1
|
Chen Y, Xiao J, Zhu X, Fan X, Peng M, Mu Y, Wang C, Xia L, Zhou M. Exploiting conjugated linoleic acid for health: a recent update. Food Funct 2025; 16:147-167. [PMID: 39639784 DOI: 10.1039/d4fo04911j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Conjugated linoleic acid (CLA) is widely used as a dietary supplement due to its reported benefits in enhancing immunity, regulating inflammation, treating obesity, and preventing cancer. However, there is a lack of comprehensive studies on its mechanisms and dose-effect relationships. Moreover, there are insufficient in-depth studies on CLA's new functions, safety, side effects, and clinical utility. This review systematically examines the structure and sources of CLA, summarizes its role in improving human health, and critically reviews the potential mechanisms behind these benefits. It also analyzes the side effects of CLA and addresses issues related to dosing and oxidative decomposition in CLA research. Additionally, the potential of using CLA-producing probiotics to manage diseases is explored. This review can guide and promote further research on CLA's functions and support the development of CLA dietary supplements. It will accelerate the development of CLA nutritional and medical foods, contribute to the improvement of human health, and have important social meaning and economic value.
Collapse
Affiliation(s)
- Yang Chen
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Junfeng Xiao
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Xiaoqing Zhu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Xin Fan
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Mingye Peng
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Yang Mu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Chao Wang
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Lusha Xia
- Department of gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430068, China
| | - Mengzhou Zhou
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| |
Collapse
|
2
|
Fatty Acids and Oxylipins in Osteoarthritis and Rheumatoid Arthritis-a Complex Field with Significant Potential for Future Treatments. Curr Rheumatol Rep 2021; 23:41. [PMID: 33913032 PMCID: PMC8081702 DOI: 10.1007/s11926-021-01007-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
Purpose of Review Osteoarthritis (OA) and rheumatoid arthritis (RA) are characterized by abnormal lipid metabolism manifested as altered fatty acid (FA) profiles of synovial fluid and tissues and in the way dietary FA supplements can influence the symptoms of especially RA. In addition to classic eicosanoids, the potential roles of polyunsaturated FA (PUFA)-derived specialized pro-resolving lipid mediators (SPM) have become the focus of intensive research. Here, we summarize the current state of knowledge of the roles of FA and oxylipins in the degradation or protection of synovial joints. Recent Findings There exists discordance between the large body of literature from cell culture and animal experiments on the adverse and beneficial effects of individual FA and the lack of effective treatments for joint destruction in OA and RA patients. Saturated 16:0 and 18:0 induce mostly deleterious effects, while long-chain n-3 PUFA, especially 20:5n-3, have positive influence on joint health. The situation can be more complex for n-6 PUFA, such as 18:2n-6, 20:4n-6, and its derivative prostaglandin E2, with a combination of potentially adverse and beneficial effects. SPM analogs have future potential as analgesics for arthritic pain. Summary Alterations in FA profiles and their potential implications in SPM production may affect joint lubrication, synovial inflammation, pannus formation, as well as cartilage and bone degradation and contribute to the pathogeneses of inflammatory joint diseases. Further research directions include high-quality randomized controlled trials on dietary FA supplements and investigations on the significance of lipid composition of microvesicle membrane and cargo in joint diseases.
Collapse
|
3
|
Conjugated linoleic acid as a novel insecticide targeting the agricultural pest Leptinotarsa decemlineata. PLoS One 2019; 14:e0220830. [PMID: 31725728 PMCID: PMC6855466 DOI: 10.1371/journal.pone.0220830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/28/2019] [Indexed: 11/23/2022] Open
Abstract
The Colorado Potato Beetle, Leptinotarsa decemlineata, is a major agricultural pest of solanaceous crops in the United States. Historically, a multitude of insecticides have been used to control problematic populations. Due to increasing resistance to insecticides, novel compounds and methodologies are warranted for the control of beetle populations. Mixed-isomer conjugated linoleic acid has been studied in-depth for its beneficial properties to mammalian systems. At the same time, studies have demonstrated that conjugated linoleic acid can manipulate fatty acid composition in non-mammalian systems, resulting in embryo mortality. Consequently, experiments were conducted to assess the effects of foliar-applied conjugated linoleic acid on larval growth, embryogenesis, and feeding preference in Colorado potato beetle. Both maternal and deterrent effects of dietary conjugated linoleic acid were assessed. Conjugated linoleic acid demonstrated desirable insecticidal properties, including increased larval mortality, slowed larval development, antifeedant effects, and decreased egg viability after maternal ingestion.
