1
|
Shmarakov IO, Gusarova GA, Islam MN, Marhuenda-Muñoz M, Bhattacharya J, Blaner WS. Retinoids stored locally in the lung are required to attenuate the severity of acute lung injury in male mice. Nat Commun 2023; 14:851. [PMID: 36792627 PMCID: PMC9932169 DOI: 10.1038/s41467-023-36475-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
Retinoids are potent transcriptional regulators that act in regulating cell proliferation, differentiation, and other cellular processes. We carried out studies in male mice to establish the importance of local cellular retinoid stores within the lung alveolus for maintaining its health in the face of an acute inflammatory challenge induced by intranasal instillation of lipopolysaccharide. We also undertook single cell RNA sequencing and bioinformatic analyses to identify roles for different alveolar cell populations involved in mediating these retinoid-dependent responses. Here we show that local retinoid stores and uncompromised metabolism and signaling within the lung are required to lessen the severity of an acute inflammatory challenge. Unexpectedly, our data also establish that alveolar cells other than lipofibroblasts, specifically microvascular endothelial and alveolar epithelial cells, are able to take up lipoprotein-transported retinoid and to accumulate cellular retinoid stores that are directly used to respond to an acute inflammatory challenge.
Collapse
Affiliation(s)
- Igor O Shmarakov
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| | - Galina A Gusarova
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Mohammad N Islam
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - María Marhuenda-Muñoz
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XIA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921, Santa Coloma de Gramenet, Spain
| | - Jahar Bhattacharya
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - William S Blaner
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
2
|
Tan L, Zhang Y, Wang H, Haberer H. Retinoic acid promotes tissue vitamin A status and modulates adipose tissue metabolism of neonatal rats exposed to maternal high-fat diet-induced obesity. J Nutr Sci 2022; 11:e54. [PMID: 35836697 PMCID: PMC9274391 DOI: 10.1017/jns.2022.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 11/06/2022] Open
Abstract
Maternal obesity may compromise the micronutrient status of the offspring. Vitamin A (VA) is an essential micronutrient during neonatal development. Its active metabolite, retinoic acid (RA), is a key regulator of VA homeostasis, which also regulates adipose tissue (AT) development in obese adults. However, its role on VA status and AT metabolism in neonates was unknown and it was determined in the present study. Pregnant Sprague-Dawley rats were randomised to a normal fat diet (NFD) or a high fat diet (HFD). From postnatal day 5 (P5) to P20, half of the HFD pups received oral RA every 3 d (HFDRA group). NFD pups and the remaining HFD pups (HFD group) received placebo. Six hours after dosing on P8, P14 and P20, n 4 pups per group were euthanised for different measures. It was found that total retinol concentration in neonatal liver and lung was significantly lower in the HFD group than the NFD group, while the concentrations were significantly increased in the HFDRA group. The HFD group exhibited significantly higher body weight (BW) gain, AT mass, serum leptin and adiponectin, and gene expression of these adipokines in white adipose tissue compared with the NFD group; these measures were significantly reduced in the HFDRA group. BAT UCP2 and UCP3 gene expression were significantly higher in pups receiving RA. In conclusion, repeated RA treatment during the suckling period improved the tissue VA status of neonates exposed to maternal obesity. RA also exerted a regulatory effect on neonatal obesity development by reducing BW gain and adiposity and modulating AT metabolism.
