1
|
Huang CH, Hsu HS, Chiang MT. Influence of Varied Dietary Cholesterol Levels on Lipid Metabolism in Hamsters. Nutrients 2024; 16:2472. [PMID: 39125351 PMCID: PMC11314022 DOI: 10.3390/nu16152472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Syrian hamsters are valuable models for studying lipid metabolism due to their sensitivity to dietary cholesterol, yet the precise impact of varying cholesterol levels has not been comprehensively assessed. This study examined the impact of varying dietary cholesterol levels on lipid metabolism in Syrian hamsters. Diets ranging from 0% to 1% cholesterol were administered to assess lipid profiles and oxidative stress markers. Key findings indicate specific cholesterol thresholds for inducing distinct lipid profiles: below 0.13% for normal lipids, 0.97% for elevated LDL-C, 0.43% for increased VLDL-C, and above 0.85% for heightened hepatic lipid accumulation. A cholesterol supplementation of 0.43% induced hypercholesterolemia without adverse liver effects or abnormal lipoprotein expression. Furthermore, cholesterol supplementation significantly increased liver weight, plasma total cholesterol, LDL-C, and VLDL-C levels while reducing the HDL-C/LDL-C ratio. Fecal cholesterol excretion increased, with stable bile acid levels. High cholesterol diets correlated with elevated plasma ALT activities, reduced hepatic lipid peroxidation, and altered leptin and CETP levels. These findings underscore Syrian hamsters as robust models for hyperlipidemia research, offering insights into experimental methodologies. The identified cholesterol thresholds facilitate precise lipid profile manipulation, enhancing the hamster's utility in lipid metabolism studies and potentially informing clinical approaches to managing lipid disorders.
Collapse
Affiliation(s)
| | | | - Meng-Tsan Chiang
- Department of Food Science, College of Life Sciences, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-H.H.); (H.-S.H.)
| |
Collapse
|
2
|
O’Keefe JH, Tintle NL, Harris WS, O’Keefe EL, Sala-Vila A, Attia J, Garg GM, Hure A, Bork CS, Schmidt EB, Venø SK, Chien KL, Chen YY(A, Egert S, Feldreich TR, Ärnlöv J, Lind L, Forouhi NG, Geleijnse JM, Pertiwi K, Imamura F, de Mello Laaksonen V, Uusitupa WM, Tuomilehto J, Laakso M, Lankinen MA, Laurin D, Carmichael PH, Lindsay J, Leander K, Laguzzi F, Swenson BR, Longstreth WT, Manson JE, Mora S, Cook NR, Marklund M, van Lent DM, Murphy R, Gudnason V, Ninomiya T, Hirakawa Y, Qian F, Sun Q, Hu F, Ardisson Korat AV, Risérus U, Lázaro I, Samieri C, Le Goff M, Helmer C, Steur M, Voortman T, Ikram MK, Tanaka T, Das JK, Ferrucci L, Bandinelli S, Tsai M, Guan W, Garg P, Verschuren WMM, Boer JMA, Biokstra A, Virtanen J, Wagner M, Westra J, Albuisson L, Yamagishi K, Siscovick DS, Lemaitre RN, Mozaffarian D. Omega-3 Blood Levels and Stroke Risk: A Pooled and Harmonized Analysis of 183 291 Participants From 29 Prospective Studies. Stroke 2024; 55:50-58. [PMID: 38134264 PMCID: PMC10840378 DOI: 10.1161/strokeaha.123.044281] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND The effect of marine omega-3 PUFAs on risk of stroke remains unclear. METHODS We investigated the associations between circulating and tissue omega-3 PUFA levels and incident stroke (total, ischemic, and hemorrhagic) in 29 international prospective cohorts. Each site conducted a de novo individual-level analysis using a prespecified analytical protocol with defined exposures, covariates, analytical methods, and outcomes; the harmonized data from the studies were then centrally pooled. Multivariable-adjusted HRs and 95% CIs across omega-3 PUFA quintiles were computed for each stroke outcome. RESULTS Among 183 291 study participants, there were 10 561 total strokes, 8220 ischemic strokes, and 1142 hemorrhagic strokes recorded over a median of 14.3 years follow-up. For eicosapentaenoic acid, comparing quintile 5 (Q5, highest) with quintile 1 (Q1, lowest), total stroke incidence was 17% lower (HR, 0.83 [CI, 0.76-0.91]; P<0.0001), and ischemic stroke was 18% lower (HR, 0.82 [CI, 0.74-0.91]; P<0.0001). For docosahexaenoic acid, comparing Q5 with Q1, there was a 12% lower incidence of total stroke (HR, 0.88 [CI, 0.81-0.96]; P=0.0001) and a 14% lower incidence of ischemic stroke (HR, 0.86 [CI, 0.78-0.95]; P=0.0001). Neither eicosapentaenoic acid nor docosahexaenoic acid was associated with a risk for hemorrhagic stroke. These associations were not modified by either baseline history of AF or prevalent CVD. CONCLUSIONS Higher omega-3 PUFA levels are associated with lower risks of total and ischemic stroke but have no association with hemorrhagic stroke.
