.1%) followed, whereas caput versus cauda pair (17.1%) had the least DEGs. The expression levels of genes coding EPHB6, TLR1, MUC20, MT3, INHBB, TRPV5, EI24, PAOX, KIF12, DEPDC5, and KRT25, which might have the potentials to regulate the homeostasis, innate immunity, differentiation, motility, transport, and sperm maturation-related function in epididymal cells, were downregulated in the distal segment of epididymis. Top enriched KEGG pathways included mTOR, axon guidance, and taste transduction signaling pathways. EIF4B, EPHB6, and TAS2R42 were enriched in the pathways, respectively. Identifying key, new, and unexplored DEGs among the epididymal segments and further analyzing them could boost cattleyak fertility by maximizing sperm quality from genetically better sires and also facilitate better understanding of the epididymal biology.
Collapse
Affiliation(s)
- Xia Lang
- Institute of Animal & Pasture Science and Green Agricultural, Key laboratory for sheep, goat and cattle germplasm and straw feed in Gansu Province, Gansu Academy of Agricultural Science, Lanzhou, China
| | - Michael Adjei
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Cailian Wang
- Institute of Animal & Pasture Science and Green Agricultural, Key laboratory for sheep, goat and cattle germplasm and straw feed in Gansu Province, Gansu Academy of Agricultural Science, Lanzhou, China
| | - Xiaoying Chen
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, China
| | - Chunhai Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Peng Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Meilan Pan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Kerui Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Khuram Shahzad
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
12
|
Fernández-Carrión R, Sorlí JV, Coltell O, Pascual EC, Ortega-Azorín C, Barragán R, Giménez-Alba IM, Alvarez-Sala A, Fitó M, Ordovas JM, Corella D. Sweet Taste Preference: Relationships with Other Tastes, Liking for Sugary Foods and Exploratory Genome-Wide Association Analysis in Subjects with Metabolic Syndrome. Biomedicines 2021; 10:biomedicines10010079. [PMID: 35052758 PMCID: PMC8772854 DOI: 10.3390/biomedicines10010079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/11/2021] [Accepted: 12/29/2021] [Indexed: 12/21/2022] Open
Abstract
Taste perception and its association with nutrition and related diseases (type 2 diabetes, obesity, metabolic syndrome, cardiovascular, etc.) are emerging fields of biomedicine. There is currently great interest in investigating the environmental and genetic factors that influence sweet taste and sugary food preferences for personalized nutrition. Our aims were: (1) to carry out an integrated analysis of the influence of sweet taste preference (both in isolation and in the context of other tastes) on the preference for sugary foods and its modulation by type 2 diabetes status; (2) as well as to explore new genetic factors associated with sweet taste preference. We studied 425 elderly white European subjects with metabolic syndrome and analyzed taste preference, taste perception, sugary-foods liking, biochemical and genetic markers. We found that type 2 diabetic subjects (38%) have a small, but statistically higher preference for sweet taste (p = 0.021) than non-diabetic subjects. No statistically significant differences (p > 0.05) in preferences for the other tastes (bitter, salty, sour or umami) were detected. For taste perception, type 2 diabetic subjects have a slightly lower perception of all tastes (p = 0.026 for the combined “total taste score”), bitter taste being statistically lower (p = 0.023). We also carried out a principal component analysis (PCA), to identify latent variables related to preferences for the five tastes. We identified two factors with eigenvalues >1. Factor 2 was the one with the highest correlation with sweet taste preference. Sweet taste preference was strongly associated with a liking for sugary foods. In the exploratory SNP-based genome-wide association study (GWAS), we identified some SNPs associated with sweet taste preference, both at the suggestive and at the genome-wide level, especially a lead SNP in the PTPRN2 (Protein Tyrosine Phosphatase Receptor Type N2) gene, whose minor allele was associated with a lower sweet taste preference. The PTPRN2 gene was also a top-ranked gene obtained in the gene-based exploratory GWAS analysis. In conclusion, sweet taste preference was strongly associated with sugary food liking in this population. Our exploratory GWAS identified an interesting candidate gene related with sweet taste preference, but more studies in other populations are required for personalized nutrition.
Collapse
Affiliation(s)
- Rebeca Fernández-Carrión
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (R.F.-C.); (J.V.S.); (E.C.P.); (C.O.-A.); (R.B.); (I.M.G.-A.); (A.A.-S.)
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (O.C.); (M.F.)
| | - Jose V. Sorlí
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (R.F.-C.); (J.V.S.); (E.C.P.); (C.O.-A.); (R.B.); (I.M.G.-A.); (A.A.-S.)
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (O.C.); (M.F.)
| | - Oscar Coltell
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (O.C.); (M.F.)
- Department of Computer Languages and Systems, Universitat Jaume I, 12071 Castellon, Spain
| | - Eva C. Pascual
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (R.F.-C.); (J.V.S.); (E.C.P.); (C.O.-A.); (R.B.); (I.M.G.-A.); (A.A.-S.)
| | - Carolina Ortega-Azorín
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (R.F.-C.); (J.V.S.); (E.C.P.); (C.O.-A.); (R.B.); (I.M.G.-A.); (A.A.-S.)
