1
|
Clayton-Chubb D, Vaughan NV, George ES, Chan AT, Roberts SK, Ryan J, Phyo AZZ, McNeil JJ, Beilin LJ, Tran C, Wang Y, Sevilla-Gonzalez M, Wang DD, Kemp WW, Majeed A, Woods RL, Owen AJ, Fitzpatrick JA. Mediterranean Diet and Ultra-Processed Food Intake in Older Australian Adults-Associations with Frailty and Cardiometabolic Conditions. Nutrients 2024; 16:2978. [PMID: 39275293 PMCID: PMC11397489 DOI: 10.3390/nu16172978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Dietary patterns contribute to overall health and diseases of ageing but are understudied in older adults. As such, we first aimed to develop dietary indices to quantify Mediterranean Diet Score (MDS) utilisation and Ultra-processed Food (UPF) intake in a well-characterised cohort of relatively healthy community-dwelling older Australian adults. Second, we aimed to understand the relationship between these scores and the association of these scores with prevalent cardiometabolic disease and frailty. Our major findings are that in this population of older adults, (a) pre-frailty and frailty are associated with reduced MDS and increased UPF intake; (b) adherence to MDS eating patterns does not preclude relatively high intake of UPF (and vice versa); and (c) high utilisation of an MDS eating pattern does not prevent an increased risk of frailty with higher UPF intakes. As such, the Mediterranean Diet pattern should be encouraged in older adults to potentially reduce the risk of frailty, while the impact of UPF intake should be further explored given the convenience these foods provide to a population whose access to unprocessed food may be limited due to socioeconomic, health, and lifestyle factors.
Collapse
Affiliation(s)
- Daniel Clayton-Chubb
- Department of Gastroenterology, Alfred Health, 99 Commercial Rd, Melbourne 3004, Australia
- School of Translational Medicine, Monash University, Melbourne 3004, Australia
- Department of Gastroenterology, Eastern Health, Box Hill 3128, Australia
- Department of Gastroenterology, St. Vincent’s Hospital Melbourne, Fitzroy 3065, Australia
| | - Nicole V. Vaughan
- Department of Nutrition & Dietetics, Alfred Health, Melbourne 3004, Australia
| | - Elena S. George
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong 3220, Australia
| | - Andrew T. Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Stuart K. Roberts
- Department of Gastroenterology, Alfred Health, 99 Commercial Rd, Melbourne 3004, Australia
- School of Translational Medicine, Monash University, Melbourne 3004, Australia
| | - Joanne Ryan
- School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, Australia (A.J.O.)
| | - Aung Zaw Zaw Phyo
- School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, Australia (A.J.O.)
| | - John J. McNeil
- School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, Australia (A.J.O.)
| | - Lawrence J. Beilin
- Medical School, Royal Perth Hospital, University of Western Australia, Perth 6000, Australia
| | - Cammie Tran
- School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, Australia (A.J.O.)
| | - Yiqing Wang
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Magdalena Sevilla-Gonzalez
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dong D. Wang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - William W. Kemp
- Department of Gastroenterology, Alfred Health, 99 Commercial Rd, Melbourne 3004, Australia
- School of Translational Medicine, Monash University, Melbourne 3004, Australia
| | - Ammar Majeed
- Department of Gastroenterology, Alfred Health, 99 Commercial Rd, Melbourne 3004, Australia
- School of Translational Medicine, Monash University, Melbourne 3004, Australia
| | - Robyn L. Woods
- School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, Australia (A.J.O.)
| | - Alice J. Owen
- School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, Australia (A.J.O.)
| | - Jessica A. Fitzpatrick
- Department of Gastroenterology, Alfred Health, 99 Commercial Rd, Melbourne 3004, Australia
- School of Translational Medicine, Monash University, Melbourne 3004, Australia
| |
Collapse
|
2
|
Caldarelli M, Rio P, Marrone A, Giambra V, Gasbarrini A, Gambassi G, Cianci R. Inflammaging: The Next Challenge-Exploring the Role of Gut Microbiota, Environmental Factors, and Sex Differences. Biomedicines 2024; 12:1716. [PMID: 39200181 PMCID: PMC11351301 DOI: 10.3390/biomedicines12081716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/02/2024] Open
Abstract
The term 'inflammaging' has been coined to describe the chronic state of inflammation derived from ongoing cycles of tissue damage and the subsequent immune responses. This inflammatory status contributes to the decline of organs and physiological functions, accelerates the aging process, and increases the risk of age-related illnesses and death. During aging, the gut microbiota (GM) undergoes significant changes, including a decreased diversity of species, a decline in beneficial bacteria, and a rise in proinflammatory ones, resulting in persistent low-grade inflammation. Moreover, environmental factors, such as diet and medications, contribute to age-related changes in GM and immune function, preventing or promoting inflammaging. This narrative review aims to clarify the underlying mechanisms of inflammaging and to specifically investigate the influence of GM and several environmental factors on these mechanisms, while also exploring potential differences related to sex. Moreover, lifestyle and pharmacological interventions will be suggested to promote healthy aging.
