1
|
Wolever TM, Zurbau A, Koecher K, Au-Yeung F. The Effect of Adding Protein to a Carbohydrate Meal on Postprandial Glucose and Insulin Responses: A Systematic Review and Meta-Analysis of Acute Controlled Feeding Trials. J Nutr 2024; 154:2640-2654. [PMID: 39019167 DOI: 10.1016/j.tjnut.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/21/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Protein influences acute postprandial glucose and insulin responses, but the effects of dose, protein type, and health status are unknown. OBJECTIVES We aimed to determine the acute effect of adding protein to carbohydrate on postprandial responses and identify effect modifiers. METHODS We searched MEDLINE, EMBASE, and Cochrane databases through 30 July, 2023 for acute, crossover trials comparing acute postprandial responses elicited by carbohydrate-containing test meals with and without added protein in adults without diabetes or with type 2 (T2DM) or type 1 (T1DM) diabetes mellitus. Group data were pooled separately using generic inverse variance with random-effects models and expressed as the ratio of means with 95% confidence interval. Risk of bias and certainty of evidence (Grading of Recommendations Assessment, Development, and Evaluation) were assessed. RESULTS In 154 trial comparisons of animal, dairy, and plant proteins (without diabetes, n = 22, 67, 32, respectively; T2DM, n = 14, 16, 3, respectively), each gram protein per gram available carbohydrate (g/g) reduced the glucose area under the curve (AUC) less in adults with T2DM than in those without diabetes (-10% compared with -50%, P < 0.05) but increased the insulin AUC similarly (+76% compared with +56%). In subjects without diabetes, each g/g of dairy and plant protein reduced glucose AUC by 52% and 55%, respectively, and increased the insulin AUC by 64% and 45%, respectively (all P < 0.05). Animal proteins significantly reduced the glucose AUC by 31% and increased the insulin AUC by 37% (pooled effects) but without a significant dose-response. In adults with T2DM, animal protein reduced the glucose AUC by 13% and increased the insulin AUC by 105%, with no significant dose-response. Dairy protein reduced the glucose AUC by 18% (no dose-response), but each g/g increased the insulin AUC by 34% (P < 0.05). In adults with T1DM, protein increased the glucose AUC by 40% (P < 0.05, n = 5). Data source (reported AUC compared with calculated AUC) and study methodology quality significantly modified some outcomes and contributed to high between-study heterogeneity. CONCLUSIONS In people without diabetes, adding dairy or plant protein to a carbohydrate-containing meal elicits physiologically significant reductions in glucose AUC and increases insulin AUC. Animal protein may slightly reduce the glucose AUC and may increase the insulin AUC. In people with T2DM, protein may not have such large and consistent effects. Further research is needed to determine if the effects of protein differ by health status and protein source. This study was registered at PROSPERO as CRD42022322090.
Collapse
Affiliation(s)
- Thomas Ms Wolever
- INQUIS Clinical Research, Inc., Toronto, Ontario, Canada; Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Ontario, Canada.
