1
|
Caine S, Alaverdashvili M, Colbourne F, Muir GD, Paterson PG. A modified rehabilitation paradigm bilaterally increased rat extensor digitorum communis muscle size but did not improve forelimb function after stroke. PLoS One 2024; 19:e0302008. [PMID: 38603768 PMCID: PMC11008896 DOI: 10.1371/journal.pone.0302008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Malnutrition after stroke may lessen the beneficial effects of rehabilitation on motor recovery through influences on both brain and skeletal muscle. Enriched rehabilitation (ER), a combination of environmental enrichment and forelimb reaching practice, is used preclinically to study recovery of skilled reaching after stroke. However, the chronic food restriction typically used to motivate engagement in reaching practice is a barrier to using ER to investigate interactions between nutritional status and rehabilitation. Thus, our objectives were to determine if a modified ER program comprised of environmental enrichment and skilled reaching practice motivated by a short fast would enhance post-stroke forelimb motor recovery and preserve forelimb muscle size and metabolic fiber type, relative to a group exposed to stroke without ER. At one week after photothrombotic cortical stroke, male, Sprague-Dawley rats were assigned to modified ER or standard care for 2 weeks. Forelimb recovery was assessed in the Montoya staircase and cylinder task before stroke and on days 5-6, 22-23, and 33-34 after stroke. ER failed to improve forelimb function in either task (p > 0.05). Atrophy of extensor digitorum communis (EDC) and triceps brachii long head (TBL) muscles was not evident in the stroke-targeted forelimb on day 35, but the area occupied by hybrid fibers was increased in the EDC muscle (p = 0.038). ER bilaterally increased EDC (p = 0.046), but not TBL, muscle size; EDC muscle fiber type was unchanged by ER. While the modified ER did not promote forelimb motor recovery, it does appear to have utility for studying the role of skeletal muscle plasticity in post-stroke recovery.
Collapse
Affiliation(s)
- Sally Caine
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | | | - Frederick Colbourne
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Department of Psychology, University of Alberta, Edmonton, Canada
| | - Gillian D. Muir
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Phyllis G. Paterson
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
2
|
Silva de Carvalho T, Singh V, Mohamud Yusuf A, Wang J, Schultz Moreira AR, Sanchez-Mendoza EH, Sardari M, Nascentes Melo LM, Doeppner TR, Kehrmann J, Scholtysik R, Hitpass L, Gunzer M, Hermann DM. Post-ischemic protein restriction induces sustained neuroprotection, neurological recovery, brain remodeling, and gut microbiota rebalancing. Brain Behav Immun 2022; 100:134-144. [PMID: 34848338 DOI: 10.1016/j.bbi.2021.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/26/2021] [Accepted: 11/22/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Moderate dietary protein restriction confers neuroprotection when applied before ischemic stroke. How a moderately protein-reduced diet influences stroke recovery when administered after stroke, is a clinically relevant question. This question has not yet been investigated. METHODS Male C57BL6/J mice were exposed to transient intraluminal middle cerebral artery occlusion. Immediately after the stroke, mice were randomized to two normocaloric diets: a moderately protein-reduced diet containing 8% protein (PRD) or normal diet containing 20% protein (ND). Post-stroke neurological deficits were evaluated by a comprehensive test battery. Antioxidant and neuroinflammatory responses in the brain and liver were evaluated by Western blot and RTqPCR. Stroke-induced brain injury, microvascular integrity, glial responses, and neuroplasticity were assessed by immunohistochemistry. Fecal microbiota analysis was performed using 16S ribosomal RNA amplicon sequencing. RESULTS We show that PRD reduces brain infarct volume after three days and enhances neurological and, specifically, motor-coordination recovery over six weeks in stroke mice. The recovery-promoting effects of PRD were associated with increased antioxidant responses and reduced neuroinflammation. Histochemical studies revealed that PRD increased long-term neuronal survival, increased peri-infarct microvascular density, reduced microglia/macrophage accumulation, increased contralesional pyramidal tract plasticity, and reduced brain atrophy. Fecal microbiota analysis showed reduced bacterial richness and diversity in ischemic mice on ND starting at 7 dpi. PRD restored bacterial richness and diversity at these time points. CONCLUSION Moderate dietary protein restriction initiated post-ischemic stroke induces neurological recovery, brain remodeling, and neuroplasticity in mice by mechanisms involving antiinflammation and, in the post-acute phase, commensal gut microbiota rebalancing.
