1
|
Ticinesi A, Nouvenne A, Cerundolo N, Parise A, Meschi T. Accounting Gut Microbiota as the Mediator of Beneficial Effects of Dietary (Poly)phenols on Skeletal Muscle in Aging. Nutrients 2023; 15:nu15102367. [PMID: 37242251 DOI: 10.3390/nu15102367] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Sarcopenia, the age-related loss of muscle mass and function increasing the risk of disability and adverse outcomes in older people, is substantially influenced by dietary habits. Several studies from animal models of aging and muscle wasting indicate that the intake of specific polyphenol compounds can be associated with myoprotective effects, and improvements in muscle strength and performance. Such findings have also been confirmed in a smaller number of human studies. However, in the gut lumen, dietary polyphenols undergo extensive biotransformation by gut microbiota into a wide range of bioactive compounds, which substantially contribute to bioactivity on skeletal muscle. Thus, the beneficial effects of polyphenols may consistently vary across individuals, depending on the composition and metabolic functionality of gut bacterial communities. The understanding of such variability has recently been improved. For example, resveratrol and urolithin interaction with the microbiota can produce different biological effects according to the microbiota metabotype. In older individuals, the gut microbiota is frequently characterized by dysbiosis, overrepresentation of opportunistic pathogens, and increased inter-individual variability, which may contribute to increasing the variability of biological actions of phenolic compounds at the skeletal muscle level. These interactions should be taken into great consideration for designing effective nutritional strategies to counteract sarcopenia.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/1, 43124 Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Antonio Nouvenne
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/1, 43124 Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Nicoletta Cerundolo
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Alberto Parise
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Tiziana Meschi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/1, 43124 Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| |
Collapse
|
2
|
Lee H, Kim SY, Lim Y. Lespedeza bicolor extract supplementation reduced hyperglycemia-induced skeletal muscle damage by regulation of AMPK/SIRT/PGC1α-related energy metabolism in type 2 diabetic mice. Nutr Res 2023; 110:1-13. [PMID: 36638746 DOI: 10.1016/j.nutres.2022.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Lespedeza bicolor (LB) is known to have antidiabetic activities; however, the underlying molecular mechanisms of LB in hyperglycemia-induced skeletal muscle damage is unclear. Inflammation and oxidative stress caused by type 2 diabetes mellitus (T2DM) not only contributes to insulin resistance, but also promotes muscle atrophy via decreased muscle protein synthesis and increased protein degradation, leading to frailty and sarcopenia. In this study, we hypothesized that LB extract (LBE) supplementatin has an ameliorative effect on hyperglycemia-induced skeletal muscle damage by activation of 5' adenosine monophosphate-activated protein kinase (AMPK)/sirtuin (SIRT)/proliferator-activated receptor γ coactivator 1α (PGC1α)-associated energy metabolism in mice with T2DM. Diabetes was induced by a high-fat diet with a 2-time streptozotoxin injection (30 mg/kg body weight) in male C57BL/6J mice. After diabetes was induced (fasting blood glucose level ≥140 mg/dL), the mice were administered with LBE at a low dose (100 mg/kg/d) or high dose (250 mg/kg/d) by gavage for 12 weeks. LBE supplementation ameliorated glucose tolerance and hemoglobin A1c (%) in mice with T2DM. Moreover, LBE supplementation upregulated protein levels of insulin receptor subunit-1 and Akt accompanied by increased translocation of glucose transporter 4 in mice with T2DM. Furthermore, LBE increased mitochondrial biogenesis by activating SIRT1, SIRT3, SIRT4, and peroxisome PGC1α in diabetic skeletal muscle. Meanwhile, LBE supplementation reduced oxidative stress and inflammation in mice with T2DM. Taken together, the current study suggested that LBE could be a potential therapeutic to prevent skeletal muscle damage by regulation AMPK/SIRT/PGC1α-related energy metabolism in T2DM.
