1
|
Ruscica M, Loh WJ, Sirtori CR, Watts GF. Phytosterols and phytostanols in context: From physiology and pathophysiology to food supplementation and clinical practice. Pharmacol Res 2025; 214:107681. [PMID: 40049428 DOI: 10.1016/j.phrs.2025.107681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/23/2025]
Abstract
Phytosterols and phytostanols are two classes of sterol derivatives naturally synthesised in plants, but not in humans. Structurally, phytosterols and phytostanols have a sterane ring in common, but phytostanols do not have a double bond between carbons 5 and 6. The therapeutic potential of phytosterols and phytostanols supplementation in cholesterol reduction is the main reason for its wide usage in an expansive food matrix, including milk, yoghurt, margarine, mayonnaise, chocolate, tartare, chips, esterification with omega-3, and recently, as a successful nutraceutical among athletes is its fortification with whey protein. The heterogeneous effect of phytosterols and phytostanols in cholesterol lowering appears to be related to whether the individuals' inherent physiologic tendencies to "hyper-synthesise" cholesterol in the liver or "hyperabsorb" cholesterol via the small intestine. Individuals who are 'hypersynthesizers" of cholesterol tend to have a good reduction in plasma low-density lipoprotein cholesterol (LDLc) in response to statin therapy. Conversely, "hyper-absorbers" of cholesterol show a greater LDLc lowering in response to phytosterols or phytostanols. The ratios of cholestanol to cholesterol and lathosterol to cholesterol are good biomarkers of intestinal absorption of cholesterol and hepatic cholesterol synthesis. Animal data and human observational data suggest that phytosterols and phytostanols may have anti-atherosclerotic activities, e.g. reduction of the formation of nitric oxide, antagonism to the formation of LDL aggregates and plaque formation. The absence of cardiovascular outcome trials using phytosterol or phytostanol supplementation, makes it difficult to confirm a wider use in clinical practice, especially with the rapidly expanding list of effective and safe lipid-lowering medications.
Collapse
Affiliation(s)
- Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy; Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Wann Jia Loh
- School of Medicine, University of Western Australia, Australia; Department of Endocrinology, Changi General Hospital, Changi, Singapore; Duke-NUS Medical School, Singapore, Singapore.
| | - Cesare R Sirtori
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
| | - Gerald F Watts
- School of Medicine, University of Western Australia, Australia; Departments of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
2
|
Higuchi M, Okumura M, Mitsuta S, Shirouchi B. Dietary Cholest-4-en-3-one, a Cholesterol Metabolite of Gut Microbiota, Alleviates Hyperlipidemia, Hepatic Cholesterol Accumulation, and Hyperinsulinemia in Obese, Diabetic db/db Mice. Metabolites 2024; 14:321. [PMID: 38921456 PMCID: PMC11205736 DOI: 10.3390/metabo14060321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
Previous studies have shown that dietary cholest-4-en-3-one (4-cholestenone, 4-STN) exerts anti-obesity and lipid-lowering effects in mice. However, its underlying mechanisms are not fully understood. In the present study, we evaluated whether 4-STN supplementation would protect obese diabetic db/db mice from obesity-related metabolic disorders. After four weeks of feeding of a 0.25% 4-STN-containing diet, dietary 4-STN was found to have significantly alleviated hyperlipidemia, hepatic cholesterol accumulation, and hyperinsulinemia; however, the effect was not sufficient to improve hepatic triglyceride accumulation or obesity. Further analysis demonstrated that dietary 4-STN significantly increased the content of free fatty acids and neutral steroids in the feces of db/db mice, indicating that the alleviation of hyperlipidemia by 4-STN was due to an increase in lipid excretion. In addition, dietary 4-STN significantly reduced the levels of desmosterol, a cholesterol precursor, in the plasma but not in the liver, suggesting that normalization of cholesterol metabolism by 4-STN is partly attributable to the suppression of cholesterol synthesis in extrahepatic tissues. In addition, dietary 4-STN increased the plasma and hepatic levels of 4-STN metabolites cholestanol (5α-cholestan-3β-ol) and coprostanol (5β-cholestan-3β-ol). Our results show that dietary 4-STN alleviates obesity-related metabolic disorders, such as hyperlipidemia, hepatic cholesterol accumulation, and hyperinsulinemia, in db/db mice.
Collapse
Affiliation(s)
- Mina Higuchi
- Nutrition Science Course, Division of Human Health Science, Graduate School of Regional Design and Creation, University of Nagasaki, Siebold, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan
| | - Mai Okumura
- Nutrition Science Course, Division of Human Health Science, Graduate School of Regional Design and Creation, University of Nagasaki, Siebold, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan
| | - Sarasa Mitsuta
- Nutrition Science Course, Division of Human Health Science, Graduate School of Regional Design and Creation, University of Nagasaki, Siebold, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan
| | - Bungo Shirouchi
- Nutrition Science Course, Division of Human Health Science, Graduate School of Regional Design and Creation, University of Nagasaki, Siebold, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan
- Department of Nutrition Science, Faculty of Nursing and Nutrition, University of Nagasaki, Siebold, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan
| |
Collapse
|
3
|
Ambroselli D, Masciulli F, Romano E, Guerrini R, Ingallina C, Spano M, Mannina L. NMR Metabolomics of Arctium lappa L. , Taraxacum officinale and Melissa officinalis: A Comparison of Spontaneous and Organic Ecotypes. Foods 2024; 13:1642. [PMID: 38890870 PMCID: PMC11171743 DOI: 10.3390/foods13111642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Officinal plants are a source of metabolites whose chemical composition depends on pedoclimatic conditions. In this study, the NMR-based approach was applied to investigate the impacts of different altitudes and agronomical practices (Land, Mountain Spontaneous, and Organically Grown Ecotypes, namely LSE, MSE, and OE, respectively) on the metabolite profiles of Burdock root, Dandelion root and aerial part, and Lemon balm aerial part. Sugars, amino acids, organic acids, polyphenols, fatty acids, and other metabolites were identified and quantified in all samples. Some metabolites turned out to be tissue-specific markers. Arginine was found in roots, whereas myo-inositol, galactose, glyceroyldigalactose moiety, pheophytin, and chlorophyll were identified in aerial parts. Caftaric and chicoric acids, 3,5 di-caffeoylquinic acid, and chlorogenic and rosmarinic acids were detected in Dandelion, Burdock and Lemon balm, respectively. The metabolite amount changed significantly according to crop, tissue type, and ecotype. All ecotypes of Burdock had the highest contents of amino acids and the lowest contents of organic acids, whereas an opposite trend was observed in Lemon balm. Dandelion parts contained high levels of carbohydrates, except for the MSE aerial part, which showed the highest content of organic acids. The results provided insights into the chemistry of officinal plants, thus supporting nutraceutical-phytopharmaceutical research.
Collapse
Affiliation(s)
- Donatella Ambroselli
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (D.A.); (F.M.); (E.R.); (M.S.); (L.M.)
- NMR-Based Metabolomics Laboratory (NMR Lab), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Fabrizio Masciulli
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (D.A.); (F.M.); (E.R.); (M.S.); (L.M.)
- NMR-Based Metabolomics Laboratory (NMR Lab), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Enrico Romano
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (D.A.); (F.M.); (E.R.); (M.S.); (L.M.)
- NMR-Based Metabolomics Laboratory (NMR Lab), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Ruggero Guerrini
- Université de Lille, CNRS, UMR 8516—LASIRE—Laboratoire de Spectroscopie Pour les Interactions, la Réactivité et l’Environnement, F-59000 Lille, France;
| | - Cinzia Ingallina
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (D.A.); (F.M.); (E.R.); (M.S.); (L.M.)
- NMR-Based Metabolomics Laboratory (NMR Lab), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Mattia Spano
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (D.A.); (F.M.); (E.R.); (M.S.); (L.M.)
- NMR-Based Metabolomics Laboratory (NMR Lab), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Luisa Mannina
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (D.A.); (F.M.); (E.R.); (M.S.); (L.M.)
| |
Collapse
|
4
|
Pederiva C, Biasucci G, Banderali G, Capra ME. Plant Sterols and Stanols for Pediatric Patients with Increased Cardiovascular Risk. CHILDREN (BASEL, SWITZERLAND) 2024; 11:129. [PMID: 38275439 PMCID: PMC10814923 DOI: 10.3390/children11010129] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
The atherosclerotic process begins in childhood and progresses throughout adult age. Hypercholesterolemia, especially familial hypercholesterolemia (FH) and metabolic dysfunctions linked to weight excess and obesity, are the main atherosclerosis risk factors in pediatric patients and can be detected and treated starting from childhood. Nutritional intervention and a healthy-heart lifestyle are cornerstones and first-line treatments, with which, if necessary, drug therapy should be associated. For several years, functional foods enriched with plant sterols and stanols have been studied in the treatment of hypercholesterolemia, mainly as nutritional complements that can reduce LDL cholesterol; however, there is a lack of randomized controlled trials defining their long-term efficacy and safety, especially in pediatric age. This review aims to evaluate what the main published studies on sterols and stanols in pediatric subjects with dyslipidemia have taught us, providing an updated picture of the possible use of these dietary supplements in children and adolescents with dyslipidemia and increased cardiovascular risk. Nowadays, we can state that plant sterols and stanols should be considered as a valuable therapy in pediatric patients with hypercholesterolemia, bearing in mind that nutritional and lifestyle counseling and, when necessary, pharmacologic therapy, are the cornerstones of the treatment in developmental age.