Collapse
Affiliation(s)
- Tayana Silva de Carvalho
- Department of Neurology, University Hospital Essen, Essen, Germany; Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| | - Vikramjeet Singh
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Ayan Mohamud Yusuf
- Department of Neurology, University Hospital Essen, Essen, Germany; Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| | - Jing Wang
- Department of Neurology, University Hospital Essen, Essen, Germany; Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| | - Adriana R Schultz Moreira
- Department of Neurology, University Hospital Essen, Essen, Germany; Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| | - Eduardo H Sanchez-Mendoza
- Department of Neurology, University Hospital Essen, Essen, Germany; Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| | - Maryam Sardari
- Department of Neurology, University Hospital Essen, Essen, Germany; Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany; Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Luiza M Nascentes Melo
- Department of Neurology, University Hospital Essen, Essen, Germany; Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| | | | - Jan Kehrmann
- Institute of Medical Microbiology, University Hospital Essen, Essen, Germany
| | - Rene Scholtysik
- Institute of Cell Biology, University Hospital Essen, Essen, Germany
| | - Ludger Hitpass
- Institute of Cell Biology, University Hospital Essen, Essen, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany; Leibniz-Institut für Analytische Wissenschaften ISAS e.V, Dortmund, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, Essen, Germany; Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany.
| |
Collapse
|
3
|
de Carvalho TS. Calorie restriction or dietary restriction: how far they can protect the brain against neurodegenerative diseases? Neural Regen Res 2022; 17:1640-1644. [PMID: 35017409 PMCID: PMC8820686 DOI: 10.4103/1673-5374.332126] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Finding the correct nutritional intervention is one of the biggest challenges in treating patients with neurodegenerative diseases. In general, these patients develop strong metabolic alterations, resulting in lower treatment efficacy and higher mortality rates. However, there are still many open questions regarding the effectiveness of dietary interventions in neurodiseases. Some studies have shown that a reduction in calorie intake activates key pathways that might be important for preventing or slowing down the progression of such diseases. However, it is still unclear whether these neuroprotective effects are associated with an overall reduction in calories (hypocaloric diet) or a specific nutrient restriction (diet restriction). Therefore, here we discuss how commonly or differently hypocaloric and restricted diets modulate signaling pathways and how these changes can protect the brain against neurodegenerative diseases.
Collapse
|
4
|
Hirabayashi T, Nakanishi R, Tanaka M, Nisa BU, Maeshige N, Kondo H, Fujino H. Reduced metabolic capacity in fast and slow skeletal muscle via oxidative stress and the energy-sensing of AMPK/SIRT1 in malnutrition. Physiol Rep 2021; 9:e14763. [PMID: 33650806 PMCID: PMC7923585 DOI: 10.14814/phy2.14763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 11/24/2022] Open
Abstract
The effects of malnutrition on skeletal muscle result in not only the loss of muscle mass but also fatigue intolerance. It remains unknown whether the metabolic capacity is related to the fiber type composition of skeletal muscle under malnourished condition although malnutrition resulted in preferential atrophy in fast muscle. The purpose of the present study was to investigate the effects of metabolic capacity in fast and slow muscles via the energy-sensing of AMPK and SIRT1 in malnutrition. Wistar rats were randomly divided into control and malnutrition groups. The rats in the malnutrition group were provided with a low-protein diet, and daily food intake was limited to 50% for 12 weeks. Malnutrition with hypoalbuminemia decreased the body weight and induced the loss of plantaris muscle mass, but there was little change in the soleus muscle. An increase in the superoxide level in the plasma and a decrease in SOD-2 protein expression in both muscles were observed in the malnutrition group. In addition, the expression level of AMPK in the malnutrition group increased in both muscles. Conversely, the expression level of SIRT1 decreased in both muscles of the malnutrition group. In addition, malnutrition resulted in a decrease in the expression levels of PGC-1α and PINK protein, and induced a decrease in the levels of two key mitochondrial enzymes (succinate dehydrogenase and citrate synthase) and COX IV protein expression in both muscles. These results indicate that malnutrition impaired the metabolic capacity in both fast and slow muscles via AMPK-independent SIRT1 inhibition induced by increased oxidative stress.