Collapse
Affiliation(s)
- Heaji Lee
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
3
|
QIU JIAYING, CHANG YAN, LIANG WENPENG, LIN MENGSI, XU HUI, XU WANQING, ZHU QINGWEN, ZHANG HAIBO, ZHANG ZHENYU. Pharmacological effects of denervated muscle atrophy due to metabolic imbalance in different periods. BIOCELL 2023; 47:2351-2359. [DOI: 10.32604/biocell.2023.031043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/25/2023] [Indexed: 09/11/2024]
|
4
|
Functional Nutrients to Ameliorate Neurogenic Muscle Atrophy. Metabolites 2022; 12:metabo12111149. [DOI: 10.3390/metabo12111149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Neurogenic muscle atrophy is a debilitating condition that occurs from nerve trauma in association with diseases or during aging, leading to reduced interaction between motoneurons and skeletal fibers. Current therapeutic approaches aiming at preserving muscle mass in a scenario of decreased nervous input include physical activity and employment of drugs that slow down the progression of the condition yet provide no concrete resolution. Nutritional support appears as a precious tool, adding to the success of personalized medicine, and could thus play a relevant part in mitigating neurogenic muscle atrophy. We herein summarize the molecular pathways triggered by denervation of the skeletal muscle that could be affected by functional nutrients. In this narrative review, we examine and discuss studies pertaining to the use of functional ingredients to counteract neurogenic muscle atrophy, focusing on their preventive or curative means of action within the skeletal muscle. We reviewed experimental models of denervation in rodents and in amyotrophic lateral sclerosis, as well as that caused by aging, considering the knowledge generated with use of animal experimental models and, also, from human studies.
Collapse
|
5
|
Xiang J, Du M, Wang H. Dietary Plant Extracts in Improving Skeletal Muscle Development and Metabolic Function. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2087669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jinzhu Xiang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Hanning Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
6
|
Jia H, Yamashita T, Li X, Kato H. Laurel Attenuates Dexamethasone-Induced Skeletal Muscle Atrophy In Vitro and in a Rat Model. Nutrients 2022; 14:nu14102029. [PMID: 35631169 PMCID: PMC9143575 DOI: 10.3390/nu14102029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022] Open
Abstract
Prevention of muscle atrophy contributes to improved quality of life and life expectancy. In this study, we investigated the effects of laurel, selected from 34 spices and herbs, on dexamethasone (DEX)-induced skeletal muscle atrophy and deciphered the underlying mechanisms. Co-treatment of C2C12 myotubes with laurel for 12 h inhibited the DEX-induced expression of intracellular ubiquitin ligases—muscle atrophy F-box (atrogin-1/MAFbx) and muscle RING finger 1 (MuRF1)—and reduction in myotube diameter. Male Wistar rats were supplemented with 2% laurel for 17 days, with DEX-induced skeletal muscle atrophy occurring in the last 3 days. Laurel supplementation inhibited the mRNA expression of MuRF1, regulated DNA damage and development 1 (Redd1), and forkhead box class O 1 (Foxo1) in the muscles of rats. Mechanistically, we evaluated the effects of laurel on the cellular proteolysis machinery—namely, the ubiquitin/proteasome system and autophagy—and the mTOR signaling pathway, which regulates protein synthesis. These data indicated that the amelioration of DEX-induced skeletal muscle atrophy induced by laurel, is mainly mediated by the transcriptional inhibition of downstream factors of the ubiquitin-proteasome system. Thus, laurel may be a potential food ingredient that prevents muscle atrophy.
Collapse
|
7
|
miR-222 Is Involved in the Amelioration Effect of Genistein on Dexamethasone-Induced Skeletal Muscle Atrophy. Nutrients 2022; 14:nu14091861. [PMID: 35565830 PMCID: PMC9104324 DOI: 10.3390/nu14091861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle atrophy is a complex degenerative disease characterized by decreased skeletal muscle mass, skeletal muscle strength, and function. MicroRNAs (miRNAs) are a potential therapeutic target, and natural products that regulate miRNA expression may be a safe and effective treatment strategy for muscle atrophy. Previous studies have shown beneficial effects of genistein treatment on muscle mass and muscle atrophy, but the mechanism is not fully understood. Differential co-expression network analysis revealed that miR-222 was upregulated in multiple skeletal muscle atrophy models. Subsequent in vitro (C2C12 myoblasts) and in vivo (C57BL/6 mice) experiments showed that genistein could alleviate dexamethasone-induced muscle atrophy and downregulate the expression of miR-222 in muscle tissue and C2C12 myotubes. The dual-luciferase reporter assay system confirmed that IGF1 is a target gene of miR-222 and is regulated by genistein. In C2C12 myotubes, both dexamethasone and miR-222 overexpression promoted muscle atrophy, however, this function was significantly reduced after genistein treatment. Furthermore, we also observed that both genistein and miR-222 antagomiR could significantly inhibit dexamethasone-induced muscle atrophy in vivo. These results suggest that miR-222 may be involved in the regulation of genistein on muscle atrophy, and genistein and miR-222 may be used to improve muscle health.