Collapse
Affiliation(s)
- Cristina Pederiva
- Clinical Service for Dyslipidemias, Study and Prevention of Atherosclerosis in Childhood, Pediatrics Unit, ASST-Santi Paolo e Carlo, 20142 Milan, Italy
| | - Giacomo Biasucci
- Centre for Pediatric Dyslipidemias, Pediatrics and Neonatology Unit, Guglielmo da Saliceto Hospital, University of Parma, 29121 Piacenza, Italy;
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Giuseppe Banderali
- Clinical Service for Dyslipidemias, Study and Prevention of Atherosclerosis in Childhood, Pediatrics Unit, ASST-Santi Paolo e Carlo, 20142 Milan, Italy
| | - Maria Elena Capra
- Centre for Pediatric Dyslipidemias, Pediatrics and Neonatology Unit, Guglielmo da Saliceto Hospital, University of Parma, 29121 Piacenza, Italy;
- Department of Translational Medical and Surgical Sciences, University of Parma, 43126 Parma, Italy
| |
Collapse
|
5
|
Liu SH, Wu WH, Tzeng HP, Chiang W, Chiang MT. Dehulled Adlay (Coix lachryma-jobi L.) ameliorates hepatic gluconeogenesis and steatosis in streptozotocin/high-fat diet-induced diabetic rats. J Food Drug Anal 2023; 31:683-695. [PMID: 38526822 PMCID: PMC10962669 DOI: 10.38212/2224-6614.3486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/15/2023] [Indexed: 03/27/2024] Open
Abstract
Adlay (Coix lachryma-jobi L.) is a traditional Chinese herbal medicine with various biological activities. We investigated the anti-diabetic effects of different parts of adlay seeds, including polished adlay (PA), adlay bran (AB) and dehulled adlay (DA) in a streptozotocin (STZ)/high fat diet (HFD) diabetic rat model (DM). DM rats supplemented with or without PA (43%), AB (3%), or DA (46%) diet for 8 weeks. The plasma glucose and insulin levels and the insulin resistance index (HOMA-IR) were increased in DM group; among the three adlay diets, DA has the best effects attenuating all of these alterations in DM rats. Both AB and DA alleviated diabetes-impaired glucose tolerance. The increased hepatic phosphoenolpyruvate carboxykinase protein expression in DM group was improved by all of the three adlay diets. The increased ratio of glucose-6-phosphatase to glucokinase in DM group was suppressed by DA supplementation, further suggesting DA diet is most effective among the three diets. Both AB and DA diets had beneficial effects against hepatic steatosis, with better effects observed in DA group. These results suggest that the DA diet, composed of both polished adlay and adlay bran, possesses the best potential to improve glucose homeostasis, at least in part, by alleviating hepatic glucose metabolism and steatosis.
Collapse
Affiliation(s)
- Shing-Hwa Liu
- Institute of Toxicology, National Taiwan University, Taipei,
Taiwan
- Department of Pediatrics, College of Medicine and Hospital, National Taiwan University, Taipei,
Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung,
Taiwan
| | - Wan-Hsin Wu
- Department of Food Science, National Taiwan Ocean University, Keelung,
Taiwan
| | - Huei-Ping Tzeng
- Institute of Toxicology, National Taiwan University, Taipei,
Taiwan
| | - Wenchang Chiang
- Institute of Food Science and Technology, National Taiwan University, Taipei,
Taiwan
| | - Meng-Tsan Chiang
- Department of Food Science, National Taiwan Ocean University, Keelung,
Taiwan
| |
Collapse
|
6
|
Zhang Y, Ma G, Wang S, Nian B, Hu Y. Study on the synthesis of pine sterol esters in solvent-free systems catalyzed by Candida rugosa lipase immobilized on hydrophobic macroporous resin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7849-7861. [PMID: 37467367 DOI: 10.1002/jsfa.12869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/09/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Pine sterol ester is a type of novel food source nutrient with great advantages in lowering blood cholesterol levels, inhibiting tumors, preventing prostate enlargement, and regulating immunity. Macroporous resins with large specific surface area, stable structures, and various functional groups (epoxy, amino, and octadecyl groups) have been selected for immobilization of Candida rugosa lipase (CRL) to improve its stability and efficiency in the synthesis of pine sterol esters. A solvent-free strategy using oleic acid (substrate) as an esterification reaction medium is an important alternative for avoiding the use of organic solvents. RESULTS The immobilization conditions of CRL immobilized on several types of commercial macroporous resins were optimized. Fortunately, by adsorption (hydrophobic interaction), a high immobilization efficiency of CRL was obtained using macroporous resins with hydrophobic octadecyl groups with an immobilization efficiency of 86.5%, enzyme loading of 138.5 mg g-1 and enzyme activity of 34.7 U g-1 . The results showed that a 95.1% yield could be obtained with a molar ratio of oleic acid to pine sterol of 5:1, an enzyme amount of 6.0 U g-1 (relative to pine sterol mass) at 50 °C for 48 h. CONCLUSION The hydrophobic macroporous resin (ECR8806M) with a large specific surface area and abundant functional groups was used to achieve efficient immobilization of CRL. CRL@ECR8806M is an efficient catalyst for the synthesis of phytosterol esters and has the potential for further large-scale applications. Therefore, this simple, green, and low-cost strategy for lipase immobilization provides new possibilities for the high-efficiency production of pine sterol esters and other food source nutrients. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yifei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Guangzheng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Shushu Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Binbin Nian
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| |
Collapse
|
7
|
Lôbo IMDB, Bordallo CDOS, Sacramento JM, Leite LDO, Santana PDS. Phytosterol supplementation in capsules or tablets as adjunctive treatment for hypercholesterolemia: A systematic review of randomized controlled trials. Clin Nutr ESPEN 2023; 57:718-729. [PMID: 37739728 DOI: 10.1016/j.clnesp.2023.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND The exploration of lipid-lowering resources, such as phytosterols, for the complementary nutritional treatment of hypercholesterolemia is relevant to reduce cardiovascular risk. The use of phytosterols in capsules or tablets can bring advantages in the context of diet therapy, but such format is still less studied when compared to fortified foods. OBJECTIVE Systematically review randomized clinical trials on the effects of phytosterol supplementation, in capsules or tablets, on the lipid profile and its use in the treatment of hypercholesterolemia in adults. DESIGN A systematic review was carried out in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis, with a PROSPERO protocol registered under number CRD42021249539. The process was conducted by two independent reviewers. Only randomized clinical trials with phytosterol supplementation in adult individuals with hypercholesterolemia were included. The terms were searched in the databases: PubMed/MEDLINE, Cochrane Library/CENTRAL, Embase, LILACS and Web of Science, without restriction of time and language. The manual search was also performed through the list of references of articles included in this review. RESULTS The searches resulted in 977 articles. 22 articles were selected, whose full text was read, and according to the eligibility criteria 10 were incorporated into the review. The studies were separated into groups according to the association of the intervention with changes in lifestyle and the characteristics extracted from the studies were summarized and displayed in tables. Most studies have revealed a positive association between phytosterol supplementation and cholesterol reduction, despite the short duration of interventions. CONCLUSION The analyzed studies showed that phytosterol supplements can be useful to modulate the lipid profile, helping to reduce the plasma concentration of LDL cholesterol. However, more research with the aforementioned supplementation in such pharmaceutical formats should be encouraged.
Collapse
Affiliation(s)
- Izabele Maria de Barros Lôbo
- University of the State of Bahia, Department of Life Sciences - Campus I, Street Silveira Martins, 2555, Cabula, Salvador, Bahia, CEP: 41150-000, Brazil; Federal University of Bahia, School of Nutrition, Street Basilio da Gama, Canela, Salvador, Bahia, CEP: 40110-040, Brazil.
| | - Carine de Oliveira Souza Bordallo
- University of the State of Bahia, Department of Life Sciences - Campus I, Street Silveira Martins, 2555, Cabula, Salvador, Bahia, CEP: 41150-000, Brazil.
| | - Joselita Moura Sacramento
- University of the State of Bahia, Department of Life Sciences - Campus I, Street Silveira Martins, 2555, Cabula, Salvador, Bahia, CEP: 41150-000, Brazil.
| | - Luana de Oliveira Leite
- University of the State of Bahia, Department of Life Sciences - Campus I, Street Silveira Martins, 2555, Cabula, Salvador, Bahia, CEP: 41150-000, Brazil; Federal University of Bahia, School of Nutrition, Street Basilio da Gama, Canela, Salvador, Bahia, CEP: 40110-040, Brazil.
| | - Poliana da Silva Santana
- University of the State of Bahia, Department of Life Sciences - Campus I, Street Silveira Martins, 2555, Cabula, Salvador, Bahia, CEP: 41150-000, Brazil.
| |
Collapse
|
8
|
Fontané L, Pedro-Botet J, Garcia-Ribera S, Climent E, Muns MD, Ballesta S, Satorra P, Flores-Le Roux JA, Benaiges D. Use of phytosterol-fortified foods to improve LDL cholesterol levels: A systematic review and meta-analysis. Nutr Metab Cardiovasc Dis 2023; 33:1472-1480. [PMID: 37225641 DOI: 10.1016/j.numecd.2023.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/26/2023]
Abstract
AIMS The main objective was to assess if foods fortified with phytosterols (PS), including plant sterols and plant stanols, reduce low-density lipoprotein cholesterol (LDL-C) concentrations. The secondary objective was to determine the impact of different factors related to PS administration. DATA SYNTHESIS The search was carried out in MEDLINE, EMBASE, Web of Science, Scopus and The Cochrane Central Register of Controlled Trials (CENTRAL) databases up to March 2023. The meta-analysis was registered in the PROSPERO database (CRD42021236952). From a total of 223 studies, 125 were included. On average, PS lowered LDL-C 0.55 mmol/L [95% confidence interval (CI) = 10.82-12.67], and this decrease was significantly maintained for all analysed subgroups. A greater reduction in LDL-C levels was detected in relation to a higher daily PS dosage. The food format "Bread, biscuits, cereals", conditioned a lower decrease of 0.14 mmol/L (95%CI -8.71 to -2.16) in LDL-C levels, compared to the predominant food format group of "butter, margarine, spreads". No significant differences were detected with the other subgroups (treatment duration, intake pattern, number of daily intakes and concomitant statin treatment). CONCLUSION The present meta-analysis supported that the use of PS-fortified foods had a beneficial effect on LDL-C lowering. In addition, it was observed that the factors that influence a decline LDL-C levels were PS dose as well as the food format in which they were consumed.