Collapse
Key Words
- Adipose tissue
- BAT, brown adipose tissue
- BW, body weight
- HFD, high fat diet
- LRAT, lecithin:retinol acyltransferase
- Maternal obesity
- NFD, normal fat diet
- Neonatal lung
- Neonatal obesity
- Neonate
- P, postnatal
- RA, retinoic acid
- RAR, retinoic acid receptor
- RXR, retinoid X receptor
- Retinoic acid
- UCP, uncoupling protein
- UPLC, ultra-high-performance liquid chromatography
- VA, vitamin A
- Vitamin A
- WAT, white adipose tissue
Collapse
Affiliation(s)
- Libo Tan
- Department of Human Nutrition, University of Alabama, 407 Russell Hall, 504 University Blvd, Tuscaloosa, AL 35487, USA
| | - Yanqi Zhang
- Department of Human Nutrition, University of Alabama, 407 Russell Hall, 504 University Blvd, Tuscaloosa, AL 35487, USA
| | - Hui Wang
- Department of Human Nutrition, University of Alabama, 407 Russell Hall, 504 University Blvd, Tuscaloosa, AL 35487, USA
| | - Heleena Haberer
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| |
Collapse
|
3
|
Gannon BM, Rogers LM, Tanumihardjo SA. Metabolism of Neonatal Vitamin A Supplementation: A Systematic Review. Adv Nutr 2021; 12:942-958. [PMID: 33216111 PMCID: PMC8262574 DOI: 10.1093/advances/nmaa137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/19/2020] [Accepted: 09/23/2020] [Indexed: 11/14/2022] Open
Abstract
A systematic review was conducted to summarize the absorption, transport, storage, and metabolism of oral neonatal vitamin A supplementation (NVAS). This review focused specifically on the neonatal period (first 28 d of life for humans) to inform guidance by WHO on recommendations related to NVAS. A systematic search of international and regional databases was conducted. Inclusion criteria were human or animal studies that gave oral vitamin A as a single or limited number of doses to apparently healthy neonates. Studies evaluating fortification or food-based approaches, dosing with retinoic acid, or studies of neonatal models of disease were excluded. The search retrieved 8847 unique records. After screening by title and abstract, 88 were screened using the full text, and 35 records met inclusion criteria: 13 human and 22 animal studies. Studies indicate that high-dose NVAS is absorbed well by neonates, typically mirroring fat absorption. Doses were primarily stored in the liver and transiently increased in the lung, kidney, spleen, adrenal glands, brain, skin, and adipose tissue, generally with a dose-response. Serum retinol and retinyl esters also transiently increased following NVAS. Although minimal acute adverse effects are noted, there is a lack of data supporting NVAS for improving organ maturation or sustained delivery to target organs. Research gaps include the physiological effects of the short-term increase of vitamin A concentrations in extrahepatic tissues, or whether there are unknown adverse effects over time.
Collapse
Affiliation(s)
- Bryan M Gannon
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Lisa M Rogers
- Department of Nutrition and Food Safety, WHO, Geneva, Switzerland
| | - Sherry A Tanumihardjo
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
4
|
Anitha A, Viswambharan V, Thanseem I, Iype M, Parakkal R, Surendran SP, Mundalil MV. Vitamins and Cognition: A Nutrigenomics Perspective. CURRENT NUTRITION & FOOD SCIENCE 2021. [DOI: 10.2174/1573401316999200901180443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rise in the prevalence of neurodegenerative and neurodevelopmental cognitive disorders
combined with a lack of efficient therapeutic strategies has necessitated the need to develop alternate
approaches. Dietary supplements are now being considered as a complementary and alternative
medicine for cognitive impairments. Considerable evidence suggests the role of vitamins in
modulating the genetic and epigenetic factors implicated in neuropsychiatric, neurodevelopmental
and neurodegenerative disorders. In this review, we provide an overview of the implications of nutrigenomics
with reference to vitamins that are suggested to boost cognitive functions (nootropic vitamins).
Several vitamins have been found to possess antioxidant and anti-inflammatory properties
which make them potential candidates in preventing or delaying age-related neurodegeneration and
cognitive decline. Well-designed longitudinal studies are essential to examine the association between
vitamins and cognitive functions. Future studies linking nutrition with advances in neuroscience,
genomics and epigenomics would provide novel approaches to managing cognitive disorders.