Collapse
Affiliation(s)
- James H O’Keefe
- Saint Luke’s Mid America Heart Institute, University of Missouri-Kansas City, Kansas City, MO
| | | | - William S Harris
- Fatty Acid Research Institute, Sioux Falls, SD
- University of South Dakota, Sioux Falls, SD
| | - Evan L O’Keefe
- Saint Luke’s Mid America Heart Institute, University of Missouri-Kansas City, Kansas City, MO
| | - Aleix Sala-Vila
- Fatty Acid Research Institute, Sioux Falls, SD
- Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - John Attia
- The University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, Australia
| | - G Manohar Garg
- The University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, Australia
| | - Alexis Hure
- The University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, Australia
| | | | - Erik Berg Schmidt
- Aalborg University Hospital, Department of Clinical Medicine, Aalborg, Denmark
| | - Stine Krogh Venø
- Aalborg University Hospital, Department of Clinical Biochemistry, Aalborg, Denmark
| | - Kuo-Liong Chien
- National Taiwan University, Institute of Epidemiology and Preventive Medicine, Taipei Taiwan
| | - Yun-Yu (Amelia) Chen
- Taichung Veterans General Hospital, Department of Medical Research, Taichung, Taiwan
| | - Sarah Egert
- University of Bonn, Institute of Nutrition and Food Sciences and Nutritional Physiology, Bonn, Germany
| | | | - Johan Ärnlöv
- Karolinska Institutet, Division of Family Medicine and Primary Care, Department of Neurobiology Care Sciences & Society, Solna, Sweden
| | - Lars Lind
- Uppsala University, Department of Medical Sciences Cardiovascular Epidemiology, Uppsala, Sweden
| | - Nita G Forouhi
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Johanna M Geleijnse
- Wageningen University & Research, Division of Human Nutrition and Health, Wageningen, Netherlands
| | - Kamalita Pertiwi
- Wageningen University & Research, Division of Human Nutrition and Health, Wageningen, Netherlands
| | - Fumiaki Imamura
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Vanessa de Mello Laaksonen
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - W Matti Uusitupa
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Jaakko Tuomilehto
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Markku Laakso
- University of Eastern Finland, School of Medicine, Department of Internal Medicine, Kuopio, Finland
| | - Maria Anneli Lankinen
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Danielle Laurin
- CHU de Québec-Université Laval and VITAM Research Centers, Centre d’Excellence sur le Vieillissement de Québec, Québec, Canada
| | - Pierre-Hugues Carmichael
- CHU de Québec-Université Laval and VITAM Research Centers, Centre d’Excellence sur le Vieillissement de Québec, Québec, Canada
| | - Joan Lindsay
- University of Ottawa, School of Epidemiology and Public Health, Ottawa, Canada
| | - Karin Leander
- Karolinska Institutet, Institute of Environmental Medicine, Unit of Cardiovascular and Nutritional Epidemiology, Stockholm, Sweden
| | - Federica Laguzzi
- Karolinska Institutet, Institute of Environmental Medicine, Unit of Cardiovascular and Nutritional Epidemiology, Stockholm, Sweden
| | - Brenton R Swenson
- University of Washington, Cardiovascular Health Research Unit, Seattle, WA
| | - William T Longstreth
- University of Washington, Departments of Neurology and Epidemiology, Seattle, WA
| | - JoAnn E Manson
- Harvard Medical School, Department of Medicine, Brigham & Women’s Hospital, Boston, MA
| | - Samia Mora
- Harvard Medical School, Department of Medicine, Brigham & Women’s Hospital, Boston, MA
| | - Nancy R Cook
- Harvard Medical School, Department of Medicine, Brigham & Women’s Hospital, Boston, MA
| | - Matti Marklund
- The George Institute for Global Health, University of New South Wales, Newtown, NSW Australia; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland: and Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Debora Melo van Lent
- University of Texas, Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX
| | - Rachel Murphy
- University of British Columbia, Cancer Control Research, British Columbia Cancer, School of Population and Public Health, Vancouver, Canada
| | | | - Toshihara Ninomiya
- Kyushu University, Department of Epidemiology and Public Health and Center for Cohort Studies, Fukouka, Japan
| | - Yoichiro Hirakawa
- Kyushu University, Department of Epidemiology and Public Health and Center for Cohort Studies, Fukouka, Japan
| | - Frank Qian
- Harvard Medical School, T.H. Chan School of Public Health and Beth Deaconess Medical Center, Boston, MA
| | - Qi Sun
- Harvard Medical School, T.H. Chan School of Public Health and Channing Division of Network Medicine Brigham and Women’s Hospital, Boston, MA
| | - Frank Hu
- Harvard Medical School, T.H. Chan School of Public Health and Channing Division of Network Medicine Brigham and Women’s Hospital, Boston, MA
| | | | - Ulf Risérus