Collapse
|
4
|
Muhlenbeck JA, Olson JM, Hughes AB, Cook ME. Conjugated Linoleic Acid Isomers Trans-10, Cis-12 and Cis-9, Trans-11 Prevent Collagen-Induced Arthritis in a Direct Comparison. Lipids 2018; 53:689-698. [PMID: 30259981 DOI: 10.1002/lipd.12082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/13/2018] [Accepted: 07/27/2018] [Indexed: 11/08/2022]
Abstract
Mixed-isomer conjugated linoleic acid (CLA) and the individual isomers, trans-10, cis-12 (CLAt10c12) and cis-9, trans-11 (CLAc9t11), decrease severity of collagen-induced arthritis (CA) when consumed after disease onset. Few studies have been conducted exploring the role of CLA in the prevention of autoimmune diseases. These studies suggest that isomer-specific effects may be occurring; however, a direct comparison of CLAt10c12 and CLAc9t11 has yet to be conducted. A study to compare the ability of CLAt10c12 and CLAc9t11 to prevent CA and assess their effects on early inflammation was performed. DBA/1 mice were fed a semipurified diet containing 6% corn oil (CO), 5.5% CO and 0.5% CLAt10c12, or 5.5% CO and 0.5% CLAc9t11 (n = 27 per diet) starting three weeks before CA primary immunization. Effects on disease incidence and severity, anticollagen antibodies, plasma and paw cytokines, and hepatic fatty acids were measured. Arthritis incidence was reduced by a minimum of 34% in mice fed either CLA isomer compared to those fed CO diet (p = 0.06). In mice that did develop arthritis (n = 9-12 mice per treatment), CLAt10c12 reduced arthritic severity to a greater extent than CLAc9t11 and CO (p = 0.03). CLA isomer treatment attenuated the increased hepatic arachidonic acid (ARA; 20:4n-6) observed with arthritis at one-week postonset (p = 0.03), while no differences in anticollagen antibodies or cytokines were observed between dietary treatments. These results suggest that CLA isomers may be effective at preventing specific immune-mediated inflammatory diseases, in part, through modulation of the ARA cascade.
Collapse
Affiliation(s)
- Jessica A Muhlenbeck
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, 1400 University Ave Madison, WI, 53706, USA
| | - Jake M Olson
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, 1675 Observatory Drive, WI, 53706, USA
| | - Anna B Hughes
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, 1675 Observatory Drive, WI, 53706, USA
| | - Mark E Cook
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, 1400 University Ave Madison, WI, 53706, USA.,Department of Animal Sciences, University of Wisconsin-Madison, Madison, 1675 Observatory Drive, WI, 53706, USA
| |
Collapse
|
5
|
Navarini L, Afeltra A, Gallo Afflitto G, Margiotta DPE. Polyunsaturated fatty acids: any role in rheumatoid arthritis? Lipids Health Dis 2017; 16:197. [PMID: 29017507 PMCID: PMC5634864 DOI: 10.1186/s12944-017-0586-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/02/2017] [Indexed: 12/12/2022] Open
Abstract
Background Polyunsaturated fatty acids (PUFAs) are members of the family of fatty acids and are included in the diet. Particularly, western diet is usually low in n-3 PUFAs and high in n-6 PUFAs. PUFAs play a central role in the homeostasis of immune system: n-6 PUFAs have predominantly pro-inflammatory features, while n-3 PUFAs seem to exert anti-inflammatory and pro-resolving properties. Rheumatoid arthritis (RA) is a chronic inflammatory arthritis in which many inflammatory pathways contribute to joint and systemic inflammation, disease activity, and structural damage. Research on PUFAs could represent an important opportunity to better understand the pathogenesis and to improve the management of RA patients. Methods We searched PubMed, Embase, EBSCO-Medline, Cochrane Central Register of Controlled Trials (CENTRAL), CNKI and Wanfang to identify primary research reporting the role of n-3 PUFAs in rheumatoid arthritis both in humans and in animal models up to the end of March 2017. Results Data from animal models allows to hypothesize that n-3 PUFAs supplementation may represent an interesting perspective in future research as much in prevention as in treating RA. In humans, several case-control and prospective cohort studies suggest that a high content of n-3 PUFAs in the diet could have a protective role for incident RA in subjects at risk. Moreover, n-3 PUFAs supplementation has been assessed as a valuable therapeutic option also for patients with RA, particularly in order to improve the pain symptoms, the tender joint count, the duration of morning stiffness and the frequency of NSAIDs assumption. Conclusions n-3 PUFAs supplementation could represent a promising therapeutic option to better control many features of RA. The impact of n-3 PUFAs on radiographic progression and synovial histopathology has not been yet evaluated, as well as their role in early arthritis and the combination with biologics.
Collapse
Affiliation(s)
- Luca Navarini
- Unit of Allergology, Immunology, Rheumatology, Department of Medicine, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128, Rome, Italy.
| | - Antonella Afeltra
- Unit of Allergology, Immunology, Rheumatology, Department of Medicine, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128, Rome, Italy
| | - Gabriele Gallo Afflitto
- Unit of Allergology, Immunology, Rheumatology, Department of Medicine, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128, Rome, Italy
| | - Domenico Paolo Emanuele Margiotta
- Unit of Allergology, Immunology, Rheumatology, Department of Medicine, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128, Rome, Italy
| |
Collapse
|
6
|
Yang HE, Li Y, Nishimura A, Jheng HF, Yuliana A, Kitano-Ohue R, Nomura W, Takahashi N, Kim CS, Yu R, Kitamura N, Park SB, Kishino S, Ogawa J, Kawada T, Goto T. Synthesized enone fatty acids resembling metabolites from gut microbiota suppress macrophage-mediated inflammation in adipocytes. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201700064] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/28/2017] [Accepted: 05/15/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Ha-Eun Yang
- Laboratory of Molecular Function of Food; Division of Food Science and Biotechnology; Graduate school of Agriculture; Kyoto University; Uji Kyoto Japan
| | - Yongjia Li
- Laboratory of Molecular Function of Food; Division of Food Science and Biotechnology; Graduate school of Agriculture; Kyoto University; Uji Kyoto Japan
| | - Akira Nishimura
- Laboratory of Molecular Function of Food; Division of Food Science and Biotechnology; Graduate school of Agriculture; Kyoto University; Uji Kyoto Japan
| | - Huei-Fen Jheng
- Laboratory of Molecular Function of Food; Division of Food Science and Biotechnology; Graduate school of Agriculture; Kyoto University; Uji Kyoto Japan
| | - Ana Yuliana
- Laboratory of Molecular Function of Food; Division of Food Science and Biotechnology; Graduate school of Agriculture; Kyoto University; Uji Kyoto Japan
| | - Ryuji Kitano-Ohue
- Laboratory of Molecular Function of Food; Division of Food Science and Biotechnology; Graduate school of Agriculture; Kyoto University; Uji Kyoto Japan
- Research Unit for Physiological Chemistry; The Center for the Promotion of Interdisciplinary Education and Research; Kyoto University; Japan
| | - Wataru Nomura
- Laboratory of Molecular Function of Food; Division of Food Science and Biotechnology; Graduate school of Agriculture; Kyoto University; Uji Kyoto Japan
- Research Unit for Physiological Chemistry; The Center for the Promotion of Interdisciplinary Education and Research; Kyoto University; Japan
| | - Nobuyuki Takahashi
- Laboratory of Molecular Function of Food; Division of Food Science and Biotechnology; Graduate school of Agriculture; Kyoto University; Uji Kyoto Japan
- Research Unit for Physiological Chemistry; The Center for the Promotion of Interdisciplinary Education and Research; Kyoto University; Japan
| | - Chu-Sook Kim
- Department of Food Science and Nutrition; University of Ulsan; Ulsan South Korea
| | - Rina Yu
- Department of Food Science and Nutrition; University of Ulsan; Ulsan South Korea
| | - Nahoko Kitamura
- Division of Applied Life Science; Graduate School of Agriculture; Kyoto University; Kyoto Japan
| | - Si-Bum Park
- Laboratory of Industrial Microbiology; Graduate School of Agriculture; Kyoto University; Kyoto Japan