Collapse
Affiliation(s)
- Ayyappan Anitha
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| | - Vijitha Viswambharan
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| | - Ismail Thanseem
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| | - Mary Iype
- Government Medical College, Thiruvananthapuram 695 011, Kerala, India
| | - Rahna Parakkal
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| | - Sumitha P. Surendran
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| | - Mahesh V. Mundalil
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| |
Collapse
|
5
|
Marie A, Darricau M, Touyarot K, Parr-Brownlie LC, Bosch-Bouju C. Role and Mechanism of Vitamin A Metabolism in the Pathophysiology of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2021; 11:949-970. [PMID: 34120916 PMCID: PMC8461657 DOI: 10.3233/jpd-212671] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 01/09/2023]
Abstract
Evidence shows that altered retinoic acid signaling may contribute to the pathogenesis and pathophysiology of Parkinson's disease (PD). Retinoic acid is the bioactive derivative of the lipophilic vitamin A. Vitamin A is involved in several important homeostatic processes, such as cell differentiation, antioxidant activity, inflammation and neuronal plasticity. The role of vitamin A and its derivatives in the pathogenesis and pathophysiology of neurodegenerative diseases, and their potential as therapeutics, has drawn attention for more than 10 years. However, the literature sits in disparate fields. Vitamin A could act at the crossroad of multiple environmental and genetic factors of PD. The purpose of this review is to outline what is known about the role of vitamin A metabolism in the pathogenesis and pathophysiology of PD. We examine key biological systems and mechanisms that are under the control of vitamin A and its derivatives, which are (or could be) exploited for therapeutic potential in PD: the survival of dopaminergic neurons, oxidative stress, neuroinflammation, circadian rhythms, homeostasis of the enteric nervous system, and hormonal systems. We focus on the pivotal role of ALDH1A1, an enzyme expressed by dopaminergic neurons for the detoxification of these neurons, which is under the control of retinoic acid. By providing an integrated summary, this review will guide future studies on the potential role of vitamin A in the management of symptoms, health and wellbeing for PD patients.
Collapse
Affiliation(s)
- Anaıs Marie
- University Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Morgane Darricau
- University Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Katia Touyarot
- University Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Louise C. Parr-Brownlie
- Department of Anatomy, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Brain Research New Zealand (Center of Research Excellence), Dunedin, New Zealand
| | | |
Collapse
|
6
|
Kuchan MJ, Ranard KM, Dey P, Jeon S, Sasaki GY, Schimpf KJ, Bruno RS, Neuringer M, Erdman JW. Infant Rhesus Macaque Brain α-Tocopherol Stereoisomer Profile Is Differentially Impacted by the Source of α-Tocopherol in Infant Formula. J Nutr 2020; 150:2305-2313. [PMID: 32614402 PMCID: PMC7467853 DOI: 10.1093/jn/nxaa174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/17/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND α-Tocopherol (αT) in its natural form [2'R, 4'R, 8'R αT (RRR-αT)] is more bioactive than synthetic α-tocopherol (all rac-αT). All rac-αT is widely used in infant formulas, but its accretion in formula-fed infant brain is unknown. OBJECTIVE We sought to compare αT and stereoisomer status in infant rhesus macaques (Macaca mulatta) fed infant formula (RRR-αT or all rac-αT) with a reference group fed a mixed diet of breast milk and maternal diet. METHODS From 1 d after birth until 6 mo of age, infants (n = 23) were either nursery reared and exclusively fed 1 of 2 formulas by staff personnel or were community housed with their mothers and consumed a mixed reference diet of breast milk (69 mL/d at 6 mo) transitioning to monkey diet at ∼2 mo (MF; n = 8). Formulas contained either 21 μmol RRR-αT/L (NAT-F; n = 8) or 30 μmol all rac-αT/L (SYN-F; n = 7). Total αT and αT stereoisomers were analyzed in breast milk at 2, 4, and 6 mo and in monkey plasma and liver and 6 brain regions at 6 mo of age. α-Tocopherol transfer protein (α-TTP), lipoprotein αT, and urinary α-carboxyethyl-hydroxychroman (α-CEHC) were measured. One-way ANOVA with Tukey's post-hoc test was used for analysis. RESULTS At study termination, plasma, liver, lipoprotein, and brain total αT did not differ between groups. However, the NAT-F-fed group had higher RRR-αT than the SYN-F-fed group (P < 0.01) and the MF group (P < 0.0001) in plasma (1.7- and 2.7-fold) and brain (1.5- and 2.5-fold). Synthetic αT 2R stereoisomers (SYNTH-2R) were generally 3- and 7-fold lower in brain regions of the NAT-F group compared with those of the SYN-F and MF groups (P < 0.05). SYNTH-2R stereoisomers were 2-fold higher in MF than SYN-F (P < 0.0001). The plasma percentage of SYNTH-2R was negatively correlated with the brain percentage of RRR-αT (r = -0.99, P < 0.0001). Brain αT profiles were not explained by α-TTP mRNA or protein expression. Urine α-CEHC was 3 times higher in the NAT-F than in the MF group (P < 0.01). CONCLUSIONS Consumption of infant formulas with natural (NAT-F) compared with synthetic (SYN-F) αT differentially impacted brain αT stereoisomer profiles in infant rhesus macaques. Future studies should assess the functional implications of αT stereoisomer profiles on brain health.