- Uppsala University, Department of Public Health and Caring Sciences Clinical Nutrition and Metabolism Unit, Uppsala, Sweden
| | - Iolanda Lázaro
- Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Cecilia Samieri
- University of Bordeaux, Bordeaux Population Health Research Centre, Bordeaux, France
| | - Mélanie Le Goff
- University of Bordeaux, Bordeaux Population Health Research Centre, Bordeaux, France
| | - Catherine Helmer
- University of Bordeaux, Bordeaux Population Health Research Centre, Bordeaux, France
| | - Marinka Steur
- University Medical Center Rotterdam, Department of Epidemiology, Rotterdam, The Netherlands
| | - Trudy Voortman
- University Medical Center Rotterdam, Department of Epidemiology, Rotterdam, The Netherlands
| | - M Kamran Ikram
- University Medical Center Rotterdam, Department of Epidemiology, Rotterdam, The Netherlands
| | - Toshiko Tanaka
- National Institute of Health, National Institute on Aging, Longitudinal Studies Section, Baltimore, MD
| | | | - Luigi Ferrucci
- National Institute of Health, National Institute on Aging, Longitudinal Studies Section, Baltimore, MD
| | | | - Michael Tsai
- University of Minnesota, Department of Laboratory Medicine and Pathology, Minneapolis, MN
| | - Weihua Guan
- University of Minnesota, Division of Biostatistics, Minneapolis, MN
| | - Parveen Garg
- University of Southern California, Department of Medicine, Cardiology, Los Angeles, CA
| | - WM Monique Verschuren
- National Institute for Public Health and the Environment Bilthoven, The Netherlands, Julius Center for Health Sciences and Primary Care and Centre for Nutrition, Prevention and Health Services, Utrecht, The Netherlands
| | - Jolanda MA Boer
- National Institute for Public Health and the Environment Bilthoven, The Netherlands
| | - Anneke Biokstra
- National Institute for Public Health and the Environment Bilthoven, The Netherlands
| | - Jyrki Virtanen
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Michael Wagner
- University Hospital, Depts of Neurodegenerative Diseases and Geriatric Psychiatry and German Center for Neurodegenerative Diseases, Bonn, Germany
| | | | | | - Kazumasa Yamagishi
- University of Tsukubu, Department of Public Health Medicine, Tsukuba, Japan
| | - David S Siscovick
- New York Academy of Medicine, Department of Epidemiology, New York, New York
| | | | | |
Collapse
|
3
|
Owaki R, Aoki H, Toriuchi K, Inoue Y, Hayashi H, Takeshita S, Kakita H, Yamada Y, Aoyama M. AMPK activators suppress cholesterol accumulation in macrophages via suppression of the mTOR pathway. Exp Cell Res 2023; 432:113784. [PMID: 37730144 DOI: 10.1016/j.yexcr.2023.113784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
Atherosclerosis is a persistent inflammatory state that contributes significantly to cardiovascular disease, a primary cause of mortality worldwide. Enhanced lipid uptake by macrophages and their transformation into foam cells play a key role in the development of atherosclerosis. Recent studies using in vivo mouse models indicated that activation of AMPK has anti-atherosclerotic effects by upregulating the expression of cholesterol efflux transporters in foam cells and promoting cholesterol efflux. However, the pathway downstream of AMPK that contributes to elevated expression of cholesterol efflux transporters remains unclear. In this study, we found that activation of AMPK by AICAR and metformin inhibits foam cell formation via suppression of mTOR in macrophages. Specifically, activation of AMPK indirectly reduced the phosphorylation level of mTOR at Ser2448 and promoted the expression of cholesterol efflux transporters and cholesterol efflux. These inhibitory effects on foam cell formation were counteracted by mTOR activators. Metformin, a more nonspecific AMPK activator than AICAR, appears to inhibit foam cell formation via anti-inflammatory effects in addition to suppression of the mTOR pathway. The results of this study suggest that the development of new drugs targeting AMPK activation and mTOR inhibition may lead to beneficial results in the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Reina Owaki
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Hiromasa Aoki
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Kohki Toriuchi
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Yasumichi Inoue
- Department of Cell Signaling, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Hidetoshi Hayashi
- Department of Cell Signaling, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Satoru Takeshita
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan; Department of Perinatal and Neonatal Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Hiroki Kakita
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan; Department of Perinatal and Neonatal Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Yasumasa Yamada
- Department of Perinatal and Neonatal Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Mineyoshi Aoyama
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan.