| | - Shigenobu Kishino
- Division of Applied Life Science; Graduate School of Agriculture; Kyoto University; Kyoto Japan
| | - Jun Ogawa
- Research Unit for Physiological Chemistry; The Center for the Promotion of Interdisciplinary Education and Research; Kyoto University; Japan
- Division of Applied Life Science; Graduate School of Agriculture; Kyoto University; Kyoto Japan
| | - Teruo Kawada
- Laboratory of Molecular Function of Food; Division of Food Science and Biotechnology; Graduate school of Agriculture; Kyoto University; Uji Kyoto Japan
- Research Unit for Physiological Chemistry; The Center for the Promotion of Interdisciplinary Education and Research; Kyoto University; Japan
| | - Tsuyoshi Goto
- Laboratory of Molecular Function of Food; Division of Food Science and Biotechnology; Graduate school of Agriculture; Kyoto University; Uji Kyoto Japan
- Research Unit for Physiological Chemistry; The Center for the Promotion of Interdisciplinary Education and Research; Kyoto University; Japan
| |
Collapse
|
7
|
Muhlenbeck JA, Butz DE, Olson JM, Uribe-Cano D, Cook ME. Dietary Conjugated Linoleic Acid-c9t11 Prevents Collagen-Induced Arthritis, Whereas Conjugated Linoleic Acid-t10c12 Increases Arthritic Severity. Lipids 2017; 52:303-314. [DOI: 10.1007/s11745-017-4241-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/03/2017] [Indexed: 10/20/2022]
|
8
|
Olson JM, Haas AW, Lor J, McKee HS, Cook ME. A Comparison of the Anti-Inflammatory Effects of Cis-9, Trans-11 Conjugated Linoleic Acid to Celecoxib in the Collagen-Induced Arthritis Model. Lipids 2017; 52:151-159. [PMID: 28078603 DOI: 10.1007/s11745-016-4228-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 12/13/2016] [Indexed: 01/07/2023]
Abstract
Cyclooxygenase (COX)-2 inhibitors, such as celecoxib, for chronic inflammatory disease are associated with adverse health events, while cis-9, trans-11 (c9t11) conjugated linoleic acid (CLA) is anti-inflammatory without adverse events attributed to pure intake. Mechanistically, celecoxib and c9t11 disrupt the arachidonic acid cascade; however, the equivalency of anti-inflammatory effects between these compounds is unknown. Therefore, to test the hypothesis that 0.5% dietary c9t11 reduces inflammation equivalently to a celecoxib dose intended to treat rheumatoid arthritis (RA; 5 mg/kg bw), arthritic mice received diets containing one of the following supplements: 1% corn oil (CO, w/w), 0.5% c9t11 (>91% purity) +0.5% CO, or 1% CO + 0.5, 5, or 50 mg/kg bw celecoxib, and were assessed for changes in arthritic severity over 6 weeks. Overall, arthritic severity in mice fed c9t11 was reduced (34%, P < 0.01) while celecoxib doses (0.5, 5, 50 mg/kg) reduced arthritic severity (16, 56, 48%, respectively) compared to CO-fed arthritic mice. Linear regression of the celecoxib dose-response showed 0.5% c9t11 (570 mg/kg bw) reduced arthritic severity equivalently to 1.5 mg/kg celecoxib. Interleukin-6 (IL-6) was increased in paws of arthritic mice fed CO compared to shams, but was decreased in arthritic groups fed 0.5% c9t11 and 5 mg/kg celecoxib, compared to arthritic mice fed CO (Ps ≤ 0.05). Additionally, paw and plasma IL-10 levels in arthritic mice were decreased by 5 mg/kg celecoxib, but were unaffected by c9t11 compared to CO. Results suggest dietary c9t11 may be an effective adjunct to COX-2 inhibition for treating chronic inflammation.
