1
|
Ahmad SS, Samia NSN, Khan AS, Turjya RR, Khan MAAK. Bidirectional promoters: an enigmatic genome architecture and their roles in cancers. Mol Biol Rep 2021; 48:6637-6644. [PMID: 34378109 DOI: 10.1007/s11033-021-06612-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/29/2021] [Indexed: 11/28/2022]
Abstract
Bidirectional promoters are the transcription regulatory regions of genes positioned head-to-head on opposite strands. Specific sequence signals, chromatin modifications and three-dimensional structures of the transcription site facilitate the unconventional yet tightly regulated transcription proceeding in both directions from these promoters. Mutations or aberrant epigenetic changes can lead to abnormal enhanced or reduced expression from either of the bidirectionally transcribed genes resulting in tumorigenesis. Moreover, bidirectionally transcribed genes might also contribute towards the immune regulation in tumor microenvironment. In this review, we aimed to expound the characteristic features of bidirectional promoters alongside their transcriptional regulations, and ultimately, the association of these enigmatic genomic elements in different cancers.
Collapse
Affiliation(s)
- Sheikh Shafin Ahmad
- Department of Mathematics and Natural Sciences, Brac University, Dhaka, Bangladesh
| | | | - Auroni Semonti Khan
- Department of Genetic Engineering and Biotechnology, Jagannath University, Dhaka, Bangladesh
| | - Rafeed Rahman Turjya
- Department of Mathematics and Natural Sciences, Brac University, Dhaka, Bangladesh
| | | |
Collapse
|
2
|
Liu X, Feng S, Zhang XD, Li J, Zhang K, Wu M, Thorne RF. Non-coding RNAs, metabolic stress and adaptive mechanisms in cancer. Cancer Lett 2020; 491:60-69. [PMID: 32726612 DOI: 10.1016/j.canlet.2020.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 06/28/2020] [Indexed: 12/18/2022]
Abstract
Metabolic reprogramming in cancer describes the multifaceted alterations in metabolism that contribute to tumorigenesis. Major determinants of metabolic phenotypes are the changes in signalling pathways associated with oncogenic activation together with cues from the tumor microenvironment. Therein, depleted oxygen and nutrient levels elicit metabolic stress, requiring cancer cells to engage adaptive mechanisms. Non-coding RNAs (ncRNAs) act as regulatory elements within metabolic pathways and their widespread dysregulation in cancer contributes to altered metabolic phenotypes. Indeed, ncRNAs are the regulatory accomplices of many prominent effectors of metabolic reprogramming including c-MYC and HIFs that are activated by metabolic stress. By example, this review illustrates the range of ncRNAs mechanisms impacting these effectors throughout their DNA-RNA-protein lifecycle along with presenting the mechanistic roles of ncRNAs in adaptive responses to glucose, glutamine and lipid deprivation. We also discuss the facultative activation of metabolic enzymes by ncRNAs, a phenomenon which may reflect a broad but currently invisible level of metabolic regulation. Finally, the translational challenges associated with ncRNA discoveries are discussed, emphasizing the gaps in knowledge together with importance of understanding the molecular basis of ncRNA regulatory mechanisms.
Collapse
Affiliation(s)
- Xiaoying Liu
- Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Molecular Pathology Centre, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450053, China; School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Shanshan Feng
- Key Laboratory of Regenerative Medicine, Ministry of Education, Department of Developmental & Regenerative Biology, School of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xu Dong Zhang
- Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Molecular Pathology Centre, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450053, China; School of Biomedical Sciences & Pharmacy, University of Newcastle, Newcastle, NSW, Australia
| | - Jinming Li
- Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Molecular Pathology Centre, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450053, China
| | - Kaiguang Zhang
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, 230027, China.
| | - Mian Wu
- Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Molecular Pathology Centre, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450053, China; The First Affiliated Hospital of University of Science and Technology of China, Hefei, 230027, China; Key Laboratory of Stem Cell Differentiation & Modification, School of Clinical Medicine, Henan University, Zhengzhou, China.
| | - Rick F Thorne
- Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Molecular Pathology Centre, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450053, China; School of Environmental & Life Sciences, University of Newcastle, NSW, Australia.
| |
Collapse
|
3
|
Characterization of the 5'-flanking region of the human DNA helicase B (HELB) gene and its response to trans-Resveratrol. Sci Rep 2016; 6:24510. [PMID: 27079536 PMCID: PMC4832242 DOI: 10.1038/srep24510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/30/2016] [Indexed: 12/17/2022] Open
Abstract
Human DNA helicase B (HELB/HDHB) regulates DNA replication through association with human DNA polymerase α-primase. In the present study, an 866-base pair (bp) of the 5′-flanking region of the human HELB gene-containing Luciferase (Luc) reporter plasmid, pHDHB-Luc was transfected into various cell lines and Luc activity was analyzed. Deletion analyses revealed that a 121-bp containing the major transcription start site (TSS) was essential for the basal promoter activity in all tested cells. TF-SEARCH analysis indicated that GC-box/Sp1 and duplicated GGAA-motifs containing putative STAT-x and c-ETS binding sites are located close to the TSS. Furthermore, chromatin immunoprecipitation (ChIP) analysis showed that PU.1 and Sp1 bind to the 121-bp region. Reverse transcriptase-polymerase chain reaction (RT-PCR) and western blot analyses showed the HELB gene and protein expression was up-regulated by trans-Resveratrol (Rsv) treatment in HeLa S3 cells. Moreover, transfection experiment indicated that mutations on the GC-boxes and the duplicated GGAA-motif greatly reduced promoter activity and the response to Rsv in HeLa S3 cells. These results suggest that Rsv, which is a natural compound that has been found to elongate the lifespan of various organisms, regulates HELB promoter activity through co-operation of the GC-boxes and the duplicated GGAA-motif in the 121-bp.
Collapse
|