Collapse
|
8
|
Ikeda T, Watanabe S, Mitani T. Genistein regulates adipogenesis by blocking the function of adenine nucleotide translocase-2 in the mitochondria. Biosci Biotechnol Biochem 2022; 86:260-272. [PMID: 34849563 DOI: 10.1093/bbb/zbab203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/24/2021] [Indexed: 01/03/2023]
Abstract
Genistein exerts antiadipogenic effects, but its target molecules remain unclear. Here, we delineated the molecular mechanism underlying the antiadipogenic effect of genistein. A pulldown assay using genistein-immobilized beads identified adenine nucleotide translocase-2 as a genistein-binding protein in adipocytes. Adenine nucleotide translocase-2 exchanges ADP/ATP through the mitochondrial inner membrane. Similar to the knockdown of adenine nucleotide translocase-2, genistein treatment decreased ADP uptake into the mitochondria and ATP synthesis. Genistein treatment and adenine nucleotide translocase-2 knockdown suppressed adipogenesis and increased phosphorylation of AMP-activated protein kinase. Adenine nucleotide translocase-2 knockdown reduced the transcriptional activity of CCAAT/enhancer-binding protein β, whereas AMP-activated protein kinase inhibition restored the suppression of adipogenesis by adenine nucleotide translocase-2 knockdown. These results indicate that genistein interacts directly with adenine nucleotide translocase-2 to suppress its function. The downregulation of adenine nucleotide translocase-2 reduces the transcriptional activity of CCAAT/enhancer-binding protein β via activation of AMP-activated protein kinase, which consequently represses adipogenesis.
Collapse
Affiliation(s)
- Takahiro Ikeda
- Division of Food Science and Biotechnology, Department of Agriculture, Graduated School of Science and Technology, Shinshu University, Kamiina, Nagano, Japan
| | - Shun Watanabe
- Division of Food Science and Biotechnology, Department of Agriculture, Graduated School of Science and Technology, Shinshu University, Kamiina, Nagano, Japan
| | - Takakazu Mitani
- Division of Food Science and Biotechnology, Department of Agriculture, Graduated School of Science and Technology, Shinshu University, Kamiina, Nagano, Japan
- Division of Bioscience and Biotechnology, Faculty of Agriculture, Shinshu University, Kamiina, Nagano, Japan
| |
Collapse
|
9
|
Polyphenols and Their Effects on Muscle Atrophy and Muscle Health. Molecules 2021; 26:molecules26164887. [PMID: 34443483 PMCID: PMC8398525 DOI: 10.3390/molecules26164887] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle atrophy is the decrease in muscle mass and strength caused by reduced protein synthesis/accelerated protein degradation. Various conditions, such as denervation, disuse, aging, chronic diseases, heart disease, obstructive lung disease, diabetes, renal failure, AIDS, sepsis, cancer, and steroidal medications, can cause muscle atrophy. Mechanistically, inflammation, oxidative stress, and mitochondrial dysfunction are among the major contributors to muscle atrophy, by modulating signaling pathways that regulate muscle homeostasis. To prevent muscle catabolism and enhance muscle anabolism, several natural and synthetic compounds have been investigated. Recently, polyphenols (i.e., natural phytochemicals) have received extensive attention regarding their effect on muscle atrophy because of their potent antioxidant and anti-inflammatory properties. Numerous in vitro and in vivo studies have reported polyphenols as strongly effective bioactive molecules that attenuate muscle atrophy and enhance muscle health. This review describes polyphenols as promising bioactive molecules that impede muscle atrophy induced by various proatrophic factors. The effects of each class/subclass of polyphenolic compounds regarding protection against the muscle disorders induced by various pathological/physiological factors are summarized in tabular form and discussed. Although considerable variations in antiatrophic potencies and mechanisms were observed among structurally diverse polyphenolic compounds, they are vital factors to be considered in muscle atrophy prevention strategies.