Collapse
Affiliation(s)
- Laia Fontané
- Department of Endocrinology and Nutrition, Consorci Sanitari Alt Penedès-Garraf, Espirall, 61, E-08720 Vilafranca del Penedès, Spain; Department of Endocrinology and Nutrition, Hospital del Mar, Passeig Marítim, 25-29, E-08003 Barcelona, Spain.
| | - Juan Pedro-Botet
- Department of Endocrinology and Nutrition, Hospital del Mar, Passeig Marítim, 25-29, E-08003 Barcelona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Campus Universitari Mar. Dr. Aiguader, 80, E-08003 Barcelona, Spain; Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Dr. Aiguader, 80, E-08003 Barcelona, Spain.
| | - Sonika Garcia-Ribera
- Department of Endocrinology and Nutrition, Consorci Sanitari Alt Penedès-Garraf, Espirall, 61, E-08720 Vilafranca del Penedès, Spain; Department of Endocrinology and Nutrition, Hospital del Mar, Passeig Marítim, 25-29, E-08003 Barcelona, Spain; Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Dr. Aiguader, 80, E-08003 Barcelona, Spain.
| | - Elisenda Climent
- Department of Endocrinology and Nutrition, Hospital del Mar, Passeig Marítim, 25-29, E-08003 Barcelona, Spain; Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Dr. Aiguader, 80, E-08003 Barcelona, Spain.
| | - Maria D Muns
- Department of Endocrinology and Nutrition, Hospital del Mar, Passeig Marítim, 25-29, E-08003 Barcelona, Spain.
| | - Silvia Ballesta
- Department of Endocrinology and Nutrition, Consorci Sanitari Alt Penedès-Garraf, Espirall, 61, E-08720 Vilafranca del Penedès, Spain; Department of Endocrinology and Nutrition, Hospital del Mar, Passeig Marítim, 25-29, E-08003 Barcelona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Campus Universitari Mar. Dr. Aiguader, 80, E-08003 Barcelona, Spain; Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Dr. Aiguader, 80, E-08003 Barcelona, Spain.
| | - Pau Satorra
- Department of Biostatistics, Institut d'Investigació Biomèdica de Bellvitge, Gran Via de l'Hospitalet, 199, E-08908 Hospitalet de Llobregat, Spain.
| | - Juana A Flores-Le Roux
- Department of Endocrinology and Nutrition, Consorci Sanitari Alt Penedès-Garraf, Espirall, 61, E-08720 Vilafranca del Penedès, Spain; Department of Endocrinology and Nutrition, Hospital del Mar, Passeig Marítim, 25-29, E-08003 Barcelona, Spain; Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Dr. Aiguader, 80, E-08003 Barcelona, Spain; Department of Medicine, Universitat Pompeu Fabra, Plaça de la Mercè, 10-12, E-08002 Barcelona, Spain.
| | - David Benaiges
- Department of Endocrinology and Nutrition, Consorci Sanitari Alt Penedès-Garraf, Espirall, 61, E-08720 Vilafranca del Penedès, Spain; Department of Endocrinology and Nutrition, Hospital del Mar, Passeig Marítim, 25-29, E-08003 Barcelona, Spain; Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Dr. Aiguader, 80, E-08003 Barcelona, Spain; Department of Medicine, Universitat Pompeu Fabra, Plaça de la Mercè, 10-12, E-08002 Barcelona, Spain.
| |
Collapse
|
9
|
Gao Y, Xun R, Xia J, Xia H, Sun G. Effects of phytosterol supplementation on lipid profiles in patients with hypercholesterolemia: a systematic review and meta-analysis of randomized controlled trials. Food Funct 2023; 14:2969-2997. [PMID: 36891733 DOI: 10.1039/d2fo03663k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Phytosterols (PSs) have been reported to improve blood lipids in patients with hypercholesterolemia for many years. However, meta-analyses of the effects of phytosterols on lipid profiles are limited and incomplete. A systematic search of randomized controlled trials (RCTs) published in PubMed, Embase, Cochrane Library, and Web of Science from inception to March 2022 was conducted according to the 2020 preferred reporting items of the guidelines for systematic reviews and meta-analysis (PRISMA) statement. These included studies of people with hypercholesterolemia, comparing foods or preparations containing PSs with controls. Mean differences with 95% confidence intervals were used to estimate continuous outcomes for individual studies. The results showed that in patients with hypercholesterolemia, taking a diet containing a certain dose of plant sterol significantly reduced total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C) (TC: Weight Mean Difference (WMD) [95% CI] = -0.37 [-0.41, -0.34], p < 0.001; LDL-C: WMD [95% CI] = -0.34 [-0.37, -0.30], p < 0.001). In contrast, PSs had no effect on high density lipoprotein cholesterol (HDL-C) or triglycerides (TGs) (HDL-C: WMD [95% CI] = 0.00 [-0.01, 0.02], p = 0.742; TG: WMD [95% CI] = -0.01 [-0.04, 0.01], p = 0.233). Also, a significant effect of supplemental dose on LDL-C levels was observed in a nonlinear dose-response analysis (p-nonlinearity = 0.024). Our findings suggest that dietary phytosterols can help reduce TC and LDL-C concentrations in hypercholesterolemia patients without affecting HDL-C and TG concentrations. And the effect may be affected by the food substrate, dose, esterification, intervention cycle and region. The dose of phytosterol is an important factor affecting the level of LDL-C.
Collapse
Affiliation(s)
- Yusi Gao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Ruilong Xun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Jiayue Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China. .,China-DRIs Expert Committee on Other Dietary Ingredients, Beijing 100052, China
| |
Collapse
|
10
|
Lopez C, David-Briand E, Lollier V, Mériadec C, Bizien T, Pérez J, Artzner F. Solubilization of free β-sitosterol in milk sphingomyelin and polar lipid vesicles as carriers: Structural characterization of the membranes and sphingosome morphology. Food Res Int 2023; 165:112496. [PMID: 36869506 DOI: 10.1016/j.foodres.2023.112496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/29/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023]
Abstract
High consumption of plant sterols reduces the risk of cardiovascular diseases in humans and provides health benefits. Increasing the amount of plant sterols in the diet is therefore necessary to reach the recommended daily dietary intake. However, food supplementation with free plant sterols is challenging because of their low solubility in fats and water. The objectives of this study were to investigate the capacity of milk-sphingomyelin (milk-SM) and milk polar lipids to solubilise β-sitosterol molecules in bilayer membranes organised as vesicles called sphingosomes. The thermal and structural properties of milk-SM containing bilayers composed of various amounts of β-sitosterol were examined by differential scanning calorimetry (DSC) and temperature-controlled X-ray diffraction (XRD), the molecular interactions were studied using the Langmuir film technique, the morphologies of sphingosomes and β-sitosterol crystals were observed by microscopy. We showed that the milk-SM bilayers devoid of β-sitosterol exhibited a gel to fluid Lα phase transition for Tm = 34.5 °C and formed facetted spherical sphingosomes below Tm. The solubilisation of β-sitosterol within milk-SM bilayers induced a liquid-ordered Lo phaseabove 25 %mol (1.7 %wt) β-sitosterol and a softening of the membranes leading to the formation of elongated sphingosomes. Attractive molecular interactions revealed a condensing effect of β-sitosterol on milk-SM Langmuir monolayers. Above 40 %mol (25.7 %wt) β-sitosterol, partitioning occured with the formation of β-sitosterol microcrystals in the aqueous phase. Similar results were obtained with the solubilization of β-sitosterol within milk polar lipid vesicles. For the first time, this study highlighted the efficient solubilization of free β-sitosterol within milk-SM based vesicles, which opens new market opportunities for the formulation of functional foods enriched in non-crystalline free plant sterols.