| | - Andreea Zurbau
- INQUIS Clinical Research, Inc., Toronto, Ontario, Canada; Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Center, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Katie Koecher
- General Mills, Bell Institute of Health & Nutrition, Minneapolis, MN, United States
| | - Fei Au-Yeung
- INQUIS Clinical Research, Inc., Toronto, Ontario, Canada; Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Center, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Tan LL, Duan WQ, Chen MX, Mei Y, Qi XY, Zhang Y. Naturally cultured high resistant starch rice improved postprandial glucose levels in patients with type 2 diabetes: A randomized, double-blinded, controlled trial. Front Nutr 2022; 9:1019868. [PMID: 36643977 PMCID: PMC9833119 DOI: 10.3389/fnut.2022.1019868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Objective To assess the effect of a novel naturally cultured rice with high resistant starch (RS) on postprandial glycemia in patients with type 2 diabetes compared to ordinary rice. Design This study is a randomized, double-blinded controlled trial. Methods Patients with type 2 diabetes were recruited, and postprandial glucose levels were measured at 5-time points after the ingestion of one of two types of cooked rice in random order. Paired t-tests were used to compare postprandial blood glucose changes and increment areas under the blood glucose curve between high-RS rice and ordinary rice. Results The increments of the postprandial blood glucose levels for high-RS rice were significantly lower than that for ordinary rice, i.e., 2.80 ± 1.38 mmol/L vs. 3.04 ± 1.50 mmol/L (P = 0.043) and 3.94 ± 2.25 mmol/L vs. 4.25 ± 2.29 mmol/L (P = 0.036) at 30 min and 60 min, respectively. The incremental areas under the blood glucose curve for high-RS rice were also significantly lower than that for ordinary rice, i.e., 42.04 ± 20.65 [mmol/(L·min)] vs. 45.53 ± 22.45 [mmol/(L·min)] (P = 0.043), 143.54 ±69.63 [mmol/(L·min)] vs. 155.15 ± 73.53 [mmol/(L·min)] (P = 0.026), and 354.61 ± 191.96 [mmol/(L·min)] vs. 379.78 ± 195.30 [mmol/(L·min)] (P = 0.042) at 30, 60, and 120 min, respectively. Repeated-measures ANOVA showed that postprandial glucose levels were not affected by the test order. Conclusion The novel high-RS rice as a staple food when substituting for widely consumed ordinary rice may provide potential health benefits by lowering blood glucose in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Ling-li Tan
- School of Public Health and Health Management, Chongqing Medical University, Chongqing, China
| | - Wei-qian Duan
- School of Public Health and Health Management, Chongqing Medical University, Chongqing, China
| | - Meng-xue Chen
- Department of Health Management, The Second Hospital Affiliated to Chongqing Medical University, Chongqing, China
| | - Ying Mei
- Department of Health Management, The Second Hospital Affiliated to Chongqing Medical University, Chongqing, China
| | - Xiao-ya Qi
- Department of Health Management, The Second Hospital Affiliated to Chongqing Medical University, Chongqing, China
| | - Yong Zhang
- School of Public Health and Health Management, Chongqing Medical University, Chongqing, China,Department of Health Management, The Second Hospital Affiliated to Chongqing Medical University, Chongqing, China,*Correspondence: Yong Zhang ✉
| |
Collapse
|
3
|
Chen Y, Stieger M, Capuano E, Forde CG, van der Haar S, Ummels M, van den Bosch H, de Wijk R. Influence of oral processing behaviour and bolus properties of brown rice and chickpeas on in vitro starch digestion and postprandial glycaemic response. Eur J Nutr 2022; 61:3961-3974. [PMID: 35773354 PMCID: PMC9596526 DOI: 10.1007/s00394-022-02935-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/07/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Oral processing behaviour may contribute to individual differences in glycaemic response to foods, especially in plant tissue where chewing behaviour can modulate release of starch from the cellular matrix. The aim of this study was to assess the impact of chewing time of two starch based foods (brown rice and chickpeas) on bolus properties, in vitro starch digestion and postprandial glycaemic excursion in healthy subjects. METHODS In a cross-over trial participants (n = 26) consumed two carbohydrates-identical test meals (brown rice: 233 g; chickpeas: 323 g) with either long (brown rice: 41 s/bite; chickpeas: 37 s/bite) or short (brown rice: 23 s/bite; chickpeas: 20 s/bite) chewing time in duplicate while glycaemic responses were monitored using a continuous glucose monitoring device. Expectorated boli were collected, then bolus properties (number, mean area, saliva amylase activity) and in vitro starch digestion were determined. RESULTS Longer chewing resulted in significantly (p < 0.05) more and smaller bolus particles, higher bolus saliva uptake and higher in vitro degree of intestinal starch hydrolysis (DH_Schewing time%) than shorter chewing for both foods (brown rice: DH_S%23 s = 84 ± 4% and DH_%S41s = 90 ± 6%; chickpeas: DH_S%20 s = 27 ± 3% and DH_%S37s = 34 ± 5%, p < 0.001). No significant effect of chewing time on glycaemic response (iAUC) (p > 0.05) was found for both meals. Brown rice showed significantly and considerably higher in vitro degree of intestinal starch hydrolysis and glycaemic response (iAUC) than chickpeas regardless of chewing time. No significant correlations were observed between bolus properties and in vitro starch hydrolysis or glycaemic response (p > 0.05). CONCLUSION Differences in the innate structure of starch based foods (brown rice compared to chickpeas) have a larger effect on postprandial glucose response than differences in mastication behaviour although oral processing behaviour showed consistent effects on bolus properties and in vitro starch digestion. Trial registration ClinicalTrials.gov identifier: NCT04648397 (First posted: December 1, 2020).