| |
Collapse
|
4
|
Salamone D, Annuzzi G, Vessby B, Rivellese AA, Bozzetto L, Costabile G, Hermansen K, Uusitupa M, Meyer BJ, Riccardi G. Fatty acid composition of cholesterol esters reflects dietary fat intake after dietary interventions in a multinational population. J Clin Lipidol 2023; 17:466-474. [PMID: 37263854 DOI: 10.1016/j.jacl.2023.05.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND The effects of different dietary fatty acids (FA) on cardiovascular risk still needs clarification. Plasma lipids composition may be a biomarker of FA dietary intake. PURPOSE To evaluate in a composite population the relationships between changes in dietary fat intake and changes in FA levels in serum cholesterol esters. METHODS In a multinational, parallel-design, dietary intervention (KANWU study), dietary intakes (3-day food record) and FA composition of serum cholesterol esters (gas-liquid chromatography) were evaluated at baseline and after 3 months in 162 healthy individuals, randomly assigned to a diet containing a high proportion of saturated (SFA) or monounsaturated (MUFA) fat, with a second random assignment to fish oil or placebo supplements. RESULTS Main differences in serum lipid composition after the two diets included saturated (especially myristic, C14:0, and pentadecanoic, C15:0) and monounsaturated (oleic acid, C18:1 n-9) FA. C14:0 and C15:0 were related to SFA intake, while C18:1 n-9 was associated with MUFA intake. Fish oil supplementation induced a marked increase in eicosapentaenoic (C20:5 n-3) and docosahexaenoic (C22:6 n-3) acids. After the 3-month intervention, Δ-9 desaturase activity, calculated as palmitoleic acid/palmitic acid (C16:1/C16:0) ratio, was more reduced after the MUFA (0.31±0.10 vs 0.25±0.09, p<0.0001) than SFA diet (0.31±0.09 vs 0.29±0.08, p=0.006), with a statistically significant difference between the two groups (p<0.0001). CONCLUSIONS This study shows that serum cholesterol ester FA composition can be used during randomized controlled trials as an objective indicator of adherence to experimental diets based on saturated and monounsaturated fat modifications, as well as fish oil supplementation.
Collapse
Affiliation(s)
- Dominic Salamone
- Department of Clinical Medicine and Surgery, Federico II University Medical School, Naples, Italy
| | - Giovanni Annuzzi
- Department of Clinical Medicine and Surgery, Federico II University Medical School, Naples, Italy; Task Force on Microbiome Studies, University of Naples "Federico II", Naples, Italy.
| | - Bengt Vessby
- Clinical Nutrition and Metabolism, Department of Public Health and Caring Sciences, University of Uppsala, Uppsala, Sweden
| | - Angela A Rivellese
- Department of Clinical Medicine and Surgery, Federico II University Medical School, Naples, Italy; Task Force on Microbiome Studies, University of Naples "Federico II", Naples, Italy
| | - Lutgarda Bozzetto
- Department of Clinical Medicine and Surgery, Federico II University Medical School, Naples, Italy; Task Force on Microbiome Studies, University of Naples "Federico II", Naples, Italy
| | - Giuseppina Costabile
- Department of Clinical Medicine and Surgery, Federico II University Medical School, Naples, Italy; Task Force on Microbiome Studies, University of Naples "Federico II", Naples, Italy
| | - Kjeld Hermansen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Matti Uusitupa
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Barbara J Meyer
- School of Medical, Indigenous and Health Sciences and Illawarra Health and Medical Research Institute and Molecular Horizons, University of Wollongong, Wollongong, Australia
| | - Gabriele Riccardi
- Department of Clinical Medicine and Surgery, Federico II University Medical School, Naples, Italy
| |
Collapse
|
5
|
Chen Y, Miura Y, Sakurai T, Chen Z, Shrestha R, Kato S, Okada E, Ukawa S, Nakagawa T, Nakamura K, Tamakoshi A, Chiba H, Imai H, Minami H, Mizuta M, Hui SP. Comparison of dimension reduction methods on fatty acids food source study. Sci Rep 2021; 11:18748. [PMID: 34548525 PMCID: PMC8455623 DOI: 10.1038/s41598-021-97349-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/09/2021] [Indexed: 12/19/2022] Open
Abstract
Serum fatty acids (FAs) exist in the four lipid fractions of triglycerides (TGs), phospholipids (PLs), cholesteryl esters (CEs) and free fatty acids (FFAs). Total fatty acids (TFAs) indicate the sum of FAs in them. In this study, four statistical analysis methods, which are independent component analysis (ICA), factor analysis, common principal component analysis (CPCA) and principal component analysis (PCA), were conducted to uncover food sources of FAs among the four lipid fractions (CE, FFA, and TG + PL). Among the methods, ICA provided the most suggestive results. To distinguish the animal fat intake from endogenous fatty acids, FFA variables in ICA and factor analysis were studied. ICA provided more distinct suggestions of FA food sources (endogenous, plant oil intake, animal fat intake, and fish oil intake) than factor analysis. Moreover, ICA was discovered as a new approach to distinguish animal FAs from endogenous FAs, which will have an impact on epidemiological studies. In addition, the correlation coefficients between a published dataset of food FA compositions and the loading values obtained in the present ICA study suggested specific foods as serum FA sources. In conclusion, we found that ICA is a useful tool to uncover food sources of serum FAs.