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (O.C.); (M.F.)
| | - Rocío Barragán
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (R.F.-C.); (J.V.S.); (E.C.P.); (C.O.-A.); (R.B.); (I.M.G.-A.); (A.A.-S.)
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (O.C.); (M.F.)
- Sleep Center of Excellence, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Division of General Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ignacio M. Giménez-Alba
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (R.F.-C.); (J.V.S.); (E.C.P.); (C.O.-A.); (R.B.); (I.M.G.-A.); (A.A.-S.)
| | - Andrea Alvarez-Sala
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (R.F.-C.); (J.V.S.); (E.C.P.); (C.O.-A.); (R.B.); (I.M.G.-A.); (A.A.-S.)
| | - Montserrat Fitó
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (O.C.); (M.F.)
- Cardiovascular Risk and Nutrition Research Group (CARIN), Hospital del Mar Research Institute (IMIM), 08003 Barcelona, Spain
| | - Jose M. Ordovas
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA;
- Nutritional Genomics and Epigenomics Group, IMDEA Alimentación, 28049 Madrid, Spain
| | - Dolores Corella
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (R.F.-C.); (J.V.S.); (E.C.P.); (C.O.-A.); (R.B.); (I.M.G.-A.); (A.A.-S.)
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (O.C.); (M.F.)
- Correspondence: ; Tel.: +34-96-386-4800
| |
Collapse
|
13
|
Lagunas-Rangel FA. G protein-coupled receptors that influence lifespan of human and animal models. Biogerontology 2021; 23:1-19. [PMID: 34860303 PMCID: PMC8888397 DOI: 10.1007/s10522-021-09945-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022]
Abstract
Humanity has always sought to live longer and for this, multiple strategies have been tried with varying results. In this sense, G protein-coupled receptors (GPCRs) may be a good option to try to prolong our life while maintaining good health since they have a substantial participation in a wide variety of processes of human pathophysiology and are one of the main therapeutic targets. In this way, we present the analysis of a series of GPCRs whose activity has been shown to affect the lifespan of animal and human models, and in which we put a special interest in describing the molecular mechanisms involved. Our compilation of data revealed that the mechanisms most involved in the role of GPCRs in lifespan are those that mimic dietary restriction, those related to insulin signaling and the AMPK and TOR pathways, and those that alter oxidative homeostasis and severe and/or chronic inflammation. We also discuss the possibility of using agonist or antagonist drugs, depending on the beneficial or harmful effects of each GPCR, in order to prolong people's lifespan and healthspan.
Collapse
|
14
|
Piskadło-Zborowska K, Stachowiak M, Sarnowska E, Jowik R, Dżaman K. Assessment of the effect of inflammatory changes and allergic reaction on TAS2R38 receptor expression in patients with chronic sinusitis (CRS). Otolaryngol Pol 2020; 74:17-23. [PMID: 34550090 DOI: 10.5604/01.3001.0014.1474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
<b>Background:</b> Chronic rhinosinusitis (CRS) is one of the most common health complaints affecting 15% of the world's population. Recent reports confirm the participation of sensory organs in the defense process against pathogenic microorganisms. The bitter taste receptor TAS2R38 is described to play a role in the upper airway defense system. <br><b>Purpose:</b> The purpose of this study was to assess the function of the bitter taste receptor in correlation with the severity of CRS, sensory organ disorders and allergic reaction. <br><b>Material and method: </b>The study contained 100 patients undergoing nasal surgery, divided into two groups: CRS with and without nasal polyps. The control group consisted of patients undergoing septoplasty after excluding rhinosinusitis. Sinus mucosa samples obtained during surgery were used to assess TAS2R38 expression using immunohistochemistry. The IgE level was indicated from blood samples collected from patients. The Sniffin' Sticks Test was performed. <br><b>Results:</b> CRS patients had higher expression of TAS2R38 receptor compared to controls (p = 0.0175). A statistically significantly higher TAS2R38 H-score in nasal mucosa was found among patients with a higher inflammation process in CT scan (p = 0.001), higher IgE level (p = 0,04) and an abnormal result of the Sniffin' Sticks Test. <br><b>Conclusions: </b>Patients with CRS had significant TAS2R38 receptor overexpression correlating with the severity of inflammatory changes in CT scans, abnormal perception of smells and higher IgE level. A cumulative impact was found between the inflammatory changes, smell disfunction and the severity of subjective symptoms of CRS (according to EPOS) and the intensity of cell staining (index H-score).
Collapse
Affiliation(s)
| | - Małgorzata Stachowiak
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Institute- Oncology Center, Warsaw, Poland
| | - Elżbieta Sarnowska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Institute- Oncology Center, Warsaw, Poland
| | - Rafał Jowik
- Department of Otolaryngology, Miedzyleski Hospital, Warsaw, Poland
| | - Karolina Dżaman
- Otolaryngology Department, Międzyleski Specialist Hospital in Warsaw, Poland
| |
Collapse
|