Collapse
Affiliation(s)
| | - Katherine M Ranard
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, IL
| | - Priyankar Dey
- Human Nutrition Program, The Ohio State University, Columbus, OH
| | - Sookyoung Jeon
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, IL
| | - Geoff Y Sasaki
- Human Nutrition Program, The Ohio State University, Columbus, OH
| | | | - Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, OH
| | - Martha Neuringer
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR
- Casey Eye Institute, Oregon Health & Science University, Portland OR
| | - John W Erdman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, IL
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
7
|
Li Y, Wei CH, Green MH, Ross AC. Dietary Iron Repletion Stimulates Hepatic Mobilization of Vitamin A in Previously Iron-Deficient Rats as Determined by Model-Based Compartmental Analysis. J Nutr 2020; 150:1982-1988. [PMID: 32297934 PMCID: PMC7443722 DOI: 10.1093/jn/nxaa098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/24/2020] [Accepted: 03/19/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Iron deficiency can result in hyporetinolemia and hepatic vitamin A (VA) sequestration. OBJECTIVES We used model-based compartmental analysis to determine the impact of iron repletion on VA metabolism and kinetics in iron-deficient rats. METHODS At weaning, Sprague-Dawley rats were assigned to either a VA-marginal diet (0.35 mg retinol equivalent/kg) with adequate iron (35 ppm, control group [CN]) or reduced iron (3 ppm, iron-deficient group [ID-]), with an equivalent average body weight for each group. After 5 wk, n = 4 rats from each group were euthanized for baseline measurements of VA and iron indices, and the remaining rats (n = 6 CN, n = 10 ID-) received an intravenous injection of 3H-labeled retinol in an emulsion as tracer to initiate the kinetic study. On day 21 after dosing, half of the ID- rats were switched to the CN diet to initiate iron repletion, referred to as the iron-repletion group (ID+). From the time of dosing, 34 serial blood samples were collected from each rat over a 92-d time course. Plasma tracer and tissue tracee data were fitted to 6- and 4-compartment models, respectively, to analyze the kinetic behavior of VA in all groups. RESULTS Our mathematical model indicated that ID- rats exhibited a nearly 6-fold decrease in liver VA secretion and >4-fold reduction in whole-body VA utilization, compared with CN rats, whereas these perturbed kinetic behaviors were notably corrected in ID+ rats, close to those from the CN group. CONCLUSIONS Iron repletion can remove the inhibitory effect that iron deficiency exerts on hepatic mobilization of VA and restore retinol kinetic parameters to values similar to that of never-deficient CN rats. Together with improvements in iron and VA indices, our results suggest that restoration of an iron-adequate diet is sufficient to improve VA kinetics after a previous state of iron deficiency.