Collapse
Affiliation(s)
- Yifan Chen
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0808, Japan
| | - Yusuke Miura
- School of Medical Technology, Faculty of Health Science, Gunma Paz University, 1-7-1 Tonyamachi, Takasaki, Gunma, 370-0006, Japan
| | - Toshihiro Sakurai
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0808, Japan
| | - Zhen Chen
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0808, Japan
| | - Rojeet Shrestha
- Patients Choice Laboratories, 7026 Corporate Dr, Indianapolis, IN, 46278, USA
| | - Sota Kato
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0808, Japan
| | - Emiko Okada
- National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, 162-8636, Japan
| | - Shigekazu Ukawa
- Research Unit of Advanced Interdisciplinary Care Science, Osaka City University Graduate School of Human Life Science, Osaka, 558-8585, Japan
| | | | - Koshi Nakamura
- Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, 903-0215, Japan
| | - Akiko Tamakoshi
- Faculty of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Sapporo, 007-0894, Japan
| | - Hideyuki Imai
- Faculty of Information Science and Technology, Computer Science and Information Technology Mathematical Science, Hokkaido University, Sapporo, 060-0814, Japan
| | - Hiroyuki Minami
- Information Initiative Center, Hokkaido University, Sapporo, 060-0811, Japan
| | - Masahiro Mizuta
- Information Initiative Center, Hokkaido University, Sapporo, 060-0811, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0808, Japan.
| |
Collapse
|
6
|
Lipidomic profile of human nasal mucosa and associations with circulating fatty acids and olfactory deficiency. Sci Rep 2021; 11:16771. [PMID: 34408170 PMCID: PMC8373950 DOI: 10.1038/s41598-021-93817-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/24/2021] [Indexed: 11/09/2022] Open
Abstract
The nasal mucosa (NM) contains olfactory mucosa which contributes to the detection of odorant molecules and the transmission of olfactory information to the brain. To date, the lipid composition of the human NM has not been adequately characterized. Using gas chromatography, liquid chromatography coupled to mass spectrometry and thin layer chromatography, we analyzed the fatty acids and the phospholipid and ceramide molecular species in adult human nasal and blood biopsies. Saturated and polyunsaturated fatty acids (PUFAs) accounted for 45% and 29% of the nasal total fatty acids, respectively. Fatty acids of the n-6 family were predominant in the PUFA subgroup. Linoleic acid and arachidonic acid (AA) were incorporated in the main nasal phospholipid classes. Correlation analysis revealed that the nasal AA level might be positively associated with olfactory deficiency. In addition, a strong positive association between the AA levels in the NM and in plasma cholesteryl esters suggested that this blood fraction might be used as an indicator of the nasal AA level. The most abundant species of ceramides and their glycosylated derivatives detected in NM contained palmitic acid and long-chain fatty acids. Overall, this study provides new insight into lipid species that potentially contribute to the maintenance of NM homeostasis and demonstrates that circulating biomarkers might be used to predict nasal fatty acid content.
