1
|
Lin Z, Sun M. Phytochemical regulation of CaMKII in Alzheimer's disease: A review of molecular mechanisms and therapeutic potential. Pharmacol Res 2025; 216:107790. [PMID: 40409522 DOI: 10.1016/j.phrs.2025.107790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/08/2025] [Accepted: 05/19/2025] [Indexed: 05/25/2025]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder that leads to cognitive decline. CaMKII is a calcium-regulated kinase that is crucial for synaptic plasticity and memory. Phytochemicals with diverse origins, safety, and biological activity have attracted considerable attention in AD research. This systematic analysis of phytochemicals targeting CaMKII reveals their neuroprotective mechanisms against AD pathogenesis, highlighting CaMKII as a promising therapeutic target that warrants further preclinical investigation and drug development. We conducted a comprehensive review of the literature of phytochemicals that target CaMKII as a protective mechanism against AD. The search was conducted across multiple databases, including PubMed, Web of Science, China National Knowledge Internet, and Google Scholar, and covered the period from January 2000 to October 2024. A total of 301 articles were retrieved, of which 22 articles were included. The results showed that flavonoid, glycoside, terpene, and polyphenol analogs positively regulated CaMKII expression, whereas alkaloid analogs negatively regulated CaMKII expression. Different components of traditional Chinese medicine played different roles in CaMKII expression. Flavonoid compounds upregulated the expression of SYN, PSD-95, MAP2, and GluR1 to exert neuroprotective effects. Alkaloid and glycoside analogs inhibited Aβ deposition and tau hyperphosphorylation. Terpene analogs upregulated the SYN, PSD-95, NMDAR, BDNF, and PI3K/Akt signaling pathways to exert neuroprotection. Polyphenol analogs upregulated PSD-95, Munc18-1, SNAP25, SYN, and BDNF to exert neuroprotective effects. Emerging evidence demonstrates that select phytochemicals and traditional Chinese medicine compounds exert neuroprotective effects in AD by modulating CaMKII activity, thereby reducing Aβ accumulation, attenuating tau hyperphosphorylation, and enhancing synaptic plasticity, suggesting promising therapeutic potential.
Collapse
Affiliation(s)
- Zhongying Lin
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| | - Miao Sun
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
2
|
Zhou X, Jing XJ, Zhang H. The Potential Role of Neurogranin in Alzheimer's Disease. J Integr Neurosci 2025; 24:25368. [PMID: 40152561 DOI: 10.31083/jin25368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/29/2024] [Accepted: 09/23/2024] [Indexed: 03/29/2025] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is characterized by the excessive deposition of amyloid-β (Aβ) plaques and the formation of neurofibrillary tangles. Numerous new studies also indicate that synaptic damage and loss play crucial roles in AD and form the basis of cognitive impairment. In recent years, synaptic-related proteins have emerged as important biomarkers for the early diagnosis of AD. Among these proteins, neurogranin (Ng), a postsynaptic protein widely present in the dendritic spines of the associative cortex in the brain, plays a significant role in memory, learning, synaptic plasticity, and long-term potentiation (LTP). This review aims to reveal the link between Ng and AD, as well as the potential for the diagnosis of AD, the prediction of the development of the disease, and the identification of a therapeutic target for AD.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 400042 Chongqing, China
| | - Xiao-Jun Jing
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 400042 Chongqing, China
| | - Hua Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 400042 Chongqing, China
| |
Collapse
|
3
|
Yong J, Song J. CaMKII activity and metabolic imbalance-related neurological diseases: Focus on vascular dysfunction, synaptic plasticity, amyloid beta accumulation, and lipid metabolism. Biomed Pharmacother 2024; 175:116688. [PMID: 38692060 DOI: 10.1016/j.biopha.2024.116688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024] Open
Abstract
Metabolic syndrome (MetS) is characterized by insulin resistance, hyperglycemia, excessive fat accumulation and dyslipidemia, and is known to be accompanied by neuropathological symptoms such as memory loss, anxiety, and depression. As the number of MetS patients is rapidly increasing globally, studies on the mechanisms of metabolic imbalance-related neuropathology are emerging as an important issue. Ca2+/calmodulin-dependent kinase II (CaMKII) is the main Ca2+ sensor and contributes to diverse intracellular signaling in peripheral organs and the central nervous system (CNS). CaMKII exerts diverse functions in cells, related to mechanisms such as RNA splicing, reactive oxygen species (ROS) generation, cytoskeleton, and protein-protein interactions. In the CNS, CaMKII regulates vascular function, neuronal circuits, neurotransmission, synaptic plasticity, amyloid beta toxicity, lipid metabolism, and mitochondrial function. Here, we review recent evidence for the role of CaMKII in neuropathologic issues associated with metabolic disorders.