Collapse
|
10
|
Aoyama S, Kim HK, Hirooka R, Tanaka M, Shimoda T, Chijiki H, Kojima S, Sasaki K, Takahashi K, Makino S, Takizawa M, Takahashi M, Tahara Y, Shimba S, Shinohara K, Shibata S. Distribution of dietary protein intake in daily meals influences skeletal muscle hypertrophy via the muscle clock. Cell Rep 2021; 36:109336. [PMID: 34233179 DOI: 10.1016/j.celrep.2021.109336] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/20/2021] [Accepted: 06/11/2021] [Indexed: 01/25/2023] Open
Abstract
The meal distribution of proteins throughout the day is usually skewed. However, its physiological implications and the effects of better protein distribution on muscle volume are largely unknown. Here, using the two-meals-per-day feeding model, we find that protein intake at the early active phase promotes overloading-induced muscle hypertrophy, in a manner dependent on the local muscle clock. Mice fed branched-chain amino acid (BCAA)-supplemented diets at the early active phase demonstrate skeletal muscle hypertrophy. However, distribution-dependent effects are not observed in ClockΔ19 or muscle-specific Bmal1 knockout mice. Additionally, we examined the relationship between the distribution of proteins in meals and muscle functions, such as skeletal muscle index and grip strength in humans. Higher muscle functions were observed in subjects who ingested dietary proteins mainly at breakfast than at dinner. These data suggest that protein intake at breakfast may be better for the maintenance of skeletal muscle mass.
Collapse
Affiliation(s)
- Shinya Aoyama
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan; Organization for University Research Initiatives, Waseda University, Tokyo 162-8480, Japan; Department of Neurobiology & Behavior, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Hyeon-Ki Kim
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan; Organization for University Research Initiatives, Waseda University, Tokyo 162-8480, Japan
| | - Rina Hirooka
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Mizuho Tanaka
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Takeru Shimoda
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Hanako Chijiki
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Shuichi Kojima
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Keisuke Sasaki
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Kengo Takahashi
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Saneyuki Makino
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Miku Takizawa
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Masaki Takahashi
- Institute for Liberal Arts, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Yu Tahara
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Shigeki Shimba
- Department of Health Science, School of Pharmacy, Nihon University, Chiba 274-8555, Japan
| | - Kazuyuki Shinohara
- Department of Neurobiology & Behavior, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan.
| |
Collapse
|
11
|
Nutraceuticals in the Prevention and Treatment of the Muscle Atrophy. Nutrients 2021; 13:nu13061914. [PMID: 34199575 PMCID: PMC8227811 DOI: 10.3390/nu13061914] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
Imbalance of protein homeostasis, with excessive protein degradation compared with protein synthesis, leads to the development of muscle atrophy resulting in a decrease in muscle mass and consequent muscle weakness and disability. Potential triggers of muscle atrophy include inflammation, malnutrition, aging, cancer, and an unhealthy lifestyle such as sedentariness and high fat diet. Nutraceuticals with preventive and therapeutic effects against muscle atrophy have recently received increasing attention since they are potentially more suitable for long-term use. The implementation of nutraceutical intervention might aid in the development and design of precision medicine strategies to reduce the burden of muscle atrophy. In this review, we will summarize the current knowledge on the importance of nutraceuticals in the prevention of skeletal muscle mass loss and recovery of muscle function. We also highlight the cellular and molecular mechanisms of these nutraceuticals and their possible pharmacological use, which is of great importance for the prevention and treatment of muscle atrophy.