Collapse
Affiliation(s)
- Yaqi Li
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Cheng-Hsin Wei
- Molecular Pharmacology Program and Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Michael H Green
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | | |
Collapse
|
8
|
Dumetz F, Buré C, Alfos S, Bonneu M, Richard E, Touyarot K, Marie A, Schmitter JM, Bosch-Bouju C, Pallet V. Normalization of hippocampal retinoic acid level corrects age-related memory deficits in rats. Neurobiol Aging 2020; 85:1-10. [DOI: 10.1016/j.neurobiolaging.2019.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 12/12/2022]
|
9
|
Hodges JK, Tan L, Green MH, Ross AC. Vitamin A and retinoic acid combined have a more potent effect compared to vitamin A alone on the uptake of retinol into extrahepatic tissues of neonatal rats raised under vitamin A-marginal conditions. Curr Dev Nutr 2017; 1:cdn.116.000265. [PMID: 29377015 PMCID: PMC5779100 DOI: 10.3945/cdn.116.000265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Vitamin A (VA, retinol) supplementation is widely used to reduce child mortality in low-income countries. However, existing research suggests that supplementation with VA alone may not be optimal for infants. OBJECTIVE We compared the effect of VA vs. VA combined with retinoic acid (VARA) on retinol uptake and turnover in organs of neonatal rats raised under VA-marginal conditions. METHODS Secondary analysis was conducted on data obtained from two prior kinetic studies of Sprague-Dawley neonatal rats nursed by mothers fed a VA-marginal diet (0.35 mg retinol equivalents/kg diet). On postnatal d 4, pups had been treated with a single dose of VA (6 μg/g; n = 52; VA study), VA + 10% retinoic acid (6 μg/g; n = 42; VARA study) or placebo (canola oil; n = 94; both studies), all containing ~2 μCi of [3H]retinol as the tracer for VA. Total retinol concentrations and tracer levels had been measured in plasma and tissues from 1 h to 14 d after dosing. Control group data from both studies were merged prior to analysis. Kinetic parameters were re-estimated and compared statistically. RESULTS VARA supplementation administered to neonatal rats within a few days after birth resulted in a lower turnover of retinol in the lungs, kidneys, and carcass and less frequent recycling of retinol between plasma and organs (100 vs. 288 times in VARA- vs. VA-treated group). Although the VA supplementation resulted in a higher concentration of retinol in the liver, VARA supplementation led to a higher uptake of postprandial retinyl esters into the lungs, intestines, and carcass. CONCLUSIONS Given the relatively higher retinol uptake into several extrahepatic organs of neonates dosed orally with VARA, this form of supplementation may serve as a targeted treatment of low VA levels in the extrahepatic organs that continue to develop postnatally.
Collapse
Affiliation(s)
- Joanna K Hodges
- Department of Nutritional Sciences, 204 Chandlee Laboratory The Pennsylvania State University, University Park, PA
| | - Libo Tan
- Department of Nutritional Sciences, 204 Chandlee Laboratory The Pennsylvania State University, University Park, PA
| | - Michael H Green
- Department of Nutritional Sciences, 204 Chandlee Laboratory The Pennsylvania State University, University Park, PA
| | - A Catharine Ross
- Department of Nutritional Sciences, 204 Chandlee Laboratory The Pennsylvania State University, University Park, PA
| |
Collapse
|
10
|
Hodges JK, Tan L, Green MH, Ross AC. Vitamin A supplementation redirects the flow of retinyl esters from peripheral to central organs of neonatal rats raised under vitamin A-marginal conditions. Am J Clin Nutr 2017; 105:1110-1121. [PMID: 28298391 PMCID: PMC5402035 DOI: 10.3945/ajcn.116.149039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/16/2017] [Indexed: 01/01/2023] Open
Abstract
Background: Vitamin A (VA; retinol) supplementation is used to reduce child mortality in countries with high rates of malnutrition. Existing research suggests that neonates (<1 mo old) may have a limited capacity to store VA in organs other than the liver; however, knowledge about VA distribution and kinetics in individual, nonhepatic organs is limited.Objective: We examined retinol uptake and turnover in nonhepatic organs, including skin, brain, and adipose tissue, in neonatal rats without and after VA supplementation.Design: Sprague-Dawley neonatal rats (n = 104) were nursed by mothers fed a VA-marginal diet (0.35 mg retinol/kg diet) and treated on postnatal day 4 with an oral dose of either VA (6 μg retinyl palmitate/g body weight) or canola oil (control), both containing 1.8 μCi of [3H]retinol. Subsequently, pups (n = 4 · group-1 · time-1) were killed at 13 different times from 30 min to 24 d after dosing. The fractional and absolute transfer of chylomicron retinyl esters (CM-REs), retinol bound to retinol-binding protein (RBP-ROH), and total retinol were estimated in WinSAAM software.Results: VA supplementation redirected the flow of CM-REs from peripheral to central organs and accumulated mainly in the liver. The RBP-ROH released from the liver was acquired mainly by the peripheral tissues but not retained efficiently, causing repeated recycling of retinol between plasma and tissues (541 compared with 5 times in the supplemented group and control group, respectively) and its rapid turnover in all organs, except the brain and white adipose tissue. Retinol stores in the liver lasted for ∼2 wk before being gradually transferred to other organs.Conclusions: VA supplementation administered in a single high dose during the first month after birth is readily acquired but not retained efficiently in peripheral tissues of neonatal rats, suggesting that a more frequent, lower-dose supplementation may be necessary to maintain steady VA concentrations in rapidly developing neonatal tissues.