Collapse
Affiliation(s)
- Jake M Olson
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Alexander W Haas
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jennifer Lor
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Holly S McKee
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Mark E Cook
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
9
|
Cook ME, Bütz DE, Yang M, Sand JM. Host-targeted approaches to managing animal health: old problems and new tools. Domest Anim Endocrinol 2016; 56 Suppl:S11-22. [PMID: 27345308 DOI: 10.1016/j.domaniend.2016.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 04/19/2016] [Accepted: 04/19/2016] [Indexed: 01/03/2023]
Abstract
Our fellow medical and regulatory scientists question the animal producer's dependence on antibiotics and antimicrobial chemicals in the production of animal products. Retail distributors and consumers are putting even more pressure on the animal industry to find new ways to produce meat without antibiotics and chemicals. In addition, federal funding agencies are increasingly pressuring researchers to conduct science that has application. In the review that follows, we outline our approach to finding novel ways to improve animal performance and health. We use a strict set of guidelines in our applied research as follows: (1) Does the work have value to society? (2) Does our team have the skills to innovate in the field? (3) Is the product we produce commercially cost-effective? (4) Are there any reasons why the general consumer will reject the technology? (5) Is it safe for the animal, consumer, and the environment? Within this framework, we describe 4 areas of research that have produced useful products, areas that we hope other scientists will likewise explore and innovate such as (1) methods to detect infection in herds and flocks, (2) methods to control systemic and mucosal inflammation, (3) improvements to intestinal barrier function, and (4) methods to strategically potentiate immune defense. We recognize that others are working in these areas, using different strategies, but believe our examples will illustrate the vast opportunity for research and innovation in a world without antibiotics. Animal scientists have been given a new challenge that may help shape the future of both animal and human medicine.
Collapse
Affiliation(s)
- M E Cook
- Animal Sciences Department, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - D E Bütz
- Animal Sciences Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - M Yang
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - J M Sand
- Animal Sciences Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
10
|
Huebner SM, Olson JM, Campbell JP, Bishop JW, Crump PM, Cook ME. Low Dietary c9t11-Conjugated Linoleic Acid Intake from Dairy Fat or Supplements Reduces Inflammation in Collagen-Induced Arthritis. Lipids 2016; 51:807-19. [PMID: 27270404 DOI: 10.1007/s11745-016-4163-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/10/2016] [Indexed: 11/26/2022]
Abstract
Dietary cis-9,trans-11 (c9t11) conjugated linoleic acid (CLA) fed at 0.5 % w/w was previously shown to attenuate inflammation in the murine collagen-induced (CA) arthritis model, and growing evidence implicates c9t11-CLA as a major anti-inflammatory component of dairy fat. To understand c9t11-CLA's contribution to dairy fat's anti-inflammatory action, the minimum amount of dietary c9t11-CLA needed to reduce inflammation must be determined. This study had two objectives: (1) determine the minimum dietary anti-inflammatory c9t11-CLA intake level in the CA model, and (2) compare this to anti-inflammatory effects of dairy fat (non-enriched, naturally c9t11-CLA-enriched, or c9t11-CLA-supplemented). Mice received the following dietary fat treatments (w/w) post arthritis onset: corn oil (6 % CO), 0.125, 0.25, 0.375, and 0.5 % c9t11-CLA, control butter (6 % CB), c9t11-enriched butter (6 % EB), or c9t11-CLA-supplemented butter (6 % SB, containing 0.2 % c9t11-CLA). Paw arthritic severity and pad swelling were scored and measured, respectively, over an 84-day study period. All c9t11-CLA and butter diets decreased the arthritic score (25-51 %, P < 0.01) and paw swelling (8-11 %, P < 0.01). Throughout the study, plasma tumor necrosis factor (TNFα) was elevated in CO-fed arthritic mice compared to non-arthritic (NA) mice but was reduced in 0.5 % c9t11-CLA- and EB-fed mice. Interleukin-1β and IL-6 were increased in arthritic CO-fed mice compared to NA mice but were reduced in 0.5 % c9t11-CLA- and EB-fed mice through day 42. In conclusion, 0.125 % c9t11-CLA reduced clinical arthritis as effectively as higher doses, and decreased arthritis in CB-fed mice suggested that the minimal anti-inflammatory levels of c9t11-CLA might be below 0.125 %.