Collapse
Affiliation(s)
- Christelle Lopez
- INRAE, BIA, F-44316 Nantes, France; INRAE, STLO, F-35000 Rennes, France.
| | | | - Virginie Lollier
- INRAE, BIA, F-44316 Nantes, France; INRAE, PROBE Research Infrastructure, BIBS Facility, F-44316 Nantes, France
| | | | - Thomas Bizien
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin BP48, F-91192 Gif-sur-Yvette, France
| | - Javier Pérez
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin BP48, F-91192 Gif-sur-Yvette, France
| | - Franck Artzner
- IPR, UMR 6251, CNRS, University of Rennes 1, F-35042 Rennes, France
| |
Collapse
|
11
|
Lv WJ, Huang JY, Lin J, Ma YM, He SQ, Zhang YW, Wang TZ, Cheng K, Xiong Y, Sun FG, Pan ZC, Sun JB, Mao W, Guo SN. Phytosterols Alleviate Hyperlipidemia by Regulating Gut Microbiota and Cholesterol Metabolism in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:6409385. [PMID: 37151603 PMCID: PMC10156461 DOI: 10.1155/2023/6409385] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/29/2022] [Accepted: 02/17/2023] [Indexed: 05/09/2023]
Abstract
Phytosterols (PS) have been shown to regulate cholesterol metabolism and alleviate hyperlipidemia (HLP), but the mechanism is still unclear. In this study, we investigated the mechanism by which PS regulates cholesterol metabolism in high-fat diet (HFD) mice. The results showed that PS treatment reduced the accumulation of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) in the serum of HFD mice, while increasing the serum levels of high-density lipoprotein cholesterol (HDL-C). Compared with HFD mice, PS not only increased the antioxidant activity of the liver but also regulated the mRNA expression levels of enzymes and receptors related to cholesterol metabolism. The hypolipidemic effect of PS was abolished by antibiotic (Abx) intervention and reproduced by fecal transplantation (FMT) intervention. The results of 16S rRNA sequencing analysis showed that PS modulated the gut microbiota of mice. PS reduced the relative abundance of Lactobacillus and other bile salt hydrolase- (BSH-) producing gut microbiota in HFD mice, which are potentially related to cholesterol metabolism. These findings partially explain the mechanisms by which PS regulates cholesterol metabolism. This implies that regulation of the gut microbiota would be a potential target for the treatment of HLP.
Collapse
Affiliation(s)
- Wei-Jie Lv
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Jie-Yi Huang
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Jin Lin
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Yi-Mu Ma
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Shi-Qi He
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Ying-Wen Zhang
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Tian-Ze Wang
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Ke Cheng
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Ying Xiong
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Feng-Gang Sun
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Zhong-Chao Pan
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Jing-Bo Sun
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Wei Mao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Shi-Ning Guo
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| |
Collapse
|
12
|
Esperança ES, Bonatto MS, Silva KCG, Shimamoto GG, Tubino M, Costa MC, Rodrigues CEC, Meirelles AJA, Sato ACK, Maximo GJ. Phytosterols and γ-Oryzanol as Cholesterol Solid Phase Modifiers during Digestion. Foods 2022; 11:3629. [PMID: 36429220 PMCID: PMC9689245 DOI: 10.3390/foods11223629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Literature reports that ingestion of phytosterols and γ-oryzanol contributes to cholesterol lowering. Despite in vivo observations, thermodynamic phase equilibria could explain phenomena occurring during digestion leading to such effects. To advance the observations made by previous literature, this study was aimed at describing the complete solid-liquid phase equilibrium diagrams of cholesterol + phytosterol and γ-oryzanol systems by DSC, evaluating them by powder X-ray, microscopy, and thermodynamic modeling. Additionally, this study evaluated the phenomena observed by an in vitro digestibility method. Results confirmed the formation of solid solution in the cholesterol + phytosterols system at any concentration and that cholesterol + γ-oryzanol mixtures formed stable liquid crystalline phases with a significant melting temperature depression. The in vitro protocol supported the idea that the same phenomena can occur during digestion in which mechanochemical forces were probably the mechanisms promoting cholesterol solid phase changes in the presence of such phytocompounds. In this case, these changes could alter cholesterol solubility and possibly its absorption in the gastrointestinal lumen.
Collapse
Affiliation(s)
| | - Mariane S. Bonatto
- School of Food Engineering, University of Campinas, Campinas 13083-862, Brazil
| | - Karen C. G. Silva
- School of Food Engineering, University of Campinas, Campinas 13083-862, Brazil
| | | | - Matthieu Tubino
- Chemical Institute, University of Campinas, Campinas 13083-970, Brazil
| | - Mariana C. Costa
- School of Chemical Engineering, University of Campinas, Campinas 13083-852, Brazil
| | | | | | - Ana C. K. Sato
- School of Food Engineering, University of Campinas, Campinas 13083-862, Brazil
| | | |
Collapse
|
13
|
Duan Y, Gong K, Xu S, Zhang F, Meng X, Han J. Regulation of cholesterol homeostasis in health and diseases: from mechanisms to targeted therapeutics. Signal Transduct Target Ther 2022; 7:265. [PMID: 35918332 PMCID: PMC9344793 DOI: 10.1038/s41392-022-01125-5] [Citation(s) in RCA: 158] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 12/13/2022] Open
Abstract
Disturbed cholesterol homeostasis plays critical roles in the development of multiple diseases, such as cardiovascular diseases (CVD), neurodegenerative diseases and cancers, particularly the CVD in which the accumulation of lipids (mainly the cholesteryl esters) within macrophage/foam cells underneath the endothelial layer drives the formation of atherosclerotic lesions eventually. More and more studies have shown that lowering cholesterol level, especially low-density lipoprotein cholesterol level, protects cardiovascular system and prevents cardiovascular events effectively. Maintaining cholesterol homeostasis is determined by cholesterol biosynthesis, uptake, efflux, transport, storage, utilization, and/or excretion. All the processes should be precisely controlled by the multiple regulatory pathways. Based on the regulation of cholesterol homeostasis, many interventions have been developed to lower cholesterol by inhibiting cholesterol biosynthesis and uptake or enhancing cholesterol utilization and excretion. Herein, we summarize the historical review and research events, the current understandings of the molecular pathways playing key roles in regulating cholesterol homeostasis, and the cholesterol-lowering interventions in clinics or in preclinical studies as well as new cholesterol-lowering targets and their clinical advances. More importantly, we review and discuss the benefits of those interventions for the treatment of multiple diseases including atherosclerotic cardiovascular diseases, obesity, diabetes, nonalcoholic fatty liver disease, cancer, neurodegenerative diseases, osteoporosis and virus infection.
Collapse
Affiliation(s)
- Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Ke Gong
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Suowen Xu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Feng Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xianshe Meng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jihong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China. .,College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
| |
Collapse
|
14
|
Turini E, Sarsale M, Petri D, Totaro M, Lucenteforte E, Tavoschi L, Baggiani A. Efficacy of Plant Sterol-Enriched Food for Primary Prevention and Treatment of Hypercholesterolemia: A Systematic Literature Review. Foods 2022; 11:foods11060839. [PMID: 35327262 PMCID: PMC8954273 DOI: 10.3390/foods11060839] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 01/27/2023] Open
Abstract
Plant sterols/phytosterols (PSs) are molecules with a similar structure to cholesterol that have a recognized effect on elevated LDL concentrations (LDL-c). PSs are used as a natural therapy against elevated LDL-c in combination with a healthy diet and exercise. A systematic review was performed to evaluate the efficacy of PS-enriched foods in the treatment of hypercholesterolemia. Randomized controlled clinical studies reporting the use of PS-enriched foods to reduce LDL-c among adult individuals were retrieved and assessed for risk of bias. Meta-analyses were performed to assess changes in LDL-c by treatment, food matrix, LDL-c range, sterols dosage and risk of bias (RoB). In the 13 studies analyzed, LDL-c in PS-treated participants decreased by an average of 12.14 (8.98; 15.29) mg/dL. PS administration was statistically more effective in patients with LDL-c ≥ 140 mg/dL and for PS dosages > 2 g/day. It can be concluded that PSs can be used as an important primary prevention measure for hypercholesterolemia and as tertiary prevention for cardiovascular events in patients who already have mild to moderate LDL-c. However, in severe hypercholesterolemia and in cases of familial hypercholesterolemia, it is necessary to combine dietary treatment with the use of statins.
Collapse
Affiliation(s)
- Elisa Turini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 37, 56123 Pisa, Italy; (M.S.); (M.T.); (L.T.); (A.B.)
- Correspondence:
| | - Miriana Sarsale
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 37, 56123 Pisa, Italy; (M.S.); (M.T.); (L.T.); (A.B.)
- Department of Pharmacy, University of Pisa, 56123 Pisa, Italy
| | - Davide Petri
- Department of Clinical and Experimental Medicine, University of Pisa, 56123 Pisa, Italy; (D.P.); (E.L.)
| | - Michele Totaro
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 37, 56123 Pisa, Italy; (M.S.); (M.T.); (L.T.); (A.B.)
| | - Ersilia Lucenteforte
- Department of Clinical and Experimental Medicine, University of Pisa, 56123 Pisa, Italy; (D.P.); (E.L.)
| | - Lara Tavoschi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 37, 56123 Pisa, Italy; (M.S.); (M.T.); (L.T.); (A.B.)
| | - Angelo Baggiani
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 37, 56123 Pisa, Italy; (M.S.); (M.T.); (L.T.); (A.B.)
| |
Collapse
|
15
|
Gao P, Liu R, Jin Q, Wang X. Key chemical composition of walnut (Juglans regia. L) Oils generated with different processing methods and their cholesterol-lowering effects in HepG2 cells. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Poli A, Marangoni F, Corsini A, Manzato E, Marrocco W, Martini D, Medea G, Visioli F. Phytosterols, Cholesterol Control, and Cardiovascular Disease. Nutrients 2021; 13:nu13082810. [PMID: 34444970 PMCID: PMC8399210 DOI: 10.3390/nu13082810] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
The use of phytosterols (or plant sterols) for the control of plasma cholesterol concentrations has recently gained traction because their efficacy is acknowledged by scientific authorities and leading guidelines. Phytosterols, marketed as supplements or functional foods, are formally classified as food in the European Union, are freely available for purchase, and are frequently used without any health professional advice; therefore, they are often self-prescribed, either inappropriately or in situations in which no significant advantage can be obtained. For this reason, a panel of experts with diverse medical and scientific backgrounds was convened by NFI—Nutrition Foundation of Italy—to critically evaluate and summarize the literature available on the topic, with the goal of providing medical doctors and all health professionals useful information to actively govern the use of phytosterols in the context of plasma cholesterol control. Some practical indications to help professionals identify subjects who will most likely benefit from the use of these products, optimizing the therapeutic outcomes, are also provided. The panel concluded that the use of phytosterols as supplements or functional foods to control Low Density Lipoprotein (LDL) cholesterol levels should be preceded by the assessment of some relevant individual characteristics: cardiovascular risk, lipid profile, correct understanding of how to use these products, and willingness to pay for the treatment.