Collapse
Affiliation(s)
- Jeongsik Yong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-do, Republic of Korea.
| |
Collapse
|
4
|
Wang B, Zhang X, Hua S, Ding CF, Yan Y. Fabrication of a polymer brush-functionalized porphyrin-based covalent organic framework for enrichment of N-glycopeptides. Mikrochim Acta 2023; 191:26. [PMID: 38091130 DOI: 10.1007/s00604-023-06104-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
A surface-initiated atom transfer radical polymerization method combining click chemistry was employed to prepare a novel porphyrin-based covalent organic framework composite grafted with polymer brushes (TAPBB@GMA@AMA@Cys) for the specific enrichment of N-glycopeptides. The material successfully realized the high efficiency enrichment of N-glycopeptides with good selectivity (1:1000), low detection limit (0.2 fmol/μL), and high loading capacity (133.3 mg·g-1). The TAPBB@GMA@AMA@Cys was successfully applied to actual sample analysis; 235 N-glycopeptides related to 125 glycoproteins and 210 N-glycopeptides related to 121 glycoproteins were recognized from the serum of normal individuals and Alzheimer's disease patients, respectively. Gene ontology studies of molecular functions, cellular components, and biological processes have revealed that identified glycoproteins are strongly associated with neurodegenerative diseases involving innate immune responses, basement membranes, calcium binding, and receptor binding. The above results confirm the surprising potential of materials in glycoproteomics research and practical sample applications.
Collapse
Affiliation(s)
- Bing Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Xiaoya Zhang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Shuwen Hua
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China.
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
5
|
Eremin DV, Kondaurova EM, Rodnyy AY, Molobekova CA, Kudlay DA, Naumenko VS. Serotonin Receptors as a Potential Target in the Treatment of Alzheimer's Disease. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2023-2042. [PMID: 38462447 DOI: 10.1134/s0006297923120064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 03/12/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide that has an increasing impact on aging societies. Besides its critical role in the control of various physiological functions and behavior, brain serotonin (5-HT) system is involved in the regulation of migration, proliferation, differentiation, maturation, and programmed death of neurons. At the same time, a growing body of evidence indicates the involvement of 5-HT neurotransmission in the formation of insoluble aggregates of β-amyloid and tau protein, the main histopathological signs of AD. The review describes the role of various 5-HT receptors and intracellular signaling cascades induced by them in the pathological processes leading to the development of AD, first of all, in protein aggregation. Changes in the functioning of certain types of 5-HT receptors or associated intracellular signaling mediators prevent accumulation of β-amyloid plaques and tau protein neurofibrillary tangles. Based on the experimental data, it can be suggested that the use of 5-HT receptors as new drug targets will not only improve cognitive performance in AD, but will be also important in treating the causes of AD-related dementia.
Collapse
Affiliation(s)
- Dmitrii V Eremin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Elena M Kondaurova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Aleksander Ya Rodnyy
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Camilla A Molobekova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Dmitrii A Kudlay
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - Vladimir S Naumenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
6
|
Chen F, Wang N, Tian X, Su J, Qin Y, He R, He X. The Protective Effect of Mangiferin on Formaldehyde-Induced HT22 Cell Damage and Cognitive Impairment. Pharmaceutics 2023; 15:1568. [PMID: 37376018 PMCID: PMC10303760 DOI: 10.3390/pharmaceutics15061568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/28/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Formaldehyde (FA) has been found to induce major Alzheimer's disease (AD)-like features including cognitive impairment, Aβ deposition, and Tau hyperphosphorylation, suggesting that it may play a significant role in the initiation and progression of AD. Therefore, elucidating the mechanism underlying FA-induced neurotoxicity is crucial for exploring more comprehensive approaches to delay or prevent the development of AD. Mangiferin (MGF) is a natural C-glucosyl-xanthone with promising neuroprotective effects, and is considered to have potential in the treatment of AD. The present study was designed to characterize the effects and mechanisms by which MGF protects against FA-induced neurotoxicity. The results in murine hippocampal cells (HT22) revealed that co-treatment with MGF significantly decreased FA-induced cytotoxicity and inhibited Tau hyperphosphorylation in a dose-dependent manner. It was further found that these protective effects were achieved by attenuating FA-induced endoplasmic reticulum stress (ERS), as indicated by the inhibition of the ERS markers, GRP78 and CHOP, and downstream Tau-associated kinases (GSK-3β and CaMKII) expression. In addition, MGF markedly inhibited FA-induced oxidative damage, including Ca2+ overload, ROS generation, and mitochondrial dysfunction, all of which are associated with ERS. Further studies showed that the intragastric administration of 40 mg/kg/day MGF for 6 weeks significantly improved spatial learning ability and long-term memory in C57/BL6 mice with FA-induced cognitive impairment by reducing Tau hyperphosphorylation and the expression of GRP78, GSK-3β, and CaMKII in the brains. Taken together, these findings provide the first evidence that MGF exerts a significant neuroprotective effect against FA-induced damage and ameliorates mice cognitive impairment, the possible underlying mechanisms of which are expected to provide a novel basis for the treatment of AD and diseases caused by FA pollution.