Collapse
|
7
|
Marklund M, Wu JHY, Imamura F, Del Gobbo LC, Fretts A, de Goede J, Shi P, Tintle N, Wennberg M, Aslibekyan S, Chen TA, de Oliveira Otto MC, Hirakawa Y, Eriksen HH, Kröger J, Laguzzi F, Lankinen M, Murphy RA, Prem K, Samieri C, Virtanen J, Wood AC, Wong K, Yang WS, Zhou X, Baylin A, Boer JM, Brouwer IA, Campos H, Chaves PHM, Chien KL, de Faire U, Djoussé L, Eiriksdottir G, El-Abbadi N, Forouhi NG, Gaziano JM, Geleijnse JM, Gigante B, Giles G, Guallar E, Gudnason V, Harris T, Harris WS, Helmer C, Hellenius ML, Hodge A, Hu FB, Jacques PF, Jansson JH, Kalsbeek A, Khaw KT, Koh WP, Laakso M, Leander K, Hung-Ju Lin, Lind L, Luben R, Luo J, McKnight B, Mursu J, Ninomiya T, Overvad K, Psaty BM, Rimm E, Schulze MB, Siscovick D, Nielsen MS, Smith AV, Steffen BT, Steffen L, Sun Q, Sundström J, Tsai MY, Tunstall-Pedoe H, Uusitupa MIJ, van Dam RM, Veenstra J, Verschuren WM, Wareham N, Willett W, Woodward M, Yuan JM, Micha R, Lemaitre RN, Mozaffarian D, for the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Fatty Acids and Outcomes Research Consortium (FORCE).. Biomarkers of Dietary Omega-6 Fatty Acids and Incident Cardiovascular Disease and Mortality. Circulation 2019; 139:2422-2436. [PMID: 30971107 PMCID: PMC6582360 DOI: 10.1161/circulationaha.118.038908] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Global dietary recommendations for and cardiovascular effects of linoleic acid, the major dietary omega-6 fatty acid, and its major metabolite, arachidonic acid, remain controversial. To address this uncertainty and inform international recommendations, we evaluated how in vivo circulating and tissue levels of linoleic acid (LA) and arachidonic acid (AA) relate to incident cardiovascular disease (CVD) across multiple international studies. METHODS We performed harmonized, de novo, individual-level analyses in a global consortium of 30 prospective observational studies from 13 countries. Multivariable-adjusted associations of circulating and adipose tissue LA and AA biomarkers with incident total CVD and subtypes (coronary heart disease, ischemic stroke, cardiovascular mortality) were investigated according to a prespecified analytic plan. Levels of LA and AA, measured as the percentage of total fatty acids, were evaluated linearly according to their interquintile range (ie, the range between the midpoint of the first and fifth quintiles), and categorically by quintiles. Study-specific results were pooled using inverse-variance-weighted meta-analysis. Heterogeneity was explored by age, sex, race, diabetes mellitus, statin use, aspirin use, omega-3 levels, and fatty acid desaturase 1 genotype (when available). RESULTS In 30 prospective studies with medians of follow-up ranging 2.5 to 31.9 years, 15 198 incident cardiovascular events occurred among 68 659 participants. Higher levels of LA were significantly associated with lower risks of total CVD, cardiovascular mortality, and ischemic stroke, with hazard ratios per interquintile range of 0.93 (95% CI, 0.88-0.99), 0.78 (0.70-0.85), and 0.88 (0.79-0.98), respectively, and nonsignificantly with lower coronary heart disease risk (0.94; 0.88-1.00). Relationships were similar for LA evaluated across quintiles. AA levels were not associated with higher risk of cardiovascular outcomes; in a comparison of extreme quintiles, higher levels were associated with lower risk of total CVD (0.92; 0.86-0.99). No consistent heterogeneity by population subgroups was identified in the observed relationships. CONCLUSIONS In pooled global analyses, higher in vivo circulating and tissue levels of LA and possibly AA were associated with lower risk of major cardiovascular events. These results support a favorable role for LA in CVD prevention.
Collapse
Affiliation(s)
- Matti Marklund
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Sweden
- The George Institute for Global Health and the Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Jason HY Wu
- The George Institute for Global Health and the Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Fumiaki Imamura
- Medical Research Council Epidemiology Unit, University of Cambridge, United Kingdom
| | - Liana C. Del Gobbo
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, CA
| | - Amanda Fretts
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle
| | - Janette de Goede
- Division of Human Nutrition, Wageningen University, The Netherlands
| | - Peilin Shi
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA
| | - Nathan Tintle
- Department of Mathematics and Statistics, Dordt College, Sioux Centre, IA
| | - Maria Wennberg
- Department of Public Health and Clinical Medicine, Nutritional Research, Umeå University, Sweden
| | | | - Tzu-An Chen
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX
| | - Marcia C. de Oliveira Otto
- Division of Epidemiology, Human Genetics and Environmental Sciences, the University of Texas Health Science Center, School of Public Health, Houston
| | - Yoichiro Hirakawa
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Janine Kröger
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Federica Laguzzi
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Lankinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio
| | - Rachel A. Murphy
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Kiesha Prem
- Saw Swee Hock School of Public Health, National University of Singapore
| | - Cécilia Samieri
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, TUMR 1219, France
| | - Jyrki Virtanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio
| | - Alexis C. Wood
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX
| | - Kerry Wong
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Australia
| | - Wei-Sin Yang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei
| | - Xia Zhou
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis
| | - Ana Baylin
- Departments of Nutritional Sciences and Epidemiology, School of Public Health, University of Michigan, Ann Arbor
| | - Jolanda M.A. Boer
- Centre for Nutrition, Prevention and Health Services, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | | | - Hannia Campos
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Paulo H. M. Chaves
- Benjamin Leon for Geriatrics Research and Education, Herbert Wertheim College of Medicine, Florida International University, Miami
| | - Kuo-Liong Chien
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei
- Department of Internal Medicine, National Taiwan University Hospital, Taipei
| | - Ulf de Faire