Collapse
Affiliation(s)
- Andrea Poli
- Nutrition Foundation of Italy, 20124 Milan, Italy;
- Correspondence: ; Tel.: +39-02-7600-6271
| | | | - Alberto Corsini
- Department of Pharmaceutical and Pharmacological Sciences, University of Milan, 20133 Milan, Italy;
- IRCCS MultiMedica, 20099 Sesto San Giovanni, Italy
| | - Enzo Manzato
- Department of Medicine (DIMED), University of Padova, 35128 Padova, Italy;
| | - Walter Marrocco
- FIMMG—Italian Federation of General Medicine Doctors and SIMPeSV–Italian Society of Preventive and Lifestyle Medicine, 00144 Rome, Italy;
| | - Daniela Martini
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy;
| | - Gerardo Medea
- SIMG—Italian Society of General Medicine, 50142 Firenze, Italy;
| | - Francesco Visioli
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy;
- IMDEA-Food, CEI UAM+CSIC, 28049 Madrid, Spain
| |
Collapse
|
17
|
Kopylov AT, Malsagova KA, Stepanov AA, Kaysheva AL. Diversity of Plant Sterols Metabolism: The Impact on Human Health, Sport, and Accumulation of Contaminating Sterols. Nutrients 2021; 13:nu13051623. [PMID: 34066075 PMCID: PMC8150896 DOI: 10.3390/nu13051623] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/05/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023] Open
Abstract
The way of plant sterols transformation and their benefits for humans is still a question under the massive continuing revision. In fact, there are no receptors for binding with sterols in mammalians. However, possible biotransformation to steroids that can be catalyzed by gastro-intestinal microflora, microbial cells in prebiotics or cytochromes system were repeatedly reported. Some products of sterols metabolization are capable to imitate resident human steroids and compete with them for the binding with corresponding receptors, thus affecting endocrine balance and entire physiology condition. There are also tremendous reports about the natural origination of mammalian steroid hormones in plants and corresponding receptors for their binding. Some investigations and reports warn about anabolic effect of sterols, however, there are many researchers who are reluctant to believe in and have strong opposing arguments. We encounter plant sterols everywhere: in food, in pharmacy, in cosmetics, but still know little about their diverse properties and, hence, their exact impact on our life. Most of our knowledge is limited to their cholesterol-lowering influence and protective effect against cardiovascular disease. However, the world of plant sterols is significantly wider if we consider the thousands of publications released over the past 10 years.
Collapse
|
18
|
Simonetti G, Di Filippo P, Pomata D, Riccardi C, Buiarelli F, Sonego E, Castellani F. Characterization of seven sterols in five different types of cattle feedstuffs. Food Chem 2021; 340:127926. [PMID: 32919357 DOI: 10.1016/j.foodchem.2020.127926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 01/04/2023]
Abstract
This paper provides a method for the quantification of sterols in different types of calf feedstuffs based on soy, sunflower, hay, calf feed and a mixture of all of them. The free fraction and the total sterolic fraction, after saponification and acidic hydrolysis of the samples, are extracted by solvent and the sterols are identified/quantified by reversed phase HPLC coupled to tandem mass spectrometry by atmospheric pressure chemical ionization. After the recovery evaluation, the method is validated in terms of linearity (coefficient of determination R2), repeatability (coefficient of variation RSD), limit of detection and quantification. In most of the cases, the most representative phytosterol is β-sitosterol, followed by campesterol or stigmasterol and by other minor sterols such as fucosterol, and Δ-5-avenasterol. In addition, also cholesterol and ergosterol, if present, are evaluated in all the samples. As far as we know, very little information is available on the investigated feeds, which are commonly used on farms. The results of this survey were compared to other studies, if present in literature, showing good agreement. The proposed method resulted to be simple, fast and suitable for application to other sterols, feedstuffs and derived foods. The knowledge of the sterolic content and composition is getting more and more important, both in terms of comprehension of the vegetal biochemistry and as basis for sterolomic studies.
Collapse
Affiliation(s)
- Giulia Simonetti
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | | | | | | | - Francesca Buiarelli
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy.
| | - Elisa Sonego
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Federica Castellani
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| |
Collapse
|
19
|
Pan F, Wang X, Wen B, Wang C, Xu Y, Dang W, Zhang M. Development of walnut oil and almond oil blends for improvements in nutritional and oxidative stability. GRASAS Y ACEITES 2020. [DOI: 10.3989/gya.0920192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
For the increase in oxidative stability and phytonutrient contents of walnut oil (WO), 5, 10, 20 and 30% blends with almond oil (AO) were prepared. The fatty acid compositions and the micronutrients of the oil samples such as tocopherol, phytosterol and squalene were measured by GC-MS and HPLC. It was found that the proportions of PUFAs/SFAs in blended oils with high AO contents were lowered, and the blends contained higher levels of tocopherols, phytosterols and squalene than those of pure WO. The 60 °C oven accelerated oxidation test was used to determine the oxidative stability of the blended oil. The fatty acid composition, micronutrients and oxidation products were determined. The results showed that the oxidation stability of the blended oil increased with an increasing proportion of AO. In addition, a significant negative correlation between micronutrient and oxidation products was observed as the number of days of oxidation increased.
Collapse
|
20
|
Combined effect of n-3 fatty acids and phytosterol esters on alleviating hepatic steatosis in non-alcoholic fatty liver disease subjects: a double-blind placebo-controlled clinical trial. Br J Nutr 2020; 123:1148-1158. [DOI: 10.1017/s0007114520000495] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractThe aim of this study was to investigate the combined effect of n-3 fatty acids (EPA and DHA, at an EPA:DHA ratio of 150:500) and phytosterol esters (PS) on non-alcoholic fatty liver disease (NAFLD) patients. We conducted a randomised, double-blind, placebo-controlled trial. Ninety-six NAFLD subjects were randomly assigned to the following groups: the PS group (receiving 3·3 g/d PS); the FO group (receiving 450 mg EPA + 1500 mg DHA/d); the PS + FO combination group (receiving 3·3 g/d PS and 450 mg EPA + 1500 mg DHA/d) and the PO group (a placebo group). The baseline clinical characteristics of the four groups were similar. The primary outcome was liver:spleen attenuation ratio (L:S ratio). The percentage increase in liver–spleen attenuation (≤1) in the PS + FO group was 36 % (P = 0·083), higher than those in the other three groups (PS group, 11 %, P = 0·519; FO group, 18 %, P = 0·071; PO group, 15 %, P = 0·436). Compared with baseline, transforming growth factor-β (TGF-β) was significantly decreased in the three study groups at the end of the trial (PS, P = 0·000; FO, P = 0·002; PS + FO, P = 0·001) and TNF-α was significantly decreased in the FO group (P = 0·036), PS + FO group (P = 0·005) and PO group (P = 0·032) at the end of the intervention. Notably, TGF-β was reduced significantly more in the PS + FO group than in the PO group (P = 0·032). The TAG and total cholesterol levels of the PS + FO group were reduced by 11·57 and 9·55 %, respectively. In conclusion, co-supplementation of PS and EPA + DHA could increase the effectiveness of treatment for hepatic steatosis.
Collapse
|
21
|
Sandoval-Ramírez BA, Catalán Ú, Calderón-Pérez L, Companys J, Pla-Pagà L, Ludwig IA, Romero MP, Solà R. The effects and associations of whole-apple intake on diverse cardiovascular risk factors. A narrative review. Crit Rev Food Sci Nutr 2020; 60:3862-3875. [PMID: 31928209 DOI: 10.1080/10408398.2019.1709801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Apples are among the world's most consumed fruits. However, while the impact of whole-apple intake on cardiovascular disease (CVD) remains unknown. This narrative review summarizes a novel integrated view of whole-apple intake, CVD risk association (through observational studies; OSs), and the effects on CVD risk factors (randomized trials; RTs). In 8 OSs, whole-apple intake was associated with a reduced risk of CVD mortality, ischemic heart disease mortality, stroke mortality, all-cause mortality, and severe abdominal aortic calcification, as well as with lower C-reactive protein (CRP) concentrations. In 8 RTs, whole-apple consumption reduced total cholesterol, low-density lipoprotein cholesterol, systolic blood pressure, pulse pressure, and plasma inflammatory cytokines, and noticeably reduced CRP, whereas it increased high-density lipoprotein cholesterol (HDLc) and improved endothelial function. Thus, consuming between 100 and 150 g/day of whole apples is associated with a lower CVD risk and decreases in blood pressure, pulse pressure, total cholesterol, low-density lipoprotein cholesterol, and inflammation status as well as with increases in HDLc and endothelial function. These results, support the regular consumption of whole apples as an aid in the prevention of CVD.