Collapse
Affiliation(s)
- Takumi Hirabayashi
- Department of Rehabilitation ScienceKobe University Graduate School of Health SciencesKobeJapan
- Department of RehabilitationNose HospitalKobeJapan
| | - Ryosuke Nakanishi
- Department of Rehabilitation ScienceKobe University Graduate School of Health SciencesKobeJapan
- Faculty of RehabilitationKobe International UniversityKobeJapan
| | - Minoru Tanaka
- Department of Rehabilitation ScienceKobe University Graduate School of Health SciencesKobeJapan
- Department of Rehabilitation ScienceOsaka Health Science UniversityOsakaJapan
| | - Badur un Nisa
- Department of Rehabilitation ScienceKobe University Graduate School of Health SciencesKobeJapan
| | - Noriaki Maeshige
- Department of Rehabilitation ScienceKobe University Graduate School of Health SciencesKobeJapan
| | - Hiroyo Kondo
- Department of Rehabilitation ScienceKobe University Graduate School of Health SciencesKobeJapan
- Department of Food Science and NutritionNagoya Women’s UniversityNagoyaJapan
| | - Hidemi Fujino
- Department of Rehabilitation ScienceKobe University Graduate School of Health SciencesKobeJapan
| |
Collapse
|
5
|
Matwee LK, Alaverdashvili M, Muir GD, Farthing JP, Bater SA, Paterson PG. Preventing protein-energy malnutrition after cortical stroke enhances recovery of symmetry in forelimb use during spontaneous exploration. Appl Physiol Nutr Metab 2020; 45:1015-1021. [PMID: 32272025 DOI: 10.1139/apnm-2019-0865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein-energy malnutrition (PEM) commonly arises after stroke. We investigated the effects of preventing PEM on spontaneous recovery of forelimb use, infarct size, and the acute phase response in the chronic post-stroke period. Male, adult, Sprague-Dawley rats were acclimatized to control diet (12.5% protein), tested for pre-stroke forelimb use symmetry in the cylinder test, and exposed to photothrombotic cortical stroke or sham surgery. Food intake was monitored daily, and body weight weekly. Forelimb use was tested on day 4 after surgery, before assignment to control diet or PEM (0.5% protein), with subsequent testing on days 16 and 29. Blood, brain, and liver were collected on day 30. The low protein diet resulted in PEM, measured by decreased body weight (p < 0.001) and food intake (p = 0.016) and increased liver lipid (p < 0.001). Stroke (p = 0.016) and PEM (p = 0.001) independently elicited increases in serum α-2-macroglobulin concentration, whereas PEM alone decreased albumin (p < 0.001). PEM reduced recovery of forelimb use symmetry during exploration on days 16 (p = 0.024) and 29 (p = 0.013) but did not influence infarct size (p = 0.775). Stroke reduced reliance on the stroke-affected forelimb to initiate exploration up until day 29 (p < 0.001); PEM had no influence (p ≥ 0.463). Preventing post-stroke PEM appears to yield direct benefits for certain types of motor recovery. Novelty Preventing post-stroke malnutrition benefits certain types of motor recovery. An acute phase response may contribute to the poorer recovery with malnutrition.
Collapse
Affiliation(s)
- Larisa K Matwee
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Mariam Alaverdashvili
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Gillian D Muir
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Jonathan P Farthing
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada
| | - Sarah A Bater
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Phyllis G Paterson
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
6
|
Dimiati H, Wahab AS, Juffrie M, Julia M, Gani BA. Study of NT-proBNP and Hs-Troponin I biomarkers for early detection of children's heart function of proteinenergy malnutrition. Pediatr Rep 2019; 11:7997. [PMID: 31214302 PMCID: PMC6549000 DOI: 10.4081/pr.2019.7997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/11/2019] [Indexed: 11/23/2022] Open
Abstract
The Protein Energy Malnutrition (PEM) is the condition of a lack of carbohydrate and protein stores in the body that trigger chronic failure nutrient intake and body maintenance function caused to impact the heart functions. The NT-pro-BNP and Hs- Troponin I proteins were found as the indicator of cardiac dysfunction. The sixty subjects of PEM, analyzed by standard of Indonesia Healt Ministry as well as nutritional status. The blood electrolytes examined by laboratory assay and the levels of Hs-Troponin 1 and NT-Pro-BNP were analyzed by Immune-Chromatography method. Assessing of the ventricular mass with the seeing the peak of the diastolic flow rate of left ventricular that estimated by the curve of the receiver operating characteristic and the area under the curve (P<0.05). The result has shown that the PEM decreased in the left ventricular mass for impaired heart function and systolic disorder. The Hs- Troponin I (90.9%) has better sensitivity than NT-pro-BNP (85.5%) if the merger of those markers possesses the lowest sensitivity (81.8%). These proteins have good biomarkers in heart function, mainly in cases where PEM is present.