Collapse
|
12
|
Fernandez-Garcia JM, Carrillo B, Tezanos P, Collado P, Pinos H. Genistein during Development Alters Differentially the Expression of POMC in Male and Female Rats. Metabolites 2021; 11:293. [PMID: 34063209 PMCID: PMC8147459 DOI: 10.3390/metabo11050293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
Phytoestrogens are considered beneficial for health, but some studies have shown that they may cause adverse effects. This study investigated the effects of genistein administration during the second week of life on energy metabolism and on the circuits regulating food intake. Two different genistein doses, 10 or 50 µg/g, were administered to male and female rats from postnatal day (P) 6 to P13. Physiological parameters, such as body weight and caloric intake, were then analyzed at P90. Moreover, proopiomelanocortin (POMC) expression in the arcuate nucleus (Arc) and orexin expression in the dorsomedial hypothalamus (DMH), perifornical area (PF) and lateral hypothalamus (LH) were studied. Our results showed a delay in the emergence of sex differences in the body weight in the groups with higher genistein doses. Furthermore, a significant decrease in the number of POMC-immunoreactive (POMC-ir) cells in the Arc in the two groups of females treated with genistein was observed. In contrast, no alteration in orexin expression was detected in any of the structures analyzed in either males or females. In conclusion, genistein can modulate estradiol's programming actions on the hypothalamic feeding circuits differentially in male and female rats during development.
Collapse
Affiliation(s)
- Jose Manuel Fernandez-Garcia
- Departamento de Psicobiología, Facultad Psicología, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain; (J.M.F.-G.); (B.C.); (P.C.)
- Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), 28040 Madrid, Spain
| | - Beatriz Carrillo
- Departamento de Psicobiología, Facultad Psicología, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain; (J.M.F.-G.); (B.C.); (P.C.)
- Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), 28040 Madrid, Spain
| | - Patricia Tezanos
- Departamento de Neurociencia Traslacional, Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain;
| | - Paloma Collado
- Departamento de Psicobiología, Facultad Psicología, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain; (J.M.F.-G.); (B.C.); (P.C.)
- Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), 28040 Madrid, Spain
| | - Helena Pinos
- Departamento de Psicobiología, Facultad Psicología, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain; (J.M.F.-G.); (B.C.); (P.C.)
- Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), 28040 Madrid, Spain
| |
Collapse
|
13
|
Kim C, Hwang JK. Flavonoids: nutraceutical potential for counteracting muscle atrophy. Food Sci Biotechnol 2020; 29:1619-1640. [PMID: 33282430 PMCID: PMC7708614 DOI: 10.1007/s10068-020-00816-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle plays a vital role in the conversion of chemical energy into physical force. Muscle atrophy, characterized by a reduction in muscle mass, is a symptom of chronic disease (cachexia), aging (sarcopenia), and muscle disuse (inactivity). To date, several trials have been conducted to prevent and inhibit muscle atrophy development; however, few interventions are currently available for muscle atrophy. Recently, food ingredients, plant extracts, and phytochemicals have received attention as treatment sources to prevent muscle wasting. Flavonoids are bioactive polyphenol compounds found in foods and plants. They possess diverse biological activities, including anti-obesity, anti-diabetes, anti-cancer, anti-oxidation, and anti-inflammation. The effects of flavonoids on muscle atrophy have been investigated by monitoring molecular mechanisms involved in protein turnover, mitochondrial activity, and myogenesis. This review summarizes the reported effects of flavonoids on sarcopenia, cachexia, and disuse muscle atrophy, thus, providing an insight into the understanding of the associated molecular mechanisms.
Collapse
Affiliation(s)
- Changhee Kim
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| | - Jae-Kwan Hwang
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| |
Collapse
|
14
|
Oxfeldt M, Dalgaard LB, Risikesan J, Johansen FT, Hansen M. Influence of Fermented Red Clover Extract on Skeletal Muscle in Early Postmenopausal Women: A Double-Blinded Cross-Over Study. Nutrients 2020; 12:E3587. [PMID: 33238442 PMCID: PMC7700192 DOI: 10.3390/nu12113587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Objective: To investigate effects of supplementation with a fermented red clover (RC) extract on signaling proteins related to muscle protein synthesis and breakdown at rest and in response to a resistance exercise bout. Methods: Ten postmenopausal women completed a double-blinded cross-over trial with two different intervention periods performed in random order: (A) RC extract twice daily for 14 days, and (B) placebo drink twice daily for 14 days. The intervention periods were separated by a two-week washout period. After each intervention period a muscle tissue sample was obtained before and three hours after a one-legged resistance exercise bout. Muscle strength was assessed before and after each intervention period. Results: Protein expression of FOXO1 and FOXO3a, two key transcription factors involved in protein degradation, were significantly lower and HSP27, a protein involved in cell protection and prevention of protein aggregation was significantly higher following RC extract compared to placebo. No significant treatment × time interaction was observed for muscle protein expression in response to exercise. However, p-mTOR, p-p70S6k and HSP90 protein content were significantly increased in response to exercise in both groups. Conclusions: This study demonstrates that RC extract supplementation downregulates molecular markers of muscle protein degradation compared to placebo in postmenopausal women.