Collapse
Affiliation(s)
- Yao Chen
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands.
| | - Markus Stieger
- Division of Human Nutrition and Health, Sensory Science and Eating Behaviour, Wageningen University & Research, Wageningen, The Netherlands
| | - Edoardo Capuano
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands
| | - Ciarán G Forde
- Division of Human Nutrition and Health, Sensory Science and Eating Behaviour, Wageningen University & Research, Wageningen, The Netherlands
| | - Sandra van der Haar
- Food & Biobased Research, Fresh Food Chains, Food, Health & Consumer Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Meeke Ummels
- Food & Biobased Research, Fresh Food Chains, Food, Health & Consumer Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Heleen van den Bosch
- Food & Biobased Research, Fresh Food Chains, Food, Health & Consumer Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Rene de Wijk
- Food & Biobased Research, Fresh Food Chains, Food, Health & Consumer Research, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
6
|
Choo VL, Viguiliouk E, Blanco Mejia S, Cozma AI, Khan TA, Ha V, Wolever TMS, Leiter LA, Vuksan V, Kendall CWC, de Souza RJ, Jenkins DJA, Sievenpiper JL. Food sources of fructose-containing sugars and glycaemic control: systematic review and meta-analysis of controlled intervention studies. BMJ 2018; 363:k4644. [PMID: 30463844 PMCID: PMC6247175 DOI: 10.1136/bmj.k4644] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To assess the effect of different food sources of fructose-containing sugars on glycaemic control at different levels of energy control. DESIGN Systematic review and meta-analysis of controlled intervention studies. DATA SOURCES Medine, Embase, and the Cochrane Library up to 25 April 2018. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Controlled intervention studies of at least seven days' duration and assessing the effect of different food sources of fructose-containing sugars on glycaemic control in people with and without diabetes were included. Four study designs were prespecified on the basis of energy control: substitution studies (sugars in energy matched comparisons with other macronutrients), addition studies (excess energy from sugars added to diets), subtraction studies (energy from sugars subtracted from diets), and ad libitum studies (sugars freely replaced by other macronutrients without control for energy). Outcomes were glycated haemoglobin (HbA1c), fasting blood glucose, and fasting blood glucose insulin. DATA EXTRACTION AND SYNTHESIS Four independent reviewers extracted relevant data and assessed risk of bias. Data were pooled by random effects models and overall certainty of the evidence assessed by the GRADE approach (grading of recommendations assessment, development, and evaluation). RESULTS 155 study comparisons (n=5086) were included. Total fructose-containing sugars had no harmful effect on any outcome in substitution or subtraction studies, with a decrease seen in HbA1c in substitution studies (mean difference -0.22% (95% confidence interval to -0.35% to -0.08%), -25.9 mmol/mol (-27.3 to -24.4)), but a harmful effect was seen on fasting insulin in addition studies (4.68 pmol/L (1.40 to 7.96)) and ad libitum studies (7.24 pmol/L (0.47 to 14.00)). There was interaction by food source, with specific food sources showing beneficial effects (fruit and fruit juice) or harmful effects (sweetened milk and mixed sources) in substitution studies and harmful effects (sugars-sweetened beverages and fruit juice) in addition studies on at least one outcome. Most of the evidence was low quality. CONCLUSIONS Energy control and food source appear to mediate the effect of fructose-containing sugars on glycaemic control. Although most food sources of these sugars (especially fruit) do not have a harmful effect in energy matched substitutions with other macronutrients, several food sources of fructose-containing sugars (especially sugars-sweetened beverages) adding excess energy to diets have harmful effects. However, certainty in these estimates is low, and more high quality randomised controlled trials are needed. STUDY REGISTRATION Clinicaltrials.gov (NCT02716870).