Collapse
Affiliation(s)
- Berner Andrée Sandoval-Ramírez
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Universitat Rovira i Virgili, Reus, Catalonia, Spain
| | - Úrsula Catalán
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Universitat Rovira i Virgili, Reus, Catalonia, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain
| | - Lorena Calderón-Pérez
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Universitat Rovira i Virgili, Reus, Catalonia, Spain.,Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Catalonia, Spain
| | - Judit Companys
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Universitat Rovira i Virgili, Reus, Catalonia, Spain.,Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Catalonia, Spain
| | - Laura Pla-Pagà
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Universitat Rovira i Virgili, Reus, Catalonia, Spain.,Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Catalonia, Spain
| | - Iziar A Ludwig
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Universitat Rovira i Virgili, Reus, Catalonia, Spain
| | - Ma Paz Romero
- Food Technology Department, XaRTA-TPV, Agrotecnio Center, Escola Tecnica Superior d'Enginyeria Agraria, University of Lleida, Lleida, Catalonia, Spain
| | - Rosa Solà
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Universitat Rovira i Virgili, Reus, Catalonia, Spain.,Hospital Universitari Sant Joan de Reus (HUSJR), Reus, Catalonia, Spain
| |
Collapse
|
22
|
XIE C, ZENG H, LI J, QIN L. Comprehensive explorations of nutritional, functional and potential tasty components of various types of Sufu, a Chinese fermented soybean appetizer. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.37917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | | | | | - Likang QIN
- Guizhou University, China; Key Laboratory of Agricultural and Animal Products Storage and Processing, China
| |
Collapse
|
23
|
Dumolt JH, Rideout TC. The Lipid-lowering Effects and Associated Mechanisms of Dietary Phytosterol Supplementation. Curr Pharm Des 2019; 23:5077-5085. [PMID: 28745211 DOI: 10.2174/1381612823666170725142337] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 07/01/2017] [Accepted: 07/21/2017] [Indexed: 12/12/2022]
Abstract
Phytosterols (PS) are plant-based structural analogous of mammalian cholesterol that have been shown to lower blood cholesterol concentrations by ~10%, although inter-individual response to PS supplementation due to subject-specific metabolic and genetic factors is evident. Recent work further suggests that PS may act as effective triglyceride (TG)-lowering agents with maximal TG reductions observed in hypertriglyceridemic subjects. Although PS have been demonstrated to interfere with cholesterol and perhaps TG absorption within the intestine, they also have the capacity to modulate the expression of lipid regulatory genes through liver X receptor (LXR) activation. Identification of single-nucleotide polymorphisms (SNP) in key cholesterol and TG regulating genes, in particular adenosine triphosphate binding cassette G8 (ABCG8) and apolipoprotein E (apoE) have provided insight into the potential of utilizing genomic identifiers as an indicator of PS responsiveness. While PS supplementation is deemed safe, expanding research into the atherogenic potential of oxidized phytosterols (oxyphytosterols) has emerged with their identification in arterial lesions. This review will highlight the lipid-lowering utility and associated mechanisms of PS and discuss novel applications and future research priorities for PS pertaining to in utero PS exposure for long-term cardiovascular disease risk protection and combination therapies with lipidlowering drugs.
Collapse
Affiliation(s)
- Jerad H Dumolt
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, 14214, United States
| | - Todd C Rideout
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, 14214, United States
| |
Collapse
|
24
|
Wilde PJ, Garcia-Llatas G, Lagarda MJ, Haslam RP, Grundy MM. Oat and lipolysis: Food matrix effect. Food Chem 2019; 278:683-691. [DOI: 10.1016/j.foodchem.2018.11.113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 01/03/2023]
|
25
|
Alejandre M, Astiasarán I, Ansorena D. Omega-3 fatty acids and plant sterols as cardioprotective ingredients in beef patties: composition and relevance of nutritional information on sensory characterization. Food Funct 2019; 10:7883-7891. [DOI: 10.1039/c9fo01128e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gel emulsion with cholesterol lowering properties and reduced saturated fat is used to substitute animal fat in beef patties.
Collapse
Affiliation(s)
- Marta Alejandre
- Department of Nutrition
- Food Science and Physiology
- Faculty of Pharmacy and Nutrition
- University of Navarra
- Irunlarrea s/n
| | - Icíar Astiasarán
- Department of Nutrition
- Food Science and Physiology
- Faculty of Pharmacy and Nutrition
- University of Navarra
- Irunlarrea s/n
| | - Diana Ansorena
- Department of Nutrition
- Food Science and Physiology
- Faculty of Pharmacy and Nutrition
- University of Navarra
- Irunlarrea s/n
| |
Collapse
|
26
|
Aguilera JM. The food matrix: implications in processing, nutrition and health. Crit Rev Food Sci Nutr 2018; 59:3612-3629. [DOI: 10.1080/10408398.2018.1502743] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- José Miguel Aguilera
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
27
|
Update on the Benefits and Mechanisms of Action of the Bioactive Vegetal Alkaloid Berberine on Lipid Metabolism and Homeostasis. CHOLESTEROL 2018; 2018:7173920. [PMID: 30057809 PMCID: PMC6051272 DOI: 10.1155/2018/7173920] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/16/2018] [Accepted: 04/24/2018] [Indexed: 01/01/2023]
Abstract
Elevation of circulating levels of blood cholesterol, especially LDL cholesterol, and/or the decrease of HDL cholesterol levels have long been recognized as primary risk factors for developing atherosclerosis that leads to cardiovascular and cerebrovascular disease. Hypertriglyceridemia is an independent risk factor that is known to contribute to the development of atherosclerosis. Thus, various interventional efforts aimed at reducing hypercholesterolemia and hypertriglyceridemia have been practiced clinically for decades to reduce morbidity and mortality risk associated with deleterious cardiovascular and cerebrovascular events. As such, many drugs have been developed and clinically used to treat hypocholesteremia and/or hypertriglyceridemia; however, dietary approaches including supplements along with changes in nutrition and lifestyle have become increasingly attractive and acceptable methods used to control borderline or moderately increased levels of blood cholesterol and triacylglycerols. In this regard, the use of a plant/herbal bioactive compound, berberine (BBR), has recently been studied extensively in terms of its efficacy as well as its mechanisms of action and safety as an alternative intervention that beneficially modulates blood lipids. The aim of this review is to provide a comprehensive update on BBR research, new concepts and directions in terms of product development and current challenges, and future prospects of using BBR to manage diseases and complications associated with dyslipidemia.
Collapse
|
28
|
Grundy MML, Fardet A, Tosh SM, Rich GT, Wilde PJ. Processing of oat: the impact on oat's cholesterol lowering effect. Food Funct 2018; 9:1328-1343. [PMID: 29431835 PMCID: PMC5885279 DOI: 10.1039/c7fo02006f] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/31/2022]
Abstract
Epidemiological and interventional studies have clearly demonstrated the beneficial impact of consuming oat and oat-based products on serum cholesterol and other markers of cardiovascular disease. The cholesterol-lowering effect of oat is thought to be associated with the β-glucan it contains. However, not all food products containing β-glucan seem to lead to the same health outcome. Overall, highly processed β-glucan sources (where the oat tissue is highly disrupted) appear to be less effective at reducing serum cholesterol, but the reasons are not well understood. Therefore, the mechanisms involved still need further clarification. The purpose of this paper is to review current evidence of the cholesterol-lowering effect of oat in the context of the structure and complexity of the oat matrix. The possibility of a synergistic action and interaction between the oat constituents promoting hypocholesterolaemia is also discussed. A review of the literature suggested that for a similar dose of β-glucan, (1) liquid oat-based foods seem to give more consistent, but moderate reductions in cholesterol than semi-solid or solid foods where the results are more variable; (2) the quantity of β-glucan and the molecular weight at expected consumption levels (∼3 g day-1) play a role in cholesterol reduction; and (3) unrefined β-glucan-rich oat-based foods (where some of the plant tissue remains intact) often appear more efficient at lowering cholesterol than purified β-glucan added as an ingredient.
Collapse
Affiliation(s)
- Myriam M-L Grundy
- Food and Health Programme, Quadram Institute Bioscience, Norwich Research Park, NR4 7UA, UK.
| | - Anthony Fardet
- INRA, JRU 1019, UNH, CRNH Auvergne, F-63000 Clermont-Ferrand & Université de Clermont, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France.
| | - Susan M Tosh
- University of Ottawa, Université, Salle 118, Ottawa, ON K1N 6N5 Canada.
| | - Gillian T Rich
- Food and Health Programme, Quadram Institute Bioscience, Norwich Research Park, NR4 7UA, UK.
| | - Peter J Wilde
- Food and Health Programme, Quadram Institute Bioscience, Norwich Research Park, NR4 7UA, UK.
| |
Collapse
|
29
|
Tanaka M, Yoshino Y, Takeda S, Toda K, Shimoda H, Tsuruma K, Shimazawa M, Hara H. Fermented Rice Germ Extract Alleviates Morphological and Functional Damage to Murine Gastrocnemius Muscle by Inactivation of AMP-Activated Protein Kinase. J Med Food 2017; 20:969-980. [PMID: 28956710 DOI: 10.1089/jmf.2016.3906] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sarcopenia, loss of muscle mass and function, is mainly observed in elderly people. In this study, we investigated whether fermented rice germ extract (FRGE) has some effects on the mouse gastrocnemius muscle by using behavioral and morphological analyses, Western blotting, and a murine model of immobilization-induced muscle atrophy. Daily oral FRGE administration increased muscle weight and strength. In addition, myofiber size in gastrocnemius muscle of FRGE-treated mice was increased as revealed by morphological quantification. Activation of AMP-activated protein kinase (AMPK) signaling, which inhibits protein synthesis and stimulates protein degradation in gastrocnemius muscle, was significantly attenuated in the FRGE-treated mice compared with control mice. Expression level of forkhead box 3a (FOXO3a) protein was also significantly decreased in the FRGE-treated group. Moreover, the decrease in mean myofiber cross-sectional area in immobilized hindlimb in vehicle-treated mice was inhibited by FRGE treatment in histological analysis. In conclusion, FRGE increased the strength and weight of gastrocnemius muscle and myofiber size, and reduced immobilization-induced muscle atrophy in mice. These findings indicated that FRGE might be beneficial in preventing motor dysfunction in a range of conditions, including sarcopenia.
