1
|
Grandi LC, Bruni S. Will the Artificial Intelligence Touch Substitute for the Human Touch? NEUROSCI 2024; 5:254-264. [PMID: 39483277 PMCID: PMC11469742 DOI: 10.3390/neurosci5030020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 11/03/2024] Open
Abstract
Nowadays, artificial intelligence is used in many fields to diagnose and treat different diseases. Robots are also useful tools that substitute for human work. Despite robots being used also for touch therapy, can they substitute for the human touch? Human touch has a strong social component, and it is necessary for the correct development of newborns and the treatment of pathological situations. To substitute human touch, it is necessary to integrate robots with artificial intelligence as well as with sensors that mimic human skin. Today, the question remains without answer: Can human touch be substituted with AI in its social and affiliative components?
Collapse
Affiliation(s)
- Laura Clara Grandi
- Department of Biotechnology and Biosciences, NeuroMI (Milan Center of Neuroscience), University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Stefania Bruni
- Centro Cardinal Ferrari, Fontanellato, Via IV novembre 21, 43012 Fontanellato, Italy;
| |
Collapse
|
2
|
Jimenez-Mesa C, Arco JE, Martinez-Murcia FJ, Suckling J, Ramirez J, Gorriz JM. Applications of machine learning and deep learning in SPECT and PET imaging: General overview, challenges and future prospects. Pharmacol Res 2023; 197:106984. [PMID: 37940064 DOI: 10.1016/j.phrs.2023.106984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/04/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
The integration of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging techniques with machine learning (ML) algorithms, including deep learning (DL) models, is a promising approach. This integration enhances the precision and efficiency of current diagnostic and treatment strategies while offering invaluable insights into disease mechanisms. In this comprehensive review, we delve into the transformative impact of ML and DL in this domain. Firstly, a brief analysis is provided of how these algorithms have evolved and which are the most widely applied in this domain. Their different potential applications in nuclear imaging are then discussed, such as optimization of image adquisition or reconstruction, biomarkers identification, multimodal fusion and the development of diagnostic, prognostic, and disease progression evaluation systems. This is because they are able to analyse complex patterns and relationships within imaging data, as well as extracting quantitative and objective measures. Furthermore, we discuss the challenges in implementation, such as data standardization and limited sample sizes, and explore the clinical opportunities and future horizons, including data augmentation and explainable AI. Together, these factors are propelling the continuous advancement of more robust, transparent, and reliable systems.
Collapse
Affiliation(s)
- Carmen Jimenez-Mesa
- Department of Signal Theory, Networking and Communications, University of Granada, 18010, Spain
| | - Juan E Arco
- Department of Signal Theory, Networking and Communications, University of Granada, 18010, Spain; Department of Communications Engineering, University of Malaga, 29010, Spain
| | | | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge CB21TN, UK
| | - Javier Ramirez
- Department of Signal Theory, Networking and Communications, University of Granada, 18010, Spain
| | - Juan Manuel Gorriz
- Department of Signal Theory, Networking and Communications, University of Granada, 18010, Spain; Department of Psychiatry, University of Cambridge, Cambridge CB21TN, UK.
| |
Collapse
|
3
|
Rana A, Dumka A, Singh R, Panda MK, Priyadarshi N. A Computerized Analysis with Machine Learning Techniques for the Diagnosis of Parkinson's Disease: Past Studies and Future Perspectives. Diagnostics (Basel) 2022; 12:2708. [PMID: 36359550 PMCID: PMC9689408 DOI: 10.3390/diagnostics12112708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 08/03/2023] Open
Abstract
According to the World Health Organization (WHO), Parkinson's disease (PD) is a neurodegenerative disease of the brain that causes motor symptoms including slower movement, rigidity, tremor, and imbalance in addition to other problems like Alzheimer's disease (AD), psychiatric problems, insomnia, anxiety, and sensory abnormalities. Techniques including artificial intelligence (AI), machine learning (ML), and deep learning (DL) have been established for the classification of PD and normal controls (NC) with similar therapeutic appearances in order to address these problems and improve the diagnostic procedure for PD. In this article, we examine a literature survey of research articles published up to September 2022 in order to present an in-depth analysis of the use of datasets, various modalities, experimental setups, and architectures that have been applied in the diagnosis of subjective disease. This analysis includes a total of 217 research publications with a list of the various datasets, methodologies, and features. These findings suggest that ML/DL methods and novel biomarkers hold promising results for application in medical decision-making, leading to a more methodical and thorough detection of PD. Finally, we highlight the challenges and provide appropriate recommendations on selecting approaches that might be used for subgrouping and connection analysis with structural magnetic resonance imaging (sMRI), DaTSCAN, and single-photon emission computerized tomography (SPECT) data for future Parkinson's research.
Collapse
Affiliation(s)
- Arti Rana
- Computer Science & Engineering, Veer Madho Singh Bhandari Uttarakhand Technical University, Dehradun 248007, Uttarakhand, India
| | - Ankur Dumka
- Department of Computer Science and Engineering, Women Institute of Technology, Dehradun 248007, Uttarakhand, India
- Department of Computer Science & Engineering, Graphic Era Deemed to be University, Dehradun 248001, Uttarakhand, India
| | - Rajesh Singh
- Division of Research and Innovation, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, Uttarakhand, India
- Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
| | - Manoj Kumar Panda
- Department of Electrical Engineering, G.B. Pant Institute of Engineering and Technology, Pauri 246194, Uttarakhand, India
| | - Neeraj Priyadarshi
- Department of Electrical Engineering, JIS College of Engineering, Kolkata 741235, West Bengal, India
| |
Collapse
|
4
|
Chen PH, Hou TY, Cheng FY, Shaw JS. Prediction of Cognitive Degeneration in Parkinson's Disease Patients Using a Machine Learning Method. Brain Sci 2022; 12:brainsci12081048. [PMID: 36009111 PMCID: PMC9405552 DOI: 10.3390/brainsci12081048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/31/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
This study developed a predictive model for cognitive degeneration in patients with Parkinson's disease (PD) using a machine learning method. The clinical data, plasma biomarkers, and neuropsychological test results of patients with PD were collected and utilized as model predictors. Machine learning methods comprising support vector machines (SVMs) and principal component analysis (PCA) were applied to obtain a cognitive classification model. Using 32 comprehensive predictive parameters, the PCA-SVM classifier reached 92.3% accuracy and 0.929 area under the receiver operating characteristic curve (AUC). Furthermore, the accuracy could be increased to 100% and the AUC to 1.0 in a PCA-SVM model using only 13 carefully chosen features.