Collapse
Affiliation(s)
- Fan Chen
- School of Basic Medical Sciences, Dali University, Dali 671003, China; (F.C.); (N.W.); (X.T.); (J.S.); (Y.Q.)
| | - Na Wang
- School of Basic Medical Sciences, Dali University, Dali 671003, China; (F.C.); (N.W.); (X.T.); (J.S.); (Y.Q.)
| | - Xinyan Tian
- School of Basic Medical Sciences, Dali University, Dali 671003, China; (F.C.); (N.W.); (X.T.); (J.S.); (Y.Q.)
| | - Juan Su
- School of Basic Medical Sciences, Dali University, Dali 671003, China; (F.C.); (N.W.); (X.T.); (J.S.); (Y.Q.)
| | - Yan Qin
- School of Basic Medical Sciences, Dali University, Dali 671003, China; (F.C.); (N.W.); (X.T.); (J.S.); (Y.Q.)
| | - Rongqiao He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100045, China
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100045, China
| | - Xiaping He
- School of Basic Medical Sciences, Dali University, Dali 671003, China; (F.C.); (N.W.); (X.T.); (J.S.); (Y.Q.)
| |
Collapse
|
7
|
O’Day DH. Calmodulin Binding Domains in Critical Risk Proteins Involved in Neurodegeneration. Curr Issues Mol Biol 2022; 44:5802-5814. [PMID: 36421678 PMCID: PMC9689381 DOI: 10.3390/cimb44110394] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 08/26/2023] Open
Abstract
Neurodegeneration leads to multiple early changes in cognitive, emotional, and social behaviours and ultimately progresses to dementia. The dysregulation of calcium is one of the earliest potentially initiating events in the development of neurodegenerative diseases. A primary neuronal target of calcium is the small sensor and effector protein calmodulin that, in response to calcium levels, binds to and regulates hundreds of calmodulin binding proteins. The intimate and entangled relationship between calmodulin binding proteins and all phases of Alzheimer's disease has been established, but the relationship to other neurodegenerative diseases is just beginning to be evaluated. Risk factors and hallmark proteins from Parkinson's disease (PD; SNCA, Parkin, PINK1, LRRK2, PARK7), Huntington's disease (HD; Htt, TGM1, TGM2), Lewy Body disease (LBD; TMEM175, GBA), and amyotrophic lateral sclerosis/frontotemporal disease (ALS/FTD; VCP, FUS, TDP-43, TBK1, C90rf72, SQSTM1, CHCHD10, SOD1) were scanned for the presence of calmodulin binding domains and, within them, appropriate binding motifs. Binding domains and motifs were identified in multiple risk proteins, some of which are involved in multiple neurodegenerative diseases. The potential calmodulin binding profiles for risk proteins involved in HD, PD, LBD, and ALS/FTD coupled with other studies on proven binding proteins supports the central and potentially critical role for calmodulin in neurodegenerative events.
Collapse
Affiliation(s)
- Danton H. O’Day
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada;
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
8
|
Meng XL, Liu SY, Xue JS, Gou JM, Wang D, Liu HS, Chen CL, Xu CB. Protective effects of Liensinine, Isoliensinine, and Neferine on PC12 cells injured by amyloid-β. J Food Biochem 2022; 46:e14303. [PMID: 35762411 DOI: 10.1111/jfbc.14303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 12/14/2022]
Abstract
Excessive accumulation of amyloid-β (Aβ) is the leading cause of Alzheimer's disease (AD). Liensinine, Isoliensinine, and Neferine are main alkaloids in lotus seed embryos. In this paper, the protective effects of Liensinine, Isoliensinine, and Neferine on Aβ25-35 -injured PC12 cells were studied. It was found that Liensinine, Isoliensinine, and Neferine could improve the viability and reduce the apoptosis of PC12 cell induced by Aβ25-35 . These three alkaloids could also reduce the level of intracellular free Ca2+ and CaM expression in Aβ25-35 -treated cells, thereby inhibiting the phosphorylation of CaMKII and tau. In addition, these three compounds can inhibit the production of ROS in PC12 cells injured by Aβ25-35 . Our results suggest for the first time that Liensinine, Isoliensinine, and Neferine can inhibit hyperphosphorylation of tau protein by inhibiting the Ca2+ -CaM/CaMKII pathway, thereby reducing the apoptosis and death of PC12 cells damaged by Aβ25-35 . PRACTICAL APPLICATIONS: This study highlighted the protective effects and mechanisms of three main active ingredients (Liensinine, Isoliensinine, and Neferine) in the lotus embryo on a typical cell model of Alzheimer's disease (AD). The results revealed that three alkaloids in this healthy food might exert therapeutic potential for AD.
Collapse
Affiliation(s)
- Xue-Lian Meng
- School of Pharmaceutical Science, Liaoning University, Shenyang, China.,Key Laboratory of New Drug Research and Development of Liaoning Province, Shenyang, China
| | - Song-Yao Liu
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Jing-Su Xue
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Jiang-Min Gou
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Dan Wang
- School of Pharmaceutical Science, Liaoning University, Shenyang, China.,Key Laboratory of New Drug Research and Development of Liaoning Province, Shenyang, China
| | - Hong-Sheng Liu
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Chang-Lan Chen
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Cheng-Bin Xu
- School of Environmental Science, Liaoning University, Shenyang, China
| |
Collapse
|
9
|
Kaushik M, Kaushik P, Parvez S. Memory related molecular signatures: The pivots for memory consolidation and Alzheimer's related memory decline. Ageing Res Rev 2022; 76:101577. [PMID: 35104629 DOI: 10.1016/j.arr.2022.101577] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 12/23/2021] [Accepted: 01/27/2022] [Indexed: 12/31/2022]
Abstract
Age-related cognitive decline is the major cause of concern due to its 70% more incidence than dementia cases worldwide. Moreover, aging is also the major risk factor of Alzheimer's disease (AD), associated with progressive memory loss. Approx. 13 million people will have Alzheimer-related memory decline by 2050. Learning and memory is the fundamental process of brain functions. However, the mechanism for the same is still under investigation. Thus, it is critical to understand the process of memory consolidation in the brain and extrapolate its understanding to the memory decline mechanism. Research on learning and memory has identified several molecular signatures such as Protein kinase M zeta (PKMζ), Calcium/calmodulin-dependent protein kinase II (CaMKII), Brain-derived neurotrophic factor (BDNF), cAMP-response element binding protein (CREB) and Activity-regulated cytoskeleton-associated protein (Arc) crucial for the maintenance and stabilization of long-term memory in the brain. Interestingly, memory decline in AD has also been linked to the abnormality in expressing these memory-related molecular signatures. Hence, in the present consolidated review, we explored the role of these memory-related molecular signatures in long-term memory consolidation. Additionally, the effect of amyloid-beta toxicity on these molecular signatures is discussed in detail.
Collapse
Affiliation(s)
- Medha Kaushik
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Pooja Kaushik
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
10
|
O'Day DH, Huber RJ. Calmodulin binding proteins and neuroinflammation in multiple neurodegenerative diseases. BMC Neurosci 2022; 23:10. [PMID: 35246032 PMCID: PMC8896083 DOI: 10.1186/s12868-022-00695-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 02/15/2022] [Indexed: 11/10/2022] Open
Abstract
Calcium dysregulation (“Calcium Hypothesis”) is an early and critical event in Alzheimer’s and other neurodegenerative diseases. Calcium binds to and regulates the small regulatory protein calmodulin that in turn binds to and regulates several hundred calmodulin binding proteins. Initial and continued research has shown that many calmodulin binding proteins mediate multiple events during the onset and progression of Alzheimer’s disease, thus establishing the “Calmodulin Hypothesis”. To gain insight into the general applicability of this hypothesis, the involvement of calmodulin in neuroinflammation in Alzheimer’s, amyotrophic lateral sclerosis, Huntington’s disease, Parkinson’s disease, frontotemporal dementia, and other dementias was explored. After a literature search for calmodulin binding, 11 different neuroinflammatory proteins (TREM2, CD33, PILRA, CR1, MS4A, CLU, ABCA7, EPHA1, ABCA1, CH3L1/YKL-40 and NLRP3) were scanned for calmodulin binding domains using the Calmodulin Target Database. This analysis revealed the presence of at least one binding domain within which visual scanning demonstrated the presence of valid binding motifs. Coupled with previous research that identified 13 other neuroinflammation linked proteins (BACE1, BIN1, CaMKII, PP2B, PMCA, NOS, NMDAR, AchR, Ado A2AR, Aβ, APOE, SNCA, TMEM175), this work shows that at least 24 critical proteins involved in neuroinflammation are putative or proven calmodulin binding proteins. Many of these proteins are linked to multiple neurodegenerative diseases indicating that calmodulin binding proteins lie at the heart of neuroinflammatory events associated with multiple neurodegenerative diseases. Since many calmodulin-based pharmaceuticals have been successfully used to treat Huntington’s and other neurodegenerative diseases, these findings argue for their immediate therapeutic implementation.
Collapse
Affiliation(s)
- Danton H O'Day
- Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.,Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Robert J Huber
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada.
| |
Collapse
|
11
|
Grant P, Kumar J, Kar S, Overduin M. Effects of Specific Inhibitors for CaMK1D on a Primary Neuron Model for Alzheimer's Disease. Molecules 2021; 26:7669. [PMID: 34946752 PMCID: PMC8707680 DOI: 10.3390/molecules26247669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/20/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. Despite extensive research and targeting of the main molecular components of the disease, beta-amyloid (Aβ) and tau, there are currently no treatments that alter the progression of the disease. Here, we examine the effects of two specific kinase inhibitors for calcium/calmodulin-dependent protein kinase type 1D (CaMK1D) on Aβ-mediated toxicity, using mouse primary cortical neurons. Tau hyperphosphorylation and cell death were used as AD indicators. These specific inhibitors were found to prevent Aβ induced tau hyperphosphorylation in culture, but were not able to protect cells from Aβ induced toxicity. While inhibitors were able to alter AD pathology in cell culture, they were insufficient to prevent cell death. With further research and development, these inhibitors could contribute to a multi-drug strategy to combat AD.
Collapse
Affiliation(s)
- Paige Grant
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (P.G.); (J.K.)
| | - Jitendra Kumar
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (P.G.); (J.K.)
| | - Satyabrata Kar
- Centre for Prions and Protein Folding Diseases, Department of Medicine (Neurology), University of Alberta, Edmonton, AB T6G 2MB, Canada;
| | - Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (P.G.); (J.K.)
| |
Collapse
|
12
|
Massanett Aparicio J, Xu Y, Li Y, Colantuoni C, Dastgheyb R, Williams DW, Asahchop EL, McMillian JM, Power C, Fujiwara E, Gill MJ, Rubin LH. Plasma microRNAs are associated with domain-specific cognitive function in people with HIV. AIDS 2021; 35:1795-1804. [PMID: 34074816 PMCID: PMC8524348 DOI: 10.1097/qad.0000000000002966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Cognitive impairment remains common in people with HIV (PWH) on antiretroviral therapy (ART). The clinical presentation and severity are highly variable in PWH suggesting that the pathophysiological mechanisms of cognitive complications are likely complex and multifactorial. MicroRNA (miRNA) expression changes may be linked to cognition as they are gene regulators involved in immune and stress responses as well as the development, plasticity, and differentiation of neurons. We examined plasma miRNA expression changes in relation to domain-specific and global cognitive function in PWH. DESIGN Cross-sectional observational study. METHODS Thirty-three PWH receiving care at the Southern Alberta Clinic, Canada completed neuropsychological (NP) testing and blood draw. Plasma miRNA extraction was followed by array hybridization. Random forest analysis was used to identify the top 10 miRNAs upregulated and downregulated in relation to cognition. RESULTS Few miRNAs were identified across cognitive domains; however, when evident a miRNA was only associated with two or three domains. Notably, miR-127-3p was related to learning/memory and miR-485-5p to motor function, miRNAs previously identified in CSF or plasma in Alzheimer's and Parkinson's, respectively. Using miRNET 2.0, a software-platform for understanding the biological relevance of the miRNA-targets (genes) relating to cognition through a network-based approach, we identified genes involved in signaling, cell cycle, and transcription relating to executive function, learning/memory, and language. CONCLUSION Findings support the idea that evaluating miRNA expression (or any molecular measure) in the context of global NP function might exclude miRNAs that could be important contributors to the domain-specific mechanisms leading to the variable neuropsychiatric outcomes seen in PWH.
Collapse
Affiliation(s)
| | - Yanxun Xu
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore
- Division of Biostatistics and Bioinformatics at The Sidney Kimmel Comprehensive Cancer Center
| | - Yuliang Li
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore
| | - Carlo Colantuoni
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore
- Institute for Genome Sciences, University of Maryland, Baltimore
| | - Raha Dastgheyb
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore
| | - Dionna W Williams
- Department of Molecular and Comparative Pathobiology
- Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Christopher Power
- Southern Alberta Clinic, Calgary
- Department of Medicine
- Neuroscience and Mental Health Institute
| | - Esther Fujiwara
- Neuroscience and Mental Health Institute
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - M John Gill
- Cumming School of Medicine, University of Calgary
- Southern Alberta Clinic, Calgary
| | - Leah H Rubin
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Strafella C, Caputo V, Termine A, Assogna F, Pellicano C, Pontieri FE, Macchiusi L, Minozzi G, Gambardella S, Centonze D, Bossù P, Spalletta G, Caltagirone C, Giardina E, Cascella R. Immune System and Neuroinflammation in Idiopathic Parkinson's Disease: Association Analysis of Genetic Variants and miRNAs Interactions. Front Genet 2021; 12:651971. [PMID: 34149802 PMCID: PMC8209518 DOI: 10.3389/fgene.2021.651971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
The present study investigated the association of SNPs involved in the regulation of immune response, cellular degenerative and neuroinflammatory pathways with the susceptibility and progression of idiopathic Parkinson's Disease (PD). In particular, 342 PD patients were subjected to a genotyping analysis of a panel of 120 SNPs by Open Array Technology. As control group, 503 samples representative of the European general population were utilized. The genetic analysis identified 26 SNPs associated with PD susceptibility. Of them, 12 SNPs were described as significant expression Quantitative Loci (eQTL) variants in different brain regions associated with motor and non-motor PD phenomenology. Moreover, the study highlighted 11 novel susceptibility genes for PD, which may alter multiple signaling pathways critically involved in peripheral immune response, neuroinflammation, neurodegeneration and dopaminergic neurons wiring. The study of miRNA-target genes highlighted a possible role of miR-499a, miR-196a2, and miR-29a in the modulation of multiple neuroinflammatory and neurodegenerative mechanisms underlying PD physiopathology. The study described a network of interconnected genes (APOE, CLU, IL6, IL7R, IL12B, INPP5D, MAPK1, MEF2C, MIF, and TNFSF14), which may act as upstream regulators in the modulation of biological pathways relevant to PD. Intriguingly, IL6 stands out as a master gene regulator since it may indirectly regulate the network of interconnected genes. The study highlighted different genes and miRNAs interactions potentially involved in PD physiopathology, which are worth to be further explored to improve the knowledge of disease and the research of novel treatments strategies.
Collapse
Affiliation(s)
- Claudia Strafella
- Genomic Medicine Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Valerio Caputo
- Genomic Medicine Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Andrea Termine
- Genomic Medicine Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Francesca Assogna
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Clelia Pellicano
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Francesco E. Pontieri
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Neuroscience, Mental Health and Sensory Organs, “Sapienza” Università di Roma, Rome, Italy
| | - Lucia Macchiusi
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Giulietta Minozzi
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Stefano Gambardella
- Neuromed Institute IRCCS, Pozzilli, Italy
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Urbino, Italy
| | | | - Paola Bossù
- Laboratory of Experimental Neuropsychobiology, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Raffaella Cascella
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
- Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, Tirana, Albania
| |
Collapse
|
14
|
Strafella C, Caputo V, Termine A, Fabrizio C, Ruffo P, Potenza S, Cusumano A, Ricci F, Caltagirone C, Giardina E, Cascella R. Genetic Determinants Highlight the Existence of Shared Etiopathogenetic Mechanisms Characterizing Age-Related Macular Degeneration and Neurodegenerative Disorders. Front Neurol 2021; 12:626066. [PMID: 34135841 PMCID: PMC8200556 DOI: 10.3389/fneur.2021.626066] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/20/2021] [Indexed: 01/03/2023] Open
Abstract
Age-related macular degeneration (AMD) showed several processes and risk factors in common with neurodegenerative disorders (NDDs). The present work explored the existence of genetic determinants associated with AMD, which may provide insightful clues concerning its relationship with NDDs and their possible application into the clinical practice. In this study, 400 AMD patients were subjected to the genotyping analysis of 120 genetic variants by OpenArray technology. As the reference group, 503 samples representative of the European general population were utilized. Statistical analysis revealed the association of 23 single-nucleotide polymorphisms (SNPs) with AMD risk. The analysis of epistatic effects revealed that ARMS2, IL6, APOE, and IL2RA could contribute to AMD and neurodegenerative processes by synergistic modulation of the expression of disease-relevant genes. In addition, the bioinformatic analysis of the associated miRNA variants highlighted miR-196a, miR-6796, miR-6499, miR-6810, miR-499, and miR-7854 as potential candidates for counteracting AMD and neurodegenerative processes. Finally, this work highlighted the existence of shared disease mechanisms (oxidative stress, immune-inflammatory response, mitochondrial dysfunction, axonal guidance pathway, and synaptogenesis) between AMD and NDDs and described the associated SNPs as candidate biomarkers for developing novel strategies for early diagnosis, monitoring, and treatment of such disorders in a progressive aging population.
Collapse
Affiliation(s)
- Claudia Strafella
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy.,Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Valerio Caputo
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy.,Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Andrea Termine
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Carlo Fabrizio
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Paola Ruffo
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Saverio Potenza
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Andrea Cusumano
- UOSD of Ophthalmology PTV Foundation "Policlinico Tor Vergata", Rome, Italy
| | - Federico Ricci
- UNIT Retinal Diseases PTV Foundation "Policlinico Tor Vergata", Rome, Italy
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy.,Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Raffaella Cascella
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy.,Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, Tirana, Albania
| |
Collapse
|
15
|
O’Day DH. Calmodulin Binding Proteins and Alzheimer's Disease: Biomarkers, Regulatory Enzymes and Receptors That Are Regulated by Calmodulin. Int J Mol Sci 2020; 21:ijms21197344. [PMID: 33027906 PMCID: PMC7582761 DOI: 10.3390/ijms21197344] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 12/19/2022] Open
Abstract
The integral role of calmodulin in the amyloid pathway and neurofibrillary tangle formation in Alzheimer’s disease was first established leading to the “Calmodulin Hypothesis”. Continued research has extended our insight into the central function of the small calcium sensor and effector calmodulin and its target proteins in a multitude of other events associated with the onset and progression of this devastating neurodegenerative disease. Calmodulin’s involvement in the contrasting roles of calcium/CaM-dependent kinase II (CaMKII) and calcineurin (CaN) in long term potentiation and depression, respectively, and memory impairment and neurodegeneration are updated. The functions of the proposed neuronal biomarker neurogranin, a calmodulin binding protein also involved in long term potentiation and depression, is detailed. In addition, new discoveries into calmodulin’s role in regulating glutamate receptors (mGluR, NMDAR) are overviewed. The interplay between calmodulin and amyloid beta in the regulation of PMCA and ryanodine receptors are prime examples of how the buildup of classic biomarkers can underly the signs and symptoms of Alzheimer’s. The role of calmodulin in the function of stromal interaction molecule 2 (STIM2) and adenosine A2A receptor, two other proteins linked to neurodegenerative events, is discussed. Prior to concluding, an analysis of how targeting calmodulin and its binding proteins are viable routes for Alzheimer’s therapy is presented. In total, calmodulin and its binding proteins are further revealed to be central to the onset and progression of Alzheimer’s disease.
Collapse
Affiliation(s)
- Danton H. O’Day
- Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada;
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|