Collapse
Affiliation(s)
- Mikkel Oxfeldt
- Department of Public Health, Aarhus University, 8000 Aarhus C, Denmark; (M.O.); (L.B.D.); (F.T.J.)
| | - Line Barner Dalgaard
- Department of Public Health, Aarhus University, 8000 Aarhus C, Denmark; (M.O.); (L.B.D.); (F.T.J.)
| | - Jeyanthini Risikesan
- Department of Clinical Medicine, Diabetes and Hormones Diseases, Aarhus University Hospital, 8200 Aarhus N, Denmark;
| | - Frank Ted Johansen
- Department of Public Health, Aarhus University, 8000 Aarhus C, Denmark; (M.O.); (L.B.D.); (F.T.J.)
| | - Mette Hansen
- Department of Public Health, Aarhus University, 8000 Aarhus C, Denmark; (M.O.); (L.B.D.); (F.T.J.)
| |
Collapse
|
15
|
Gan M, Yang D, Fan Y, Du J, Shen L, Li Q, Jiang Y, Tang G, Li M, Wang J, Li X, Zhang S, Zhu L. Bidirectional regulation of genistein on the proliferation and differentiation of C2C12 myoblasts. Xenobiotica 2020; 50:1352-1358. [PMID: 29171786 DOI: 10.1080/00498254.2017.1409917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Genistein is a widely studied phytoestrogen. The effects of genistein on myoblasts were reported long ago, but the conclusions are controversial. In this study, we evaluated the effects of different concentrations of genistein on C2C12 myoblasts. Genistein treatment promoted myoblast proliferation in a dose-dependent manner in the concentration range of 0-2 µM/L, reaching its maximum effect at 2 µM/L. Proliferation then declined, and a concentration higher than 20 µM/L showed significant inhibition. In addition, genistein treatment promoted myoblast differentiation at a dose of 10 µM/L. However, at treatment concentrations higher than 10 µM/L, the effect on myoblast differentiation was rapidly inhibited as the concentration increased. Genistein treatment also down-regulated the expression of miR-222, resulting in increased expression of its target genes, MyoG, MyoD, and ERα and thereby promoting myoblast differentiation. Our results suggest that genistein has a dose-dependent and bidirectional regulation effect on myoblast proliferation and differentiation. We also found that genistein is a miRNA inducer, and it specifically affects the expression of miR-222 to regulate myoblast differentiation.
Collapse
Affiliation(s)
- Mailin Gan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Dongli Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yuan Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jingjing Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qiang Li
- Sichuan Province General Station of Animal Husbandry, Chengdu, China
| | - Yanzhi Jiang
- College of Life and Science, Sichuan Agricultural University, Chengdu, China
| | - Guoqing Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingzhou Li
- College of Life and Science, Sichuan Agricultural University, Chengdu, China
| | - Jinyong Wang
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
16
|
Long X, Gao Y, Liu W, Liu X, Hayashi T, Mizuno K, Hattori S, Ikejima T. Natural flavonoid silibinin promotes the migration and myogenic differentiation of murine C2C12 myoblasts via modulation of ROS generation and down-regulation of estrogen receptor α expression. Mol Cell Biochem 2020; 474:243-261. [PMID: 32789659 DOI: 10.1007/s11010-020-03849-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/20/2020] [Indexed: 01/11/2023]
Abstract
Skeletal muscle regeneration is a complex process, involving the proliferation, migration, and differentiation of myoblasts. Recent studies suggest that some natural flavanones stimulate myogenesis. However, the effect of plant estrogen, silibinin, on the regulation of myoblast behaviors is unclarified. In this study, we investigated the effects of silibinin on immortalized murine myoblast C2C12 in the aspects of proliferation, migration, differentiation along with underlying mechanisms. The results show that silibinin at concentrations below 50 μM enhanced the migration and differentiation of C2C12 cells, but had no effect on cell proliferation. Silibinin significantly promoted the production of ROS, which appeared to play important roles in the migration and differentiation of the myoblasts. Interestingly, among ROS, the superoxide anion and hydroxyl radical were associated with the migration, whereas hydrogen peroxide contributed to the myogenic differentiation. We used ER agonist and antagonist to explore whether estrogen receptors (ERs), which are affected by silibinin treatment in the silibinin-enhanced C2C12 migration and differentiation. Migration was independent of ERs, whereas the differentiation was associated with decreased ERα activity. In summary, silibinin treatment increases ROS levels, leading to the promotion of migration and myogenic differentiation. Negative regulation ERα of differentiation but not of migration may suggest that ERα represses hydrogen peroxide generation. The effect of silibinin on myoblast migration and differentiation suggests that silibinin may have therapeutic benefits for muscle regeneration.