Collapse
Affiliation(s)
- Miyu Tanaka
- 1 Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University , Gifu, Japan
| | - Yuta Yoshino
- 1 Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University , Gifu, Japan
| | - Shogo Takeda
- 2 Oryza Oil & Fat Chemical Co., Ltd. , Ichinomiya, Japan
| | - Kazuya Toda
- 2 Oryza Oil & Fat Chemical Co., Ltd. , Ichinomiya, Japan
| | | | - Kazuhiro Tsuruma
- 1 Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University , Gifu, Japan
| | - Masamitsu Shimazawa
- 1 Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University , Gifu, Japan
| | - Hideaki Hara
- 1 Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University , Gifu, Japan
| |
Collapse
|
30
|
Green synthesis of β-sitostanol esters catalyzed by the versatile lipase/sterol esterase from Ophiostoma piceae. Food Chem 2017; 221:1458-1465. [DOI: 10.1016/j.foodchem.2016.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/23/2016] [Accepted: 11/01/2016] [Indexed: 11/20/2022]
|
31
|
Zychowski LM, Logan A, Augustin MA, Kelly AL, Zabara A, O'Mahony JA, Conn CE, Auty MAE. Effect of Phytosterols on the Crystallization Behavior of Oil-in-Water Milk Fat Emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6546-6554. [PMID: 27476512 DOI: 10.1021/acs.jafc.6b01722] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Milk has been used commercially as a carrier for phytosterols, but there is limited knowledge on the effect of added plant sterols on the properties of the system. In this study, phytosterols dispersed in milk fat at a level of 0.3 or 0.6% were homogenized with an aqueous dispersion of whey protein isolate (WPI). The particle size, morphology, ζ-potential, and stability of the emulsions were investigated. Emulsion crystallization properties were examined through the use of differential scanning calorimetry (DSC) and Synchrotron X-ray scattering at both small and wide angles. Phytosterol enrichment influenced the particle size and physical appearance of the emulsion droplets, but did not affect the stability or charge of the dispersed particles. DSC data demonstrated that, at the higher level of phytosterol addition, crystallization of milk fat was delayed, whereas, at the lower level, phytosterol enrichment induced nucleation and emulsion crystallization. These differences were attributed to the formation of separate phytosterol crystals within the emulsions at the high phytosterol concentration, as characterized by Synchrotron X-ray measurements. X-ray scattering patterns demonstrated the ability of the phytosterol to integrate within the milk fat triacylglycerol matrix, with a concomitant increase in longitudinal packing and system disorder. Understanding the consequences of adding phytosterols, on the physical and crystalline behavior of emulsions may enable the functional food industry to design more physically and chemically stable products.
Collapse
Affiliation(s)
- Lisa M Zychowski
- Food Chemistry and Technology Department, Teagasc Food Research Centre , Moorepark, Fermoy, County Cork, Ireland
- School of Food and Nutritional Sciences, University College Cork , Cork, Ireland
- CSIRO Food and Nutrition, Werribee, Victoria 3030, Australia
- School of Applied Science, RMIT University , Melbourne, Victoria 3000, Australia
| | - Amy Logan
- CSIRO Food and Nutrition, Werribee, Victoria 3030, Australia
| | | | - Alan L Kelly
- School of Food and Nutritional Sciences, University College Cork , Cork, Ireland
| | - Alexandru Zabara
- School of Applied Science, RMIT University , Melbourne, Victoria 3000, Australia
| | - James A O'Mahony
- School of Food and Nutritional Sciences, University College Cork , Cork, Ireland
| | - Charlotte E Conn
- School of Applied Science, RMIT University , Melbourne, Victoria 3000, Australia
| | - Mark A E Auty
- Food Chemistry and Technology Department, Teagasc Food Research Centre , Moorepark, Fermoy, County Cork, Ireland
| |
Collapse
|
32
|
Karupaiah T, Chuah KA, Chinna K, Matsuoka R, Masuda Y, Sundram K, Sugano M. Comparing effects of soybean oil- and palm olein-based mayonnaise consumption on the plasma lipid and lipoprotein profiles in human subjects: a double-blind randomized controlled trial with cross-over design. Lipids Health Dis 2016; 15:131. [PMID: 27535127 PMCID: PMC4989497 DOI: 10.1186/s12944-016-0301-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/03/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Mayonnaise is used widely in contemporary human diet with widespread use as a salad dressing or spread on breads. Vegetable oils used in its formulation may be a rich source of ω-6 PUFAs and the higher-PUFA content of mayonnaise may be beneficial in mediating a hypocholesterolemic effect. This study, therefore, evaluated the functionality of mayonnaise on cardiometabolic risk within a regular human consumption scenario. METHODS Subjects underwent a randomized double-blind crossover trial, consuming diets supplemented with 20 g/day of either soybean oil-based mayonnaise (SB-mayo) or palm olein-based mayonnaise (PO-mayo) for 4 weeks each with a 2-week wash-out period. The magnitude of changes for metabolic outcomes between dietary treatments was compared with PO-mayo serving as the control. The data was analyzed by ANCOVA using the GLM model. Analysis was adjusted for weight changes. RESULTS Treatments resulted in significant reductions in TC (diff = -0.25 mmol/L; P = 0.001), LDL-C (diff = -0.17 mmol/L; P = 0.016) and HDL-C (diff = -0.12 mmol/L; P < 0.001) in SB-mayo compared to PO-mayo without affecting LDL-C:HDL-C ratio (P > 0.05). Lipoprotein particle change was significant with large LDL particles increasing after PO-mayo (diff = +63.2 nmol/L; P = 0.007) compared to SB-mayo but small LDL particles remained unaffected. Plasma glucose, apolipoproteins and oxidative stress markers remained unchanged. CONCLUSIONS Daily use with 20 g of linoleic acid-rich SB-mayo elicited reductions in TC and LDL-C concentrations without significantly changing LDL-C:HDL-C ratio or small LDL particle distributions compared to the PO-mayo diet. TRIAL REGISTRATION This clinical trial was retrospectively registered with the National Medical Research Register, National Institute of Health, Ministry of Health Malaysia, (NMRR-15-40-24035; registered on 29/01/2015; https://www.nmrr.gov.my/fwbPage.jsp?fwbPageId=ResearchISRForm&fwbAction=Update&fwbStep=10&pk.researchID=24035&fwbVMenu=3&fwbResearchAction=Update ). Ethical approval was obtained from the National University of Malaysia's Medical Ethics Committee (UKM 1.5.3.5/244/SPP/NN-054-2011, approved on 25/05/2011).
Collapse
Affiliation(s)
- Tilakavati Karupaiah
- Dietetics Program, School of Healthcare Sciences, Faculty of Health Sciences, National University of Malaysia, Kuala Lumpur, Malaysia.
| | - Khun-Aik Chuah
- Nutrition Program, School of Healthcare Sciences, Faculty of Health Sciences, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Karuthan Chinna
- Julius Center, Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ryosuke Matsuoka
- R&D Division, Kewpie Corporation, Sengawa Kewport, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo, Japan
| | - Yasunobu Masuda
- R&D Division, Kewpie Corporation, Sengawa Kewport, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo, Japan
| | | | - Michihiro Sugano
- Kyushu University, and Prefectual University of Kumamoto, Kyushu, Japan
| |
Collapse
|
33
|
Dong S, Zhang R, Ji YC, Hao JY, Ma WW, Chen XD, Xiao R, Yu HL. Soy milk powder supplemented with phytosterol esters reduced serum cholesterol level in hypercholesterolemia independently of lipoprotein E genotype: a random clinical placebo-controlled trial. Nutr Res 2016; 36:879-84. [DOI: 10.1016/j.nutres.2016.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/03/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
|
34
|
Sopelana P, Ibargoitia ML, Guillén MD. Influence of fat and phytosterols concentration in margarines on their degradation at high temperature. A study by 1H Nuclear Magnetic Resonance. Food Chem 2016; 197 Pt B:1256-63. [DOI: 10.1016/j.foodchem.2015.11.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 10/14/2015] [Accepted: 11/12/2015] [Indexed: 10/22/2022]
|
35
|
Gleize B, Nowicki M, Daval C, Koutnikova H, Borel P. Form of phytosterols and food matrix in which they are incorporated modulate their incorporation into mixed micelles and impact cholesterol micellarization. Mol Nutr Food Res 2016; 60:749-59. [DOI: 10.1002/mnfr.201500586] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/12/2015] [Accepted: 12/29/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Béatrice Gleize
- INRA, UMR 1260 «Nutrition, Obesity and Risk of Thrombosis»; Marseille France
- INSERM; UMR 1062 Marseille France
- Aix-Marseille University; Marseille France
| | - Marion Nowicki
- INRA, UMR 1260 «Nutrition, Obesity and Risk of Thrombosis»; Marseille France
- INSERM; UMR 1062 Marseille France
- Aix-Marseille University; Marseille France
| | | | | | - Patrick Borel
- INRA, UMR 1260 «Nutrition, Obesity and Risk of Thrombosis»; Marseille France
- INSERM; UMR 1062 Marseille France
- Aix-Marseille University; Marseille France
| |
Collapse
|
36
|
Vaghini S, Cilla A, Garcia-Llatas G, Lagarda MJ. Bioaccessibility study of plant sterol-enriched fermented milks. Food Funct 2016; 7:110-7. [DOI: 10.1039/c5fo00458f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The bioaccessibility (BA) of total and individual plant sterols (PS) of four commercial PS-enriched fermented milk beverages (designated as A to D) was evaluated using in vitro gastrointestinal digestion including the formation of mixed micelles.