Collapse
Affiliation(s)
- Shane M Huebner
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jake M Olson
- Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - James P Campbell
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jeffrey W Bishop
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Peter M Crump
- Department of Computing and Biometry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Mark E Cook
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
11
|
Dueregger A, Schöpf B, Eder T, Höfer J, Gnaiger E, Aufinger A, Kenner L, Perktold B, Ramoner R, Klocker H, Eder IE. Differential Utilization of Dietary Fatty Acids in Benign and Malignant Cells of the Prostate. PLoS One 2015; 10:e0135704. [PMID: 26285134 PMCID: PMC4540467 DOI: 10.1371/journal.pone.0135704] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 07/26/2015] [Indexed: 12/16/2022] Open
Abstract
Tumor cells adapt via metabolic reprogramming to meet elevated energy demands due to continuous proliferation, for example by switching to alternative energy sources. Nutrients such as glucose, fatty acids, ketone bodies and amino acids may be utilized as preferred substrates to fulfill increased energy requirements. In this study we investigated the metabolic characteristics of benign and cancer cells of the prostate with respect to their utilization of medium chain (MCTs) and long chain triglycerides (LCTs) under standard and glucose-starved culture conditions by assessing cell viability, glycolytic activity, mitochondrial respiration, the expression of genes encoding key metabolic enzymes as well as mitochondrial mass and mtDNA content. We report that BE prostate cells (RWPE-1) have a higher competence to utilize fatty acids as energy source than PCa cells (LNCaP, ABL, PC3) as shown not only by increased cell viability upon fatty acid supplementation but also by an increased ß-oxidation of fatty acids, although the base-line respiration was 2-fold higher in prostate cancer cells. Moreover, BE RWPE-1 cells were found to compensate for glucose starvation in the presence of fatty acids. Of notice, these findings were confirmed in vivo by showing that PCa tissue has a lower capacity in oxidizing fatty acids than benign prostate. Collectively, these metabolic differences between benign and prostate cancer cells and especially their differential utilization of fatty acids could be exploited to establish novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Dueregger
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
- Oncotyrol GmbH, Center for Personalized Medicine, Innsbruck, Austria
| | - Bernd Schöpf
- Oncotyrol GmbH, Center for Personalized Medicine, Innsbruck, Austria
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
- Oroboros Instruments, High-Resolution Respirometry, Innsbruck, Austria
| | - Theresa Eder
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Höfer
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Erich Gnaiger
- Oroboros Instruments, High-Resolution Respirometry, Innsbruck, Austria
- Department of General and Transplant Surgery, D. Swarovski Research Laboratory, Medical University of Innsbruck, Innrain 66/6, A-6020, Innsbruck, Austria
| | - Astrid Aufinger
- Clinical Institute for Pathology, Medical University Vienna, Vienna, Austria
| | - Lukas Kenner
- Clinical Institute for Pathology, Medical University Vienna, Vienna, Austria
| | - Bernhard Perktold
- Diätologie, FHG-Zentrum Für Gesundheitsberufe Tirol GmbH, Innsbruck, Austria
| | - Reinhold Ramoner
- Diätologie, FHG-Zentrum Für Gesundheitsberufe Tirol GmbH, Innsbruck, Austria
| | - Helmut Klocker
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
- Oncotyrol GmbH, Center for Personalized Medicine, Innsbruck, Austria
| | - Iris E. Eder
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
- * E-mail:
| |
Collapse
|