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Luc Djoussé
- Brigham and Women's Hospital, Boston Veterans Affairs Healthcare System, MA
| | - Gudny Eiriksdottir
- Icelandic Heart Association, Kópavogur, Iceland; and Faculty of Medicine, University of Iceland, Reykjavik
| | - Naglaa El-Abbadi
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA
- USDA Jean Mayer Human Nutrition Research Center, Boston, MA
| | - Nita G. Forouhi
- Medical Research Council Epidemiology Unit, University of Cambridge, United Kingdom
| | - J. Michael Gaziano
- Brigham and Women's Hospital, Boston Veterans Affairs Healthcare System, MA
| | | | - Bruna Gigante
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Graham Giles
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Australia
| | - Eliseo Guallar
- Division of Environmental Epidemiology, Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kópavogur, Iceland; and Faculty of Medicine, University of Iceland, Reykjavik
| | | | - William S. Harris
- Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls
- OmegaQuant Analytics, LLC, Sioux Falls, SD
| | - Catherine Helmer
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, TUMR 1219, France
| | - Mai-Lis Hellenius
- Department of Medicine, Cardiology Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Allison Hodge
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Australia
| | - Frank B. Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Paul F. Jacques
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA
- USDA Jean Mayer Human Nutrition Research Center, Boston, MA
| | - Jan-Håkan Jansson
- Department of Public Health and Clinical Medicine, Research Unit Skellefteå, Umeå University, Umeå, Sweden
| | - Anya Kalsbeek
- Department of Mathematics and Statistics, Dordt College, Sioux Centre, IA
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care, University of Cambridge School of Clinical Medicine, United Kingdom
| | - Woon-Puay Koh
- Saw Swee Hock School of Public Health, National University of Singapore
- Duke-NUS Medical School, Singapore
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Karin Leander
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hung-Ju Lin
- Department of Internal Medicine, National Taiwan University Hospital, Taipei
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Sweden
| | - Robert Luben
- Department of Public Health and Primary Care, University of Cambridge School of Clinical Medicine, United Kingdom
| | - Juhua Luo
- Department of Epidemiology and Biostatistics, Indiana University, Bloomington
| | - Barbara McKnight
- Department of Biostatistics, School of Public Health, University of Washington, Seattle
| | - Jaakko Mursu
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio
| | - Toshiharu Ninomiya
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kim Overvad
- Department of Public Health, Section for Epidemiology, Aarhus University, Denmark
- Department of Cardiology, Aalborg University Hospital, Denmark
| | - Bruce M. Psaty
- Cardiovascular Health Study, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle
- Kaiser Permanente Washington Health Research Institute, Seattle
| | - Eric Rimm
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Matthias B. Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | | | | | - Albert V. Smith
- Icelandic Heart Association, Kópavogur, Iceland; and Faculty of Medicine, University of Iceland, Reykjavik
| | - Brian T. Steffen
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis
| | - Lyn Steffen
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | | | - Michael Y. Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis
| | - Hugh Tunstall-Pedoe
- Cardiovascular Epidemiology Unit, Institute of Cardiovascular Research, University of Dundee, United Kingdom
| | - Matti I. J. Uusitupa
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore
| | - Jenna Veenstra
- Department of Mathematics and Statistics, Dordt College, Sioux Centre, IA
| | - W.M. Monique Verschuren
- Centre for Nutrition, Prevention and Health Services, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, The Netherlands
| | - Nick Wareham
- Medical Research Council Epidemiology Unit, University of Cambridge, United Kingdom
| | - Walter Willett
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Mark Woodward
- The George Institute for Global Health and the Faculty of Medicine, University of New South Wales, Sydney, Australia
- Cardiovascular Epidemiology Unit, Institute of Cardiovascular Research, University of Dundee, United Kingdom
- The George Institute for Global Health, University of Oxford, United Kingdom
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer, and Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, PA
| | - Renata Micha
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle
| | - Dariush Mozaffarian
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA
| | | |
Collapse
|
8
|
Andersson-Hall U, Carlsson NG, Sandberg AS, Holmäng A. Circulating Linoleic Acid is Associated with Improved Glucose Tolerance in Women after Gestational Diabetes. Nutrients 2018; 10:nu10111629. [PMID: 30400149 PMCID: PMC6266712 DOI: 10.3390/nu10111629] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 02/06/2023] Open
Abstract
Women with previously diagnosed gestational diabetes mellitus (GDM) are at increased risk of type-2-diabetes mellitus (T2D). We aimed to establish links between glucose tolerance (GT) and serum fatty acid (FA) profile in the transition from GDM to T2D. Six years after GDM, 221 women were grouped as having normal GT (NGT), impaired GT (IGT), or T2D based on oral GT test results. Fasting serum FAs were profiled, anthropometric measures taken, and dietary intake determined. Linoleic acid (LA) was significantly higher in NGT women (p < 0.001) compared with IGT and T2D, and emerged as a strong predictor of low glucose and insulin levels, independently of BMI. Self-reported vegetable oil consumption correlated with LA serum levels and glucose levels. Delta-6-, delta-9-, and stearoyl-CoA-desaturase activities were associated with decreased GT, and delta-5-desaturase activities with increased GT. In a subgroup of women at high risk of diabetes, low LA and high palmitic acid levels were seen in those that developed T2D, with no differences in other FAs or metabolic measurements. Results suggest that proportions of LA and palmitic acid are of particular interest in the transition from GDM to T2D. Interconversions between individual FAs regulated by desaturases appear to be relevant to glucose metabolism.