Collapse
Affiliation(s)
| | | | | | - A Catharine Ross
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA
| |
Collapse
|
11
|
Gannon BM, Davis CR, Nair N, Grahn M, Tanumihardjo SA. Single High-Dose Vitamin A Supplementation to Neonatal Piglets Results in a Transient Dose Response in Extrahepatic Organs and Sustained Increases in Liver Stores. J Nutr 2017; 147:798-806. [PMID: 28381532 DOI: 10.3945/jn.117.247577] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/13/2017] [Accepted: 03/06/2017] [Indexed: 01/17/2023] Open
Abstract
Background: Neonatal vitamin A (VA) supplementation is being evaluated as a public health policy for preventing infant mortality, but inconsistencies in mortality trials demand mechanistic work to determine biological plausibility.Objectives: We investigated the absorption, distribution, and storage of single large oral VA doses administered shortly after birth.Methods: Fifty pregnant sows (Sus scrofas domesticas) were fed a VA-free diet. Male and female newborn piglets (n = 313) were orally administered 0, 25,000, 50,000, or 200,000 IU VA in oil within 12 h of birth when mean ± SD weight was 1.56 ± 0.25 kg. Blood was drawn to determine absorption and storage 0.5-240 h after administration. Metabolic and postnatal dose-timing substudies were performed. Liver, lung, kidney, spleen, and adrenal VA concentrations were determined 7-240 h after administration.Results: Serum retinol and retinyl ester concentrations responded to treatment (P < 0.0001); however, differences between groups disappeared by 96 h. Liver VA concentrations responded to treatment (P < 0.0001), which persisted for 240 h. Liver VA for control piglets at 10 d (mean ± SD: 0.05 ± 0.02 μmol/g) was ≤0.1 μmol/g (deficiency), whereas groups that received VA maintained concentrations >0.1 μmol/g. Extrahepatic tissue VA concentrations displayed treatment effects (P ≤ 0.0077); groups that received treatments had higher VA concentrations than controls at early time points. Lung, kidney, and spleen VA did not differ between groups by 96 h, whereas adrenal glands did not differ by 240 h. Body weight was affected by treatment (P = 0.0002); VA-deficient piglets weighed 23-29% more than all treated groups 240 h after administration.Conclusions: A high dose of VA administered to newborn piglets was well absorbed, appeared in serum primarily as retinyl esters, and was taken up dose-dependently in all tissues studied; however, enhancement did not persist in sera, lungs, kidneys, spleens, or adrenal glands. Short-term impacts of retinoid signaling on weight gain remain to be elucidated, and longer follow-up studies are needed.
Collapse
Affiliation(s)
- Bryan M Gannon
- Department of Nutritional Sciences, Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | - Christopher R Davis
- Department of Nutritional Sciences, Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | - Nivedita Nair
- Department of Nutritional Sciences, Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | - Michael Grahn
- Department of Nutritional Sciences, Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | - Sherry A Tanumihardjo
- Department of Nutritional Sciences, Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
12
|
Sánchez-Hernández D, Anderson GH, Poon AN, Pannia E, Cho CE, Huot PS, Kubant R. Maternal fat-soluble vitamins, brain development, and regulation of feeding behavior: an overview of research. Nutr Res 2016; 36:1045-1054. [DOI: 10.1016/j.nutres.2016.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 09/09/2016] [Accepted: 09/15/2016] [Indexed: 12/17/2022]
|