Collapse
Affiliation(s)
- Herlina Dimiati
- Cardiology Division, Pediatric Health Department, Faculty of Medicine, Universitas Syiah Kuala-RSUZA Hospital, Banda Aceh
| | - Abdus Samik Wahab
- Pediatric Health Department, Faculty of Medicine, Gadjah Mada University, Yogyakarta
| | - Mohammad Juffrie
- Pediatric Health Department, Faculty of Medicine, Gadjah Mada University, Yogyakarta
| | - Madarina Julia
- Pediatric Health Department, Faculty of Medicine, Gadjah Mada University, Yogyakarta
| | - Basri A Gani
- Oral Biology Department, Faculty of Dentistry, Universitas Syiah Kuala, Darussalam Banda Aceh, Indonesia
| |
Collapse
|
7
|
Sarkar T, Patro N, Patro IK. Cumulative multiple early life hits- a potent threat leading to neurological disorders. Brain Res Bull 2019; 147:58-68. [DOI: 10.1016/j.brainresbull.2019.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/31/2019] [Accepted: 02/08/2019] [Indexed: 12/11/2022]
|
8
|
de Carvalho TS, Sanchez-Mendoza EH, Nascentes Melo LM, Schultz Moreira AR, Sardari M, Dzyubenko E, Kleinschnitz C, Hermann DM. Neuroprotection Induced by Energy and Protein-Energy Undernutrition Is Phase-Dependent After Focal Cerebral Ischemia in Mice. Transl Stroke Res 2019; 11:135-146. [PMID: 30887279 PMCID: PMC6957545 DOI: 10.1007/s12975-019-00700-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 11/29/2022]
Abstract
Malnutrition predisposes to poor stroke outcome. In animal models, undernutrition protected against ischemic injury in some, but not in other studies. In view of diverse stroke models and food restriction paradigms, the consequences of undernutrition are poorly understood. Herein, we exposed mice to energy-reduced and protein-energy-reduced diets for 7–30 days and subsequently induced intraluminal middle cerebral artery occlusion. Undernutrition phase dependently influenced ischemic injury. Short-lasting 7 days of protein-energy undernutrition, but not energy undernutrition, decreased post-ischemic brain leukocyte infiltration and microglial activation and reduced brain Il-1β mRNA, but did not protect against ischemic injury. Fourteen days of energy and protein-energy undernutrition, on the other hand, reduced ischemic injury despite absence of anti-inflammatory effects. Anti-oxidant genes (Sod-1, Sod-2, and Cat mRNAs) were regulated in the liver and, to a lesser extent, the ischemic brain, indicating an adapted, compensated stage. Conversely, 30 days of energy and protein-energy undernutrition caused progressive animal exhaustion associated with post-ischemic hypoperfusion, rise of metabolic markers (Sirt-1 and Glut-1 mRNAs, Sirt-1 protein) in the ischemic brain, and reregulation of pro- and anti-oxidant markers (now also Nox-4 and Gpx-3 mRNAs) in the liver. In the latter condition, no neuroprotection was noted. Our study suggests an adaptation of metabolic systems that provides neuroprotection in a circumscribed time window.
Collapse
Affiliation(s)
| | | | - Luiza M Nascentes Melo
- Department of Neurology, University Hospital Essen, Hufelandstr. 55, 45122, Essen, Germany
| | | | - Maryam Sardari
- Department of Neurology, University Hospital Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - Egor Dzyubenko
- Department of Neurology, University Hospital Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - Christoph Kleinschnitz
- Department of Neurology, University Hospital Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, Hufelandstr. 55, 45122, Essen, Germany.
| |
Collapse
|
9
|
Alaverdashvili M, Caine S, Li X, Hackett MJ, Bradley MP, Nichol H, Paterson PG. Protein-Energy Malnutrition Exacerbates Stroke-Induced Forelimb Abnormalities and Dampens Neuroinflammation. Transl Stroke Res 2018; 9:622-630. [PMID: 29397529 DOI: 10.1007/s12975-018-0613-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/20/2018] [Accepted: 01/23/2018] [Indexed: 11/30/2022]
Abstract
Protein-energy malnutrition (PEM) pre-existing at stroke onset is believed to worsen functional outcome, yet the underlying mechanisms are not fully understood. Since brain inflammation is an important modulator of neurological recovery after stroke, we explored the impact of PEM on neuroinflammation in the acute period in relation to stroke-initiated sensori-motor abnormalities. Adult rats were fed a low-protein (LP) or normal protein (NP) diet for 28 days before inducing photothrombotic stroke (St) in the forelimb region of the motor cortex or sham surgery; the diets continued for 3 days after the stroke. Protein-energy status was assessed by a combination of body weight, food intake, serum acute phase proteins and corticosterone, and liver lipid content. Deficits in motor function were evaluated in the horizontal ladder walking and cylinder tasks at 3 days after stroke. The glial response and brain elemental signature were investigated by immunohistochemistry and micro-X-ray fluorescence imaging, respectively. The LP-fed rats reduced food intake, resulting in PEM. Pre-existing PEM augmented stroke-induced abnormalities in forelimb placement accuracy on the ladder; LP-St rats made more errors (29 ± 8%) than the NP-St rats (15 ± 3%; P < 0.05). This was accompanied by attenuated astrogliosis in the peri-infarct area by 18% and reduced microglia activation by up to 41 and 21% in the peri-infarct area and the infarct rim, respectively (P < 0.05). The LP diet altered the cortical Zn, Ca, and Cl signatures (P < 0.05). Our data suggest that proactive treatment of pre-existing PEM could be essential for optimal post-stroke recovery.