Collapse
Affiliation(s)
- Xinyu Long
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Yanfang Gao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Xiaoling Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Toshihiko Hayashi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China.,Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1, Nakanomachi, Hachioji, Tokyo, 192-0015, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Ibaraki, 649-1211, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Ibaraki, 649-1211, Japan
| | - Takashi Ikejima
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China. .,Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development Liaoning Province, 103 Wenhua Road, Shenyang, 110016, Liaoning, China. .,China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China.
| |
Collapse
|
17
|
Gan M, Shen L, Liu L, Guo Z, Wang S, Chen L, Zheng T, Fan Y, Tan Y, Jiang D, Li X, Zhang S, Zhu L. miR-222 is involved in the regulation of genistein on skeletal muscle fiber type. J Nutr Biochem 2019; 80:108320. [PMID: 32361609 DOI: 10.1016/j.jnutbio.2019.108320] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 10/05/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022]
Abstract
In skeletal muscle, the composition of the fiber types has a profound impact on athletic performance, such as endurance or strength output. The proportions of muscle fiber types have also been associated with certain diseases, including dyskinesia, obesity and insulin resistance. Genistein, a natural estrogen, has been demonstrated to regulate fatty acid oxidation and insulin sensitivity in skeletal muscle. However, it is unknown whether genistein can regulate skeletal muscle fiber types. Furthermore, the mechanism of its effect on skeletal muscle energy metabolism is not entirely clear. In this study, in vivo and in vitro experiments were used to explore the effect of genistein on the muscle fiber-type transitions and muscle metabolism. The results indicated that genistein not only promotes skeletal muscle development but increases the expression of slow muscle fibers in mice as well. It was also demonstrated that genistein altered the ratios of fiber type and promoted mitochondrial biogenesis in C2C12 myoblasts. Interestingly, the expression of miR-222 was decreased by genistein, and it was demonstrated that this microRNA targets the PGC1α gene. In C2C12 myoblasts, miR-222 appears to regulate fiber type conversion and mitochondrial biogenesis. However, this function was significantly reduced following genistein treatment. These results suggest that miR-222 may be involved in the regulation of genistein on skeletal muscle fiber and muscle metabolism, and genistein may be used to improve muscle health.
Collapse
Affiliation(s)
- Mailin Gan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lin Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Zhixian Guo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Shujie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lei Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Ting Zheng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yuan Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Ya Tan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Dongmei Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
18
|
Effects of day-time feeding on murine skeletal muscle growth and synthesis. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2019. [DOI: 10.1016/j.jnim.2019.100099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
19
|
Aoyama S, Kojima S, Sasaki K, Ishikawa R, Tanaka M, Shimoda T, Hattori Y, Aoki N, Takahashi K, Hirooka R, Takizawa M, Haraguchi A, Shibata S. Day-Night Oscillation of Atrogin1 and Timing-Dependent Preventive Effect of Weight-Bearing on Muscle Atrophy. EBioMedicine 2018; 37:499-508. [PMID: 30391495 PMCID: PMC6286653 DOI: 10.1016/j.ebiom.2018.10.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 10/09/2018] [Accepted: 10/24/2018] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Atrogin1, which is one of the key genes for the promotion of muscle atrophy, exhibits day-night variation. However, its mechanism and the role of its day-night variation are largely unknown in a muscle atrophic context. METHODS The mice were induced a muscle atrophy by hindlimb-unloading (HU). To examine a role of circadian clock, Wild-type (WT) and Clock mutant mice were used. To test the effects of a neuronal effects, an unilateral ablation of sciatic nerve was performed in HU mice. To test a timing-dependent effects of weight-bearing, mice were released from HU for 4 h in a day at early or late active phase (W-EAP and W-LAP groups, respectively). FINDINGS We found that the day-night oscillation of Atrogin1 expression was not observed in Clock mutant mice or in the sciatic denervated muscle. In addition, the therapeutic effects of weight-bearing were dependent on its timing with a better effect in the early active phase. INTERPRETATION These findings suggest that the circadian clock controls the day-night oscillation of Atrogin1 expression and the therapeutic effects of weight-bearing are dependent on its timing. FUND: Council for Science, Technology, and Innovation, SIP, "Technologies for creating next-generation agriculture, forestry, and fisheries".