Collapse
Affiliation(s)
- Pei-Hao Chen
- Department of Neurology, MacKay Memorial Hospital, Taipei 104217, Taiwan
- Institute of Long-Term Care, Mackay Medical College, New Taipei City 252, Taiwan
| | - Ting-Yi Hou
- Institute of Mechatronic Engineering, National Taipei University of Technology, Taipei 106344, Taiwan
| | - Fang-Yu Cheng
- Institute of Long-Term Care, Mackay Medical College, New Taipei City 252, Taiwan
| | - Jin-Siang Shaw
- Institute of Mechatronic Engineering, National Taipei University of Technology, Taipei 106344, Taiwan
- Correspondence:
| |
Collapse
|
5
|
Alfonso Perez G, Caballero Villarraso J. Neural Network Aided Detection of Huntington Disease. J Clin Med 2022; 11:jcm11082110. [PMID: 35456203 PMCID: PMC9032851 DOI: 10.3390/jcm11082110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023] Open
Abstract
Huntington Disease (HD) is a degenerative neurological disease that causes a significant impact on the quality of life of the patient and eventually death. In this paper we present an approach to create a biomarker using as an input DNA CpG methylation data to identify HD patients. DNA CpG methylation is a well-known epigenetic marker for disease state. Technological advances have made it possible to quickly analyze hundreds of thousands of CpGs. This large amount of information might introduce noise as potentially not all DNA CpG methylation levels will be related to the presence of the illness. In this paper, we were able to reduce the number of CpGs considered from hundreds of thousands to 237 using a non-linear approach. It will be shown that using only these 237 CpGs and non-linear techniques such as artificial neural networks makes it possible to accurately differentiate between control and HD patients. An underlying assumption in this paper is that there are no indications suggesting that the process is linear and therefore non-linear techniques, such as artificial neural networks, are a valid tool to analyze this complex disease. The proposed approach is able to accurately distinguish between control and HD patients using DNA CpG methylation data as an input and non-linear forecasting techniques. It should be noted that the dataset analyzed is relatively small. However, the results seem relatively consistent and the analysis can be repeated with larger data-sets as they become available.
Collapse
Affiliation(s)
- Gerardo Alfonso Perez
- Department of Biochemistry and Molecular Biology, University of Cordoba, 14071 Cordoba, Spain;
- Correspondence:
| | - Javier Caballero Villarraso
- Department of Biochemistry and Molecular Biology, University of Cordoba, 14071 Cordoba, Spain;
- Biochemical Laboratory, Reina Sofia University Hospital, 14004 Cordoba, Spain
| |
Collapse
|
6
|
Bezerra AT, Pinto LA, Rodrigues DS, Bittencourt GN, Mancera PFDA, Miranda JRDA. Classification of gastric emptying and orocaecal transit through artificial neural networks. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:9511-9524. [PMID: 34814356 DOI: 10.3934/mbe.2021467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Classical quantification of gastric emptying (GE) and orocaecal transit (OCT) based on half-life time T$ _{50} $, mean gastric emptying time (MGET), orocaecal transit time (OCTT) or mean caecum arrival time (MCAT) can lead to misconceptions when analyzing irregularly or noisy data. We show that this is the case for gastrointestinal transit of control and of diabetic rats. Addressing this limitation, we present an artificial neural network (ANN) as an alternative tool capable of discriminating between control and diabetic rats through GE and OCT analysis. Our data were obtained via biological experiments using the alternate current biosusceptometry (ACB) method. The GE results are quantified by T$ _{50} $ and MGET, while the OCT is quantified by OCTT and MCAT. Other than these classical metrics, we employ a supervised training to classify between control and diabetes groups, accessing sensitivity, specificity, $ f_1 $ score, and AUROC from the ANN. For GE, the ANN sensitivity is 88%, its specificity is 83%, and its $ f_1 $ score is 88%. For OCT, the ANN sensitivity is 100%, its specificity is 75%, and its $ f_1 $ score is 85%. The area under the receiver operator curve (AUROC) from both GE and OCT data is about 0.9 in both training and validation, while the AUCs for classical metrics are 0.8 or less. These results show that the supervised training and the binary classification of the ANN was successful. Classical metrics based on statistical moments and ROC curve analyses led to contradictions, but our ANN performs as a reliable tool to evaluate the complete profile of the curves, leading to a classification of similar curves that are barely distinguished using statistical moments or ROC curves. The reported ANN provides an alert that the use of classical metrics can lead to physiological misunderstandings in gastrointestinal transit processes. This ANN capability of discriminating diseases in GE and OCT processes can be further explored and tested in other applications.
Collapse
Affiliation(s)
- Anibal Thiago Bezerra
- Institute of Exact Sciences, Federal University of Alfenas-MG (UNIFAL-MG), Alfenas-MG 37133-840, Brazil
| | - Leonardo Antonio Pinto
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu-SP 18618-689, Brazil
| | | | | | | | | |
Collapse
|