Collapse
Affiliation(s)
- Mariam Alaverdashvili
- College of Pharmacy and Nutrition, University of Saskatchewan, D Wing Health Sciences, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada.
| | - Sally Caine
- College of Pharmacy and Nutrition, University of Saskatchewan, D Wing Health Sciences, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Xue Li
- College of Pharmacy and Nutrition, University of Saskatchewan, D Wing Health Sciences, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Mark J Hackett
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Michael P Bradley
- Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Canada
| | - Helen Nichol
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Canada
| | - Phyllis G Paterson
- College of Pharmacy and Nutrition, University of Saskatchewan, D Wing Health Sciences, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
10
|
Coto Montes A, Boga JA, Bermejo Millo C, Rubio González A, Potes Ochoa Y, Vega Naredo I, Martínez Reig M, Romero Rizos L, Sánchez Jurado PM, Solano JJ, Abizanda P, Caballero B. Potential early biomarkers of sarcopenia among independent older adults. Maturitas 2017; 104:117-122. [DOI: 10.1016/j.maturitas.2017.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 12/25/2022]
|
11
|
Alaverdashvili M, Hackett MJ, Caine S, Paterson PG. Parallel changes in cortical neuron biochemistry and motor function in protein-energy malnourished adult rats. Neuroimage 2017; 149:275-284. [PMID: 28179168 DOI: 10.1016/j.neuroimage.2017.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/25/2016] [Accepted: 02/04/2017] [Indexed: 12/30/2022] Open
Abstract
While protein-energy malnutrition in the adult has been reported to induce motor abnormalities and exaggerate motor deficits caused by stroke, it is not known if alterations in mature cortical neurons contribute to the functional deficits. Therefore, we explored if PEM in adult rats provoked changes in the biochemical profile of neurons in the forelimb and hindlimb regions of the motor cortex. Fourier transform infrared spectroscopic imaging using a synchrotron generated light source revealed for the first time altered lipid composition in neurons and subcellular domains (cytosol and nuclei) in a cortical layer and region-specific manner. This change measured by the area under the curve of the δ(CH2) band may indicate modifications in membrane fluidity. These PEM-induced biochemical changes were associated with the development of abnormalities in forelimb use and posture. The findings of this study provide a mechanism by which PEM, if not treated, could exacerbate the course of various neurological disorders and diminish treatment efficacy.
Collapse
Affiliation(s)
- Mariam Alaverdashvili
- Neuroscience Research Group, Department of Anatomy and Cell Biology and College of Pharmacy and Nutrition University of Saskatchewan, D Wing GD30 (Box 1) Health Sciences, 107 Wiggins Road, Saskatoon, SK, Canada, S7N 5E5; College of Pharmacy and Nutrition, Canada; Department of Anatomy and Cell Biology, Canada; Cameco MS Neuroscience Center, University of Saskatchewan, Saskatoon, Canada.
| | - Mark J Hackett
- Neuroscience Research Group, Department of Anatomy and Cell Biology and College of Pharmacy and Nutrition University of Saskatchewan, D Wing GD30 (Box 1) Health Sciences, 107 Wiggins Road, Saskatoon, SK, Canada, S7N 5E5; Department of Geological Sciences, Canada
| | - Sally Caine
- Neuroscience Research Group, Department of Anatomy and Cell Biology and College of Pharmacy and Nutrition University of Saskatchewan, D Wing GD30 (Box 1) Health Sciences, 107 Wiggins Road, Saskatoon, SK, Canada, S7N 5E5; Department of Anatomy and Cell Biology, Canada; Cameco MS Neuroscience Center, University of Saskatchewan, Saskatoon, Canada
| | - Phyllis G Paterson
- Neuroscience Research Group, Department of Anatomy and Cell Biology and College of Pharmacy and Nutrition University of Saskatchewan, D Wing GD30 (Box 1) Health Sciences, 107 Wiggins Road, Saskatoon, SK, Canada, S7N 5E5; College of Pharmacy and Nutrition, Canada; Cameco MS Neuroscience Center, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|