Collapse
Affiliation(s)
- Shinya Aoyama
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan,; Organization for University Research Initiatives, Waseda University, Tokyo, Japan
| | - Shuichi Kojima
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Keisuke Sasaki
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Ryosuke Ishikawa
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Mizuho Tanaka
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Takeru Shimoda
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yuta Hattori
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Natsumi Aoki
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan,; Organization for University Research Initiatives, Waseda University, Tokyo, Japan
| | - Kengo Takahashi
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Rina Hirooka
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Miku Takizawa
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Atsushi Haraguchi
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan,.
| |
Collapse
|
20
|
Chikazawa M, Sato R. Identification of a Novel Function of Resveratrol and Genistein as a Regulator of β 2 -Adrenergic Receptor Expression in Skeletal Muscle Cells and Characterization of Promoter Elements Required for Promoter Activation. Mol Nutr Food Res 2018; 62:e1800530. [PMID: 30184338 DOI: 10.1002/mnfr.201800530] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/22/2018] [Indexed: 11/09/2022]
Abstract
SCOPE Modulating β2 -adrenergic receptor (β2 -AR) expression and activation is important for maintaining skeletal muscle function. In this study, two food factors, resveratrol (RSV) and genistein (GEN), that are able to regulate β2 -AR promoter activity and may improve skeletal muscle function are identified. METHODS AND RESULTS Using luciferase reporter assay, 357 functional food factors as candidates for β2 -AR promoter activity have been screened and subsequently RSV and GEN increase β2 -AR promoter activity and β2 -AR mRNA expression. Using promoter sequence analysis, it is shown that the CCAAT box and the GC box on the β2 -AR promoter are required for the regulation of β2 -AR expression by RSV or GEN. It is also ascertained that transcription factor NF-YA binds to the CCAAT box on the β2 -AR promoter and that the amount of NF-YA bound to the CCAAT box is unchanged by RSV or GEN treatment. Finally, it is confirmed that a GEN-containing diet increases β2 -AR expression in mouse skeletal muscle and increased skeletal muscle mass. CONCLUSIONS The findings show that food-derived molecules have the potential to influence skeletal muscle mass and function by regulating G protein-coupled receptor expression.
Collapse
Affiliation(s)
- Miho Chikazawa
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryuichiro Sato
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
21
|
Sakuma K, Yamaguchi A. Drugs of Muscle Wasting and Their Therapeutic Targets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:463-481. [PMID: 30390265 DOI: 10.1007/978-981-13-1435-3_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Muscle wasting and weakness such as cachexia, atrophy, and sarcopenia are characterized by marked decreases in the protein content, myonuclear number, muscle fiber size, and muscle strength. This chapter focuses on the recent advances of pharmacological approach for attenuating muscle wasting.A myostatin-inhibiting approach is very intriguing to prevent sarcopenia but not muscular dystrophy in humans. Supplementation with ghrelin is also an important candidate to combat sarcopenia as well as cachexia. Treatment with soy isoflavone, trichostatin A (TSA), and cyclooxygenase 2 (Cox2) inhibitors seems to be effective modulators attenuating muscle wasting, although further systematic research is needed on this treatment in particular concerning side effects.
Collapse
Affiliation(s)
- Kunihiro Sakuma
- Institute for Liberal Arts, Environment and Society, Tokyo Institute of Technology, Tokyo, Japan.
| | - Akihiko Yamaguchi
- Department of Physical Therapy, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| |
Collapse
|