Collapse
Affiliation(s)
- Silvia Vaghini
- Nutrition and Food Science Area
- Faculty of Pharmacy
- University of Valencia
- 46100 – Burjassot (Valencia)
- Spain
| | - Antonio Cilla
- Nutrition and Food Science Area
- Faculty of Pharmacy
- University of Valencia
- 46100 – Burjassot (Valencia)
- Spain
| | - Guadalupe Garcia-Llatas
- Nutrition and Food Science Area
- Faculty of Pharmacy
- University of Valencia
- 46100 – Burjassot (Valencia)
- Spain
| | - María Jesús Lagarda
- Nutrition and Food Science Area
- Faculty of Pharmacy
- University of Valencia
- 46100 – Burjassot (Valencia)
- Spain
| |
Collapse
|
37
|
Rudzińska M, Hassanein MMM, Abdel-Razek AG, Ratusz K, Siger A. Blends of rapeseed oil with black cumin and rice bran oils for increasing the oxidative stability. Journal of Food Science and Technology 2015; 53:1055-62. [PMID: 27162385 DOI: 10.1007/s13197-015-2140-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/22/2015] [Accepted: 12/13/2015] [Indexed: 10/22/2022]
Abstract
For the increase of oxidative stability and phytonutrient contents of rapeseed oil 5, 10 and 20 % blends with rice bran oil and black cumin oil were prepared. Profiles of different bioactive lipid components of blends including tocopherols, tocotrienols, phytosterols and phytostanols as well as fatty acid composition were carried out using HPLC and GLC. Rancimat was used for detecting oxidative stability of the fatty material. The blends with black cumin seed oil characterized higher level of α- and γ-tocopherols as well as all isomers of tocotrienols. Presence of rice bran oil in blends leads to increased tocotrienols amounts, β-sitosterol and squalene. Blending resulted in lowering ratio of PUFA/SFA and improves stability of these oils. The ratio of omega-6/omega-3 raises from 2.1 in rapeseed oil to 3.7 and 3.0 in blends with black cumin and rice bran oils, respectively. Addition of 10 and 20 % of black cumin and rice bran oils to rapeseed oil were influenced on the oxidative stability of prepared blends. The results appear that blending of rapeseed oil with black cumin seed oil or rice bran oil enhanced nutritional and functional properties via higher oxidative stability as well as improved phytonutrient contents.
Collapse
Affiliation(s)
- Magdalena Rudzińska
- Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Poznań, Poland
| | | | | | - Katarzyna Ratusz
- Faculty of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Aleksander Siger
- Fats and Oils Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
38
|
Párraga-Martínez I, López-Torres-Hidalgo JD, del Campo-del Campo JM, Galdón-Blesa MP, Precioso-Yáñez JC, Rabanales-Sotos J, García-Reyes-Ramos M, Andrés-Pretel F, Navarro-Bravo B, Lloret-Callejo Á. Efecto a largo plazo de los estanoles vegetales en el perfil lipídico de pacientes con hipercolesterolemia. Ensayo clínico aleatorizado. Rev Esp Cardiol 2015. [DOI: 10.1016/j.recesp.2014.07.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Long-term Effects of Plant Stanols on the Lipid Profile of Patients With Hypercholesterolemia. A Randomized Clinical Trial. ACTA ACUST UNITED AC 2014; 68:665-71. [PMID: 25541227 DOI: 10.1016/j.rec.2014.07.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 07/23/2014] [Indexed: 11/21/2022]
Abstract
INTRODUCTION AND OBJECTIVES Plant stanol consumption may improve long-term cholesterol control. The aim of the present study was to evaluate the effectiveness of 2g/day of plant stanols in reducing low-density lipoprotein cholesterol levels in patients with hypercholesterolemia. METHODS This randomized, double-blind, and placebo-controlled study included 182 adults diagnosed with hypercholesterolemia. A yogurt drink containing 2g of plant stanols was administered to 91 participants in the intervention group; 91 participants in the control group received unsupplemented yogurt. The primary end point was the change in the lipid profile at 12 months. RESULTS Low-density lipoprotein cholesterol levels at 12 months were significantly more reduced in the stanol intervention group than in the control group: 13.7 (95% confidence interval, 3.2-24.1) mg/dL (P=.011). A reduction of more than 10% in low-density lipoprotein cholesterol was achieved by a significantly higher proportion of participants in the intervention group (relative risk=1.7; 95% confidence interval, 1.1-2.7). In this group, the mean (standard deviation) level of low-density lipoprotein cholesterol decreased by 11.0% (23.9%). CONCLUSIONS Our results confirm that administration of plant stanols at a dosage of 2 g/day for 12 months significantly reduces (by slightly more than 10%) the concentrations of low-density lipoprotein cholesterol in individuals with hypercholesterolemia. Trial registration (www.ClinicalTrials.gov): Current Controlled Trials NCT01406106.
Collapse
|
40
|
Wang Y, Yi X, Ghanam K, Zhang S, Zhao T, Zhu X. Berberine decreases cholesterol levels in rats through multiple mechanisms, including inhibition of cholesterol absorption. Metabolism 2014; 63:1167-77. [PMID: 25002181 DOI: 10.1016/j.metabol.2014.05.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/20/2014] [Accepted: 05/29/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The objective was to determine the mechanisms of action of berberine (BBR) on cholesterol homeostasis using in vivo and in vitro models. METHODS Male Sprague-Dawley rats were fed the AIN-93G diet (normal control) or modified AIN-93G diet containing 28% fat, 2% cholesterol and 0.5% cholic acid with treatment of 0 (atherogenic control), 50, 100, and 150 mg/kg·d of BBR, respectively by gavaging in water for 8 weeks. Cholesterol absorption rate was measured with the dual stable isotope ratio method, and plasma lipids were determined using the enzymatic methods. Gene and protein expressions of Acyl-coenzyme A:cholesterol acyltransferase-2 were analyzed in vivo and in vitro. Cholesterol micellarization, uptake and permeability were determined in vitro. RESULTS Rats on the atherogenic diet showed significantly hypercholesterolemic characteristics compared to normal control rats. Treatment with BBR in rats on the atherogenic diet reduced plasma total cholesterol and nonHDL cholesterol levels by 29%-33% and 31%-41%, respectively, with no significant differences being observed among the three doses. The fractional dietary cholesterol absorption rate was decreased by 40%-51%. Rats fed the atherogenic diet showed lower plasma triacylglycerol levels, and no changes were observed after the BBR treatment. BBR interfered with cholesterol micellarization, decreased cholesterol uptake by Caco-2 cells and permeability through Caco-2 monolayer. BBR also inhibited the gene and protein expressions of acyl-coenzyme A cholesterol acyltransferease-2 in the small intestine and Caco-2 cells. CONCLUSION BBR lowered blood cholesterol levels at least in part through inhibiting the intestinal absorption and further by interfering with intraluminal cholesterol micellarization and decreasing enterocyte cholesterol uptake and secretion.
Collapse
Affiliation(s)
- Yanwen Wang
- Aquatic and Crop Resource Development, National Research Council of Canada, Charlottetown, PE, Canada; Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, PE, Canada.
| | - Xin Yi
- Aquatic and Crop Resource Development, National Research Council of Canada, Charlottetown, PE, Canada; Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Khadija Ghanam
- Aquatic and Crop Resource Development, National Research Council of Canada, Charlottetown, PE, Canada; Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Shuocheng Zhang
- Aquatic and Crop Resource Development, National Research Council of Canada, Charlottetown, PE, Canada
| | - Tiantian Zhao
- Aquatic and Crop Resource Development, National Research Council of Canada, Charlottetown, PE, Canada
| | - Xuemei Zhu
- Aquatic and Crop Resource Development, National Research Council of Canada, Charlottetown, PE, Canada
| |
Collapse
|
41
|
Castellanos-Jankiewicz A, Del Bosque-Plata L, Tejero ME. Combined effect of plant sterols and dietary fiber for the treatment of hypercholesterolemia. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2014; 69:93-100. [PMID: 24831917 DOI: 10.1007/s11130-014-0419-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Hypercholesterolemia is a major contributor for disease burden in both the developed and developing world and an important risk factor for cardiovascular diseases (CVD). Phytosterols (PhS) and dietary fiber (DF) act as low density lipoprotein cholesterol (LDL-C) lowering agents, offering an effective treatment against high blood cholesterol and CVD. The aim of this review was to consider clinical evidence that analyzed the combination of PhS and DF in a cereal carrier for lowering LDL-C. Electronic database searches were carried out to identify peer-reviewed journal articles, from which five intervention studies that combined both components in a cereal carrier were identified and included in the present review. LDL-C lowering effects varied widely among studies, due to large heterogeneity in study design, subject baseline characteristics, length of the interventions, PhS and DF dosage and type of DF used. In relation to a time of intake, three studies suggested a frequency or distribution of the product's consumption during the day, while two studies did not consider this factor. Overall, the selected studies found significant differences on LDL-C concentrations, although not all of them reached the expected outcomes. Future research should be conducted to explore the effect that different types of DF exert on LDL-C when combined with PhS, and to analyze the effect of the product's time of intake in order to suggest an optimal moment of the day for its consumption.
Collapse
Affiliation(s)
- Ashley Castellanos-Jankiewicz
- Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genómica, Periférico Sur No. 4809, Col. Arenal Tepepan, México, DF, 14610, Mexico,
| | | | | |
Collapse
|