Collapse
Affiliation(s)
- Vivian L Choo
- Toronto 3D (Diet, Digestive Tract, and Disease) Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Undergraduate Medical Education, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Effie Viguiliouk
- Toronto 3D (Diet, Digestive Tract, and Disease) Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sonia Blanco Mejia
- Toronto 3D (Diet, Digestive Tract, and Disease) Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Adrian I Cozma
- Toronto 3D (Diet, Digestive Tract, and Disease) Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Radiation Oncology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Tauseef A Khan
- Toronto 3D (Diet, Digestive Tract, and Disease) Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Vanessa Ha
- Toronto 3D (Diet, Digestive Tract, and Disease) Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
- Undergraduate Medical Education, School of Medicine, Queen's University, Kingston, ON, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Thomas M S Wolever
- Toronto 3D (Diet, Digestive Tract, and Disease) Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, St Michael's Hospital, Toronto, ON, Canada
| | - Lawrence A Leiter
- Toronto 3D (Diet, Digestive Tract, and Disease) Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, St Michael's Hospital, Toronto, ON, Canada
| | - Vladimir Vuksan
- Toronto 3D (Diet, Digestive Tract, and Disease) Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, St Michael's Hospital, Toronto, ON, Canada
| | - Cyril W C Kendall
- Toronto 3D (Diet, Digestive Tract, and Disease) Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Russell J de Souza
- Toronto 3D (Diet, Digestive Tract, and Disease) Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - David J A Jenkins
- Toronto 3D (Diet, Digestive Tract, and Disease) Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, St Michael's Hospital, Toronto, ON, Canada
| | - John L Sievenpiper
- Toronto 3D (Diet, Digestive Tract, and Disease) Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, St Michael's Hospital, Toronto, ON, Canada
| |
Collapse
|
11
|
Keenan MJ, Martin RJ, Robertson MD, Aryana KJ, Witwer R, Warshaw H. Misleading conclusions on effects of resistant starch due to inappropriate formulation of controls, inadequate statistical power, and anomalies in the in vitro methods. Am J Clin Nutr 2017; 105:1248-1249. [PMID: 28461512 DOI: 10.3945/ajcn.116.147991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Michael J Keenan
- From the School of Nutrition and Food Science, Louisiana State University AgCenter, Baton Rouge, LA (RJM and KJA; MJK, e-mail: ); Health and Medical Sciences, University of Surrey, Guildford, United Kingdom (MDR); International Agriculture Group, Mooresville, NC (RW); and Hope Warshaw Associates, LLC, Alexandria, VA (HW)
| | - Roy J Martin
- From the School of Nutrition and Food Science, Louisiana State University AgCenter, Baton Rouge, LA (RJM and KJA; MJK, e-mail: ); Health and Medical Sciences, University of Surrey, Guildford, United Kingdom (MDR); International Agriculture Group, Mooresville, NC (RW); and Hope Warshaw Associates, LLC, Alexandria, VA (HW)
| | - M D Robertson
- From the School of Nutrition and Food Science, Louisiana State University AgCenter, Baton Rouge, LA (RJM and KJA; MJK, e-mail: ); Health and Medical Sciences, University of Surrey, Guildford, United Kingdom (MDR); International Agriculture Group, Mooresville, NC (RW); and Hope Warshaw Associates, LLC, Alexandria, VA (HW)
| | - Kayanush J Aryana
- From the School of Nutrition and Food Science, Louisiana State University AgCenter, Baton Rouge, LA (RJM and KJA; MJK, e-mail: ); Health and Medical Sciences, University of Surrey, Guildford, United Kingdom (MDR); International Agriculture Group, Mooresville, NC (RW); and Hope Warshaw Associates, LLC, Alexandria, VA (HW)
| | - Rhonda Witwer
- From the School of Nutrition and Food Science, Louisiana State University AgCenter, Baton Rouge, LA (RJM and KJA; MJK, e-mail: ); Health and Medical Sciences, University of Surrey, Guildford, United Kingdom (MDR); International Agriculture Group, Mooresville, NC (RW); and Hope Warshaw Associates, LLC, Alexandria, VA (HW)
| | - Hope Warshaw
- From the School of Nutrition and Food Science, Louisiana State University AgCenter, Baton Rouge, LA (RJM and KJA; MJK, e-mail: ); Health and Medical Sciences, University of Surrey, Guildford, United Kingdom (MDR); International Agriculture Group, Mooresville, NC (RW); and Hope Warshaw Associates, LLC, Alexandria, VA (HW)
| |
Collapse
|