Collapse
Affiliation(s)
- Ulrika Andersson-Hall
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden.
| | - Nils-Gunnar Carlsson
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
| | - Ann-Sofie Sandberg
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
| | - Agneta Holmäng
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden.
| |
Collapse
|
9
|
Gómez-Peralta TG, González-Castro TB, Fresan A, Tovilla-Zárate CA, Juárez-Rojop IE, Villar-Soto M, Hernández-Díaz Y, López-Narváez ML, Ble-Castillo JL, Pérez-Hernández N, Rodríguez-Pérez JM. Risk Factors and Prevalence of Suicide Attempt in Patients with Type 2 Diabetes in the Mexican Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1198. [PMID: 29880751 PMCID: PMC6025580 DOI: 10.3390/ijerph15061198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND It has been proposed that the risk of death by suicide is higher in patients with diabetes than in the general population. Therefore, it is necessary to investigate the risk factors of suicidal behavior in patients with type 2 diabetes. The aim of the present study was to analyze the prevalence of suicide attempt and determine the risk factors of suicide attempt, in patients with type 2 diabetes in a Mexican population. METHODS Clinic characteristics, anthropometric measurements, biochemical levels, depression, and suicidal behavior were evaluated in 185 Mexican patients with type 2 diabetes. A multivariate logistic regression analysis was performed to find predictive factors of suicide attempt. RESULTS 11.4% of patients reported previous suicide attempts n = 21). Younger patients (OR: 3.63, 95% CI: 1.29⁻10.19), having depression (OR: 3.33, 95% CI: 1.13⁻9.76) and normal BMI (OR: 3.14, 95% CI: 1.11⁻8.83), were predictive factors of suicide attempt. No other variables in the study showed statistical significance. CONCLUSIONS Our results showed a high prevalence of suicidal behavior in patients with type 2 diabetes. We found that younger age, depression and normal BMI could be risk factors of suicide attempt in these patients. Therefore, psychiatric interventions to prevent depression and suicidal behavior in this population are necessary. New studies using larger samples are necessary to replicate and confirm these results.
Collapse
Affiliation(s)
- Tania Guadalupe Gómez-Peralta
- División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Comalcalco 86025, Tabasco, Mexico.
| | - Thelma Beatriz González-Castro
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez 86200, Tabasco, Mexico.
| | - Ana Fresan
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Ciudad de Mexico 14370, Mexico.
| | - Carlos Alfonso Tovilla-Zárate
- División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Comalcalco 86025, Tabasco, Mexico.
| | - Isela Esther Juárez-Rojop
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa 86140, Tabasco, Mexico.
| | - Mario Villar-Soto
- Hospital de Alta Especialidad "Gustavo A. Rovirosa Pérez", Secretaría de Salud, Villahermosa 86140, Tabasco, Mexico.
| | - Yazmín Hernández-Díaz
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez 86200, Tabasco, Mexico.
| | - María Lilia López-Narváez
- Hospital General de Yajalón "Dr. Manuel Velasco Suarez", Secretaría de Salud, Yajalón 29930, Chiapas, Mexico.
| | - Jorge L Ble-Castillo
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa 86140, Tabasco, Mexico.
| | - Nonanzit Pérez-Hernández
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de Mexico 14080, Mexico.
| | - José Manuel Rodríguez-Pérez
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de Mexico 14080, Mexico.
| |
Collapse
|