Collapse
Affiliation(s)
- Mario Caldarelli
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (P.R.); (A.M.); (A.G.); (G.G.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Pierluigi Rio
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (P.R.); (A.M.); (A.G.); (G.G.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Andrea Marrone
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (P.R.); (A.M.); (A.G.); (G.G.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Vincenzo Giambra
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (P.R.); (A.M.); (A.G.); (G.G.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Giovanni Gambassi
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (P.R.); (A.M.); (A.G.); (G.G.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (P.R.); (A.M.); (A.G.); (G.G.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| |
Collapse
|
3
|
Campo C, Gangemi S, Pioggia G, Allegra A. Beneficial Effect of Olive Oil and Its Derivates: Focus on Hematological Neoplasm. Life (Basel) 2024; 14:583. [PMID: 38792604 PMCID: PMC11122568 DOI: 10.3390/life14050583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Olive oil (Olea europaea) is one of the major components of the Mediterranean diet and is composed of a greater percentage of monounsaturated fatty acids, such as oleic acid; polyunsaturated fatty acids, such as linoleic acid; and minor compounds, such as phenolic compounds, and particularly hydroxytyrosol. The latter, in fact, are of greater interest since they have found widespread use in popular medicine. In recent years, it has been documented that phenolic acids and in particular hydroxytyrosol have anti-inflammatory, antioxidant, and antiproliferative action and therefore interest in their possible use in clinical practice and in particular in neoplasms, both solid and hematological, has arisen. This work aims to summarize and analyze the studies present in the literature, both in vitro and in vivo, on the possible use of minor components of olive oil in some hematological neoplasms. In recent years, in fact, interest in nutraceutical science has expanded as a possible adjuvant in the treatment of neoplastic pathologies. Although it is worth underlining that, regarding the object of our study, there are still few preclinical and clinical studies, it is, however, possible to document a role of possible interest in clinical practice.
Collapse
Affiliation(s)
- Chiara Campo
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 9815 Messina, Italy;
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98158 Messina, Italy;
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 9815 Messina, Italy;
| |
Collapse
|
4
|
Yammine A, Ghzaiel I, Pires V, Zarrouk A, Kharoubi O, Greige-Gerges H, Auezova L, Lizard G, Vejux A. Cytoprotective effects of α-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, oleic acid and α-tocopherol on 7-ketocholesterol - Induced oxiapoptophagy: Major roles of PI3-K / PDK-1 / Akt signaling pathway and glutathione peroxidase activity in cell rescue. Curr Res Toxicol 2024; 6:100153. [PMID: 38379847 PMCID: PMC10877125 DOI: 10.1016/j.crtox.2024.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
On murine N2a cells, 7-ketocholesterol induced an oxiapotophagic mode of cell death characterized by oxidative stress (reactive oxygen species overproduction on whole cells and at the mitochondrial level; lipid peroxidation), apoptosis induction (caspase-9, -3 and -7 cleavage, PARP degradation) and autophagy (increased ratio LC3-II / LC3-I). Oxidative stress was strongly attenuated by diphenyleneiodonium chloride which inhibits NAD(P)H oxidase. Mitochondrial and peroxisomal morphological and functional changes were also observed. Down regulation of PDK1 / Akt signaling pathways as well as of GSK3 / Mcl-1 and Nrf2 pathways were simultaneously observed in 7-ketocholesterol-induced oxiapoptophagy. These events were prevented by α-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, oleic acid and α-tocopherol. The inhibition of the cytoprotection by LY-294002, a PI3-K inhibitor, demonstrated an essential role of PI3-K in cell rescue. The rupture of oxidative stress in 7-ketocholesterol-induced oxiapoptophagy was also associated with important modifications of glutathione peroxidase, superoxide dismutase and catalase activities as well as of glutathione peroxidase-1, superoxide dismutase-1 and catalase level and expression. These events were also counteracted by α-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, oleic acid and α-tocopherol. The inhibition of the cytoprotection by mercaptosuccinic acid, a glutathione peroxidase inhibitor, showed an essential role of this enzyme in cell rescue. Altogether, our data support that the reactivation of PI3-K and glutathione peroxidase activities by α-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, oleic acid and α-tocopherol are essential to prevent 7KC-induced oxiapoptophagy.
Collapse
Affiliation(s)
- Aline Yammine
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270 / Inserm, University of Bourgogne, 21000 Dijon, France
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Fanar, Jdeidet P.O. Box 90656, Lebanon
| | - Imen Ghzaiel
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270 / Inserm, University of Bourgogne, 21000 Dijon, France
- Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Vivien Pires
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270 / Inserm, University of Bourgogne, 21000 Dijon, France
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000 Dijon, France
| | - Amira Zarrouk
- Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia
- Faculty of Medicine, University of Sousse, Sousse 4000, Tunisia
| | - Omar Kharoubi
- University Oran 1 ABB: Laboratory of Experimental Biotoxicology, Biodepollution and Phytoremediation, Faculty of Life and Natural Sciences, Oran, Algeria
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Fanar, Jdeidet P.O. Box 90656, Lebanon
| | - Lizette Auezova
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Fanar, Jdeidet P.O. Box 90656, Lebanon
| | - Gérard Lizard
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270 / Inserm, University of Bourgogne, 21000 Dijon, France
| | - Anne Vejux
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270 / Inserm, University of Bourgogne, 21000 Dijon, France
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000 Dijon, France
| |
Collapse
|