1
|
Fuhr A, Roediger R, Simelitidis M, Gamper-Tsigaras J, Templin M, Kormann M, Antkowiak B, Rudolph U, Köhler D, Rosenberger P, Ngamsri KC, Konrad FM. Regulation of neutrophil migration in acute pulmonary inflammation by extraneuronal α1 gamma-aminobutyric acid A receptors. Cell Death Dis 2025; 16:313. [PMID: 40251174 PMCID: PMC12008292 DOI: 10.1038/s41419-025-07488-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/03/2025] [Accepted: 02/26/2025] [Indexed: 04/20/2025]
Abstract
Acute pulmonary inflammation is a common disease on intensive care. Due to the lack of specific treatments, lethality is still very high. The ionotropic GABAA-receptors are known from the central nervous system (CNS) and have recently been detected in the lung. These receptors have been shown to influence inflammatory processes. Opposing data has been reported, where both, GABA site agonists and antagonists achieved anti-inflammatory effects. The distribution of the 19 known GABAA-receptor subunits (α1-6, β1-3, γ1-3, δ, ε, π, θ and ρ1-3) and their role in inflammation remain unclear. In murine models of LPS- and bacteria-induced inflammation, Muscimol (GABAA-receptor agonist) and Bicuculline (antagonist) were administered before the onset of inflammation. Transcription of GABAA-receptor subunits was evaluated by real-time polymerase chain reaction. Neutrophil counts and adhesion molecule expression in wild type and GABAα1 knock-in mice were determined by flow-cytometry. Myeloperoxidase, neutrophil extracellular traps and cytokines were determined. In a model of ventilator-induced lung injury, blood gas analysis was performed using arterial blood. A multiplex western blot was done to assess signaling proteins. Muscimol and Bicuculline inhibited neutrophil influx in the bronchoalveolar lavage but did not change neutrophil activation. Both altered surface expression of adhesion molecules on neutrophils and reduced release of interleukin-6 (IL-6). The increased α1 subunit expression on lung epithelium and endothelium after inflammation was abolished by Muscimol and Bicuculline. In GABAα1-knock-in mice the protective effects of both agents were no longer observed. Only Muscimol lowered protein extravasation, improved blood gas analysis and lung function. A multiplex assay ascribed these anti-inflammatory effects to the influence of the IL-6 and phosphoinositide 3-kinase signaling pathways. In conclusion, Muscimol and Bicuculline exert various protective effects in two murine models of acute pulmonary inflammation. The multiple effects of Muscimol were linked to the inhibition of the proinflammatory signaling pathways IL-6 and PI3K.
Collapse
Affiliation(s)
- Anika Fuhr
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tuebingen, Tübingen, Germany
| | - Robin Roediger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tuebingen, Tübingen, Germany
| | - Mariana Simelitidis
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tuebingen, Tübingen, Germany
| | - Jutta Gamper-Tsigaras
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tuebingen, Tübingen, Germany
| | - Markus Templin
- NMI Natural and Medical Sciences Institute, University Tuebingen, Tübingen, Germany
| | - Michael Kormann
- Stem Cell Network Tuebingen, University Tuebingen, Tübingen, Germany
| | - Bernd Antkowiak
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tuebingen, Tübingen, Germany
| | - Uwe Rudolph
- Department of Comparative Biosicences, College of Veterinary Medicine, and Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - David Köhler
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tuebingen, Tübingen, Germany
| | - Peter Rosenberger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tuebingen, Tübingen, Germany
| | - Kristian-Christos Ngamsri
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tuebingen, Tübingen, Germany
| | - Franziska M Konrad
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tuebingen, Tübingen, Germany.
| |
Collapse
|
2
|
Zhou Y, Qin Y, Ma J, Li Z, Heng W, Zhang L, Liu H, Li R, Zhang M, Peng Q, Ye P, Duan N, Liu T, Wang W, Wang X. Heat-killed Prevotella intermedia promotes the progression of oral squamous cell carcinoma by inhibiting the expression of tumor suppressors and affecting the tumor microenvironment. Exp Hematol Oncol 2024; 13:33. [PMID: 38515216 PMCID: PMC10956211 DOI: 10.1186/s40164-024-00500-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Oral microbial dysbiosis contributes to the development of oral squamous cell carcinoma (OSCC). Our previous study showed that Prevotella intermedia (P. intermedia) were enriched in the oral mucosal surface, plaque, and saliva of patients with OSCC. Intratumoral microbiome could reshape the immune system and influence the development of various tumors. However, the invasion status of human OSCC tissues by P. intermedia and the pathway through which intratumoral P. intermedia potentiates tumor progression remain unexplored. METHODS P. intermedia in human OSCC or normal tissues was detected by FISH. A mouse OSCC cell line SCC7 was adopted to investigate the effects of heat-killed P. intermedia treatment on cell proliferation, invasion, and cytokine release by using CCK-8 assay, transwell invasion assay and ELISA. Moreover, we established a mouse transplanted tumor model by using SCC7 cells, injected heat-killed P. intermedia into tumor tissues, and investigated the effects of heat-killed P. intermedia on tumor growth, invasion, cytokine levels, immune cell infiltrations, and expression levels by using gross observation, H&E staining, ELISA, immunohistochemistry, mRNA sequencing, and transcriptomic analysis. RESULTS Our results indicated that P. intermedia were abundant in OSCC and surrounding muscle tissues. Heat-killed P. intermedia promoted SCC7 cell proliferation, invasion and proinflammatory cytokine secretions, accelerated transplanted tumor growth in mice, exacerbate muscle and perineural invasion of OSCC, elevated the serum levels of IL-17A, IL-6, TNF-α, IFN-γ, and PD-L1, induced Treg cells M2 type macrophages in mouse transplanted tumors. The data of transcriptomic analysis revealed that heat-killed P. intermedia increased the expression levels of inflammatory cytokines and chemokines while reduced the expression levels of some tumor suppressor genes in mouse transplanted tumors. Additionally, IL-17 signaling pathway was upregulated whereas GABAergic system was downregulated by heat-killed P. intermedia treatment. CONCLUSIONS Taken together, our results suggest that P. intermedia could inhibit the expression of tumor suppressors, alter the tumor microenvironment, and promote the progression of OSCC.
Collapse
Affiliation(s)
- Yifan Zