1
|
Rehman S, Jamil QA, Noreen S, Ashraf MA, Madni A, Mahmood H, Shoukat H, Raza MR. Preparation and Evaluation of pH-Sensitive Chitosan/Alginate Nanohybrid Mucoadhesive Hydrogel Beads: An Effective Approach to a Gastro-Retentive Drug Delivery System. Pharmaceutics 2024; 16:1451. [PMID: 39598574 PMCID: PMC11597505 DOI: 10.3390/pharmaceutics16111451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Despite extensive research over the decades, cancer therapy is still a great challenge because of the non-specific delivery of chemotherapeutic agents, which could be overcome by limiting the distribution of chemotherapeutic agents toward cancer cells. OBJECTIVE To reduce the cytolytic effects against cancer cells, graphene oxide (GO) nanoparticles (NPs) can load anticancer medicines and genetic tools. METHODOLOGY During the current study, folic-acid-conjugated graphene oxide (Fa-GO) hybrid mucoadhesive chitosan (CS)-based hydrogel beads were fabricated through an "ion-gelation process", which allows for regulated medication release at malignant pH. RESULTS The fabricated chitosan-alginate (SA-CS) hydrogel beads were examined using surface morphology, optical microscopy, XRD, FTIR, and homogeneity analysis techniques. The size analysis indicated that the size of the Fa-GO was up to 554.2 ± 95.14 nm, whereas the beads were of a micrometer size. The folic acid conjugation was confirmed by NMR. The results showed that the craggy edges of the graphene oxide were successfully encapsulated in a polymeric matrix. The mucoadhesive properties were enhanced with the increase in the CS concentration. The nanohybrid SA-CS beads exhibited good swelling properties, and the drug release was 68.29% at pH 5.6 during a 24 h investigation. The accelerated stability study, according to ICH guidelines, indicated that the hydrogel beads have a shelf-life of more than two years. CONCLUSIONS Based on the achieved results, it can be concluded that this novel gastro-retentive delivery system may be a viable and different way to improve the stomach retention of anticancer agents and enhance their therapeutic effectiveness.
Collapse
Affiliation(s)
- Sadia Rehman
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (S.R.); (A.M.); (H.S.)
| | - Qazi Adnan Jamil
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (S.R.); (A.M.); (H.S.)
| | - Sobia Noreen
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (S.R.); (A.M.); (H.S.)
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
| | - Muhammad Azeem Ashraf
- Department of Supply Chain, University of Management and Technology Lahore, Lahore 54770, Pakistan;
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (S.R.); (A.M.); (H.S.)
| | - Hassan Mahmood
- Linguistics & Literature Department, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan;
| | - Hina Shoukat
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (S.R.); (A.M.); (H.S.)
| | - Muhammad Rafi Raza
- Department of Mechanical Engineering, COMSATS University Islamabad, Sahiwal Campus, Sahiwal 57000, Pakistan;
| |
Collapse
|
2
|
Saberian M, Safari Roudsari R, Haghshenas N, Rousta A, Alizadeh S. How the combination of alginate and chitosan can fabricate a hydrogel with favorable properties for wound healing. Heliyon 2024; 10:e32040. [PMID: 38912439 PMCID: PMC11192993 DOI: 10.1016/j.heliyon.2024.e32040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
Wound management has always been a significant concern, particularly for men, and the search for effective wound dressings has led to the emergence of hydrogels as a promising solution. In recent years, hydrogels, with their unique properties, have gained considerable importance in wound management. Among the various types of hydrogels, those incorporating chitosan and alginate, two distinct chemical materials, have shown potential in accelerating wound healing. This review aims to discuss the desirable characteristics of an effective wound dressing, explore the alginate/chitosan-based hydrogels developed by different researchers, and analyze their effects on wound healing through in vitro and in vivo assessments. In vitro tests encompass a wide range of evaluations, including swelling capacity, degradation rate, porosity, Fourier Transform Infrared Spectroscopy, X-ray diffraction analysis, moisture vapor transmission rate, release studies, mechanical properties, microscopic observation, antibacterial properties, compatibility assessment, cell adhesion investigation, blood clotting capability, cell migration analysis, water contact angle determination, and structural stability. Furthermore, in vivo assessments encompass the examination of wound closure rate, modulation of gene expression, as well as histopathological and immunohistochemical studies.
Collapse
Affiliation(s)
- Mostafa Saberian
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Raha Safari Roudsari
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Haghshenas
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Rousta
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaban Alizadeh
- Department of Hematology and Blood Transfusion Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences. Tehran, Iran
| |
Collapse
|
3
|
Algandaby MM, Esmat A, Nasrullah MZ, Alhakamy NA, Abdel-Naim AB, Rashad OM, Elhady SS, Eltamany EE. LC-MS based metabolic profiling and wound healing activity of a chitosan nanoparticle-loaded formula of Teucrium polium in diabetic rats. Biomed Pharmacother 2023; 168:115626. [PMID: 37852098 DOI: 10.1016/j.biopha.2023.115626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023] Open
Abstract
Healing of wounds is the most deteriorating diabetic experience. Felty germander (Teucrium polium) possesses antioxidant, anti-inflammatory and antimicrobial activities that could accelerate wound healing. Further, nanohydrogels help quicken healing and are ideal biomaterials for drug delivery. In the current study, the chemical profiling, and standardization of T. polium methanolic extract by LC-ESI/TOF/MS/MS and quantitative HPLC-DAD analyses were achieved. The wound healing enhancement in diabetic rats by T. polium nanopreparation (TP-NP) as chitosan nanogel (CS-NG) and investigating the potential mechanisms were investigated. The prepared hydrogel-based TP-NP were characterized with respect to particle size, zeta potential, pH, viscosity, and release of major components. LC-ESI/TOF/MS/MS metabolomic profiling of T. polium revealed the richness of the plant with phenolic compounds, particularly flavonoids. In addition, several terpenoids were detected. Kaempferol content of T. polium was estimated to be 7.85 ± 0.022 mg/ g of dry extract. The wound healing activity of TP-NP was explored in streptozotocin-induced diabetic rats. Diabetic animals were subjected to surgical wounding (1 cm diameter). Then they were divided in 5 groups (10 each). These included Group 1 (untreated control rats), Group 2 received the vehicle of CS-NG; Group 3 (0.5 g of TP prepared in hydrogel), Group 4 (0.5 g of TP-NP), Group 5 represented a positive control treated with 0.5 g of a commercial product. All treatments were applied topically for 21 days. Application of TP-NP on skin wounds of diabetic animals accelerated the healing process as evidenced by epithelium regeneration, formation of granulation tissue followed by epidermal proliferation, along with keratinization as verified by H&E. This was confirmed through enhanced collagen synthesis, as shown by raised hydroxyproline content and Col1A1 gene expression. Moreover, TP-NP significantly alleviated wound oxidative burst and diminished the expressions of inflammatory biomarkers. Meanwhile, TP-NP could enhance the expressions of transforming growth factor beta1 (TGF-β1), in addition to the angiogenic markers; vascular endothelia growth factor A (VEGFA) and platelet-derived growth factor receptor alpha (PDGFRα). Collectively, chitosan nanogel of T. polium accelerates wound healing in diabetic rats, which could be explained - at least partly - through alleviating oxidative stress and inflammation coupled with pro-angiogenic capabilities.
Collapse
Affiliation(s)
- Mardi M Algandaby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Ahmed Esmat
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Mohammed Z Nasrullah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Omar M Rashad
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt.
| | - Sameh S Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Enas E Eltamany
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
4
|
Lacorte DH, Valério Filho A, Carvalho MD, Avila LB, Moraes CC, da Rosa GS. Optimization of the Green Extraction of Red Araçá ( Psidium catteyanum Sabine) and Application in Alginate Membranes for Use as Dressings. Molecules 2023; 28:6688. [PMID: 37764464 PMCID: PMC10537386 DOI: 10.3390/molecules28186688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
In this research, the aim was to introduce innovation to the pharmaceutical field through the exploration of an underutilized plant matrix, the red araçá, along with the utilization of sodium alginate for the development of membranes designed for active topical dressings. Within this context, optimal extraction conditions were investigated using the central composite rotational statistical design (CCRD) to obtain a red araçá epicarp extract (RAEE) rich in bioactive compounds utilizing the maceration technique. The extract acquired under the optimized conditions (temperature of 66 °C and a hydroalcoholic solvent concentration of 32%) was incorporated into a sodium alginate matrix for the production of active membranes using a casting method. Characterization of the membranes revealed that the addition of the extract did not significantly alter its morphology. Furthermore, satisfactory results were observed regarding mechanical and barrier properties, as well as the controlled release of phenolic compounds in an environment simulating wound exudate. Based on these findings, the material produced from renewable matrices demonstrates the promising potential for application as a topical dressing within the pharmaceutical industry.
Collapse
Affiliation(s)
- Douglas Hardt Lacorte
- Graduate Program in Science and Engineering of Materials, Federal University of Pampa, Bagé 96413-172, Brazil; (D.H.L.); (C.C.M.)
| | - Alaor Valério Filho
- Graduate Program in Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, Pelotas 96010-610, Brazil;
| | | | - Luisa Bataglin Avila
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria 97105-900, Brazil;
| | - Caroline Costa Moraes
- Graduate Program in Science and Engineering of Materials, Federal University of Pampa, Bagé 96413-172, Brazil; (D.H.L.); (C.C.M.)
| | - Gabriela Silveira da Rosa
- Graduate Program in Science and Engineering of Materials, Federal University of Pampa, Bagé 96413-172, Brazil; (D.H.L.); (C.C.M.)
- Chemical Engineering, Federal University of Pampa, Bagé 96413-172, Brazil;
| |
Collapse
|
5
|
Karrat A, García-Guzmán JJ, Palacios-Santander JM, Amine A, Cubillana-Aguilera L. Magnetic Molecularly Imprinted Chitosan Combined with a Paper-Based Analytical Device for the Smartphone Discrimination of Tryptophan Enantiomers. BIOSENSORS 2023; 13:830. [PMID: 37622916 PMCID: PMC10452675 DOI: 10.3390/bios13080830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023]
Abstract
The separation of enantiomers plays a critical role in pharmaceutical development, ensuring therapeutic efficacy, safety, and patent protection. It enables the production of enantiopure drugs and enhances our understanding of the properties of chiral compounds. In this study, a straightforward and effective chiral detection strategy was developed for distinguishing between tryptophan (TRP) enantiomers. The approach involved the preparation of a magnetic molecularly imprinted chitosan (MMIC) for preparation of the sample, which was combined with a nitrocellulose membrane (a paper-based analytical device, PAD) integrated with D-TRP covalently grafted with polymethacrylic acid (PAD-PMA_D-TRP). Discriminating between the TRP enantiomers was achieved using AuNPs as a colorimetric probe. Indeed, the presence of D-TRP rapidly induced the aggregation of AuNPs due to its strong affinity to PAD-PMA_D-TRP, resulting in a noticeable change in the color of the AuNPs from red to purple. On the other hand, L-TRP did not induce any color changes. The chiral analysis could be easily performed with the naked eye and/or a smartphone. The developed method exhibited a detection limit of 3.3 µM, and it was successfully applied to detect TRP in serum samples, demonstrating good recovery rates. The proposed procedure is characterized by its simplicity, cost-effectiveness, rapidity, and ease of operation.
Collapse
Affiliation(s)
- Abdelhafid Karrat
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510 Puerto Real, Cádiz, Spain; (A.K.); (L.C.-A.)
- Laboratory of Process Engineering & Environment, Faculty of Science and Technology, Hassan II University of Casablanca, B.P. 146, Mohammedia 28810, Morocco
| | - Juan José García-Guzmán
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510 Puerto Real, Cádiz, Spain; (A.K.); (L.C.-A.)
| | - José María Palacios-Santander
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510 Puerto Real, Cádiz, Spain; (A.K.); (L.C.-A.)
| | - Aziz Amine
- Laboratory of Process Engineering & Environment, Faculty of Science and Technology, Hassan II University of Casablanca, B.P. 146, Mohammedia 28810, Morocco
| | - Laura Cubillana-Aguilera
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510 Puerto Real, Cádiz, Spain; (A.K.); (L.C.-A.)
| |
Collapse
|
6
|
Mssillou I, Bakour M, Slighoua M, Laaroussi H, Saghrouchni H, Ez-Zahra Amrati F, Lyoussi B, Derwich E. Investigation on wound healing effect of Mediterranean medicinal plants and some related phenolic compounds: A review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115663. [PMID: 36038091 DOI: 10.1016/j.jep.2022.115663] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/07/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The human skin constitutes a biological barrier against external stress and wounds can reduce the role of its physiological structure. In medical sciences, wounds are considered a major problem that requires urgent intervention. For centuries, medicinal plants have been used in the Mediterranean countries for many purposes and against wounds. AIM OF THIS REVIEW Provides an outlook on the Mediterranean medicinal plants used in wound healing. Furthermore, the wound healing effect of polyphenolic compounds and their chemical structures are also summarized. Moreover, we discussed the wound healing process, the structure of the skin, and the current therapies in wound healing. MATERIALS AND METHODS The search was performed in several databases such as ScienceDirect, PubMed, Google Scholar, Scopus, and Web of Science. The following Keywords were used individually and/or in combination: the Mediterranean, wound healing, medicinal plants, phenolic compounds, composition, flavonoid, tannin. RESULTS The wound healing process is distinguished by four phases, which are respectively, hemostasis, inflammation, proliferation, and remodeling. The Mediterranean medicinal plants are widely used in the treatment of wounds. The finding showed that eighty-nine species belonging to forty families were evaluated for their wound-healing effect in this area. The Asteraceae family was the most reported family with 12 species followed by Lamiaceae (11 species). Tunisia, Egypt, Morocco, and Algeria were the countries where these plants are frequently used in wound healing. In addition to medicinal plants, results showed that nineteen phenolic compounds from different classes are used in wound treatment. Tyrosol, hydroxytyrosol, curcumin, luteolin, chrysin, rutin, kaempferol, quercetin, icariin, morin, epigallocatechin gallate, taxifolin, silymarin, hesperidin, naringin, isoliquiritin, puerarin, genistein, and daidzein were the main compounds that showed wound-healing effect. CONCLUSION In conclusion, medicinal plants and polyphenolic compounds provide therapeutic evidence in wound healing and for the development of new drugs in this field.
Collapse
Affiliation(s)
- Ibrahim Mssillou
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco.
| | - Meryem Bakour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Meryem Slighoua
- Laboratory of Biotechnology, Health, Agrofood and Environment (LBEAS), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Hassan Laaroussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Hamza Saghrouchni
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, 01330 Balcalı/Sarıçam, Adana, Turkey
| | - Fatima Ez-Zahra Amrati
- Laboratory of Biotechnology, Health, Agrofood and Environment (LBEAS), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Elhoussine Derwich
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; Unity of GC/MS and GC, City of Innovation, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| |
Collapse
|
7
|
Karrat A, Palacios-Santander JM, Amine A, Cubillana-Aguilera L. A novel magnetic molecularly imprinted polymer for selective extraction and determination of quercetin in plant samples. Anal Chim Acta 2022; 1203:339709. [DOI: 10.1016/j.aca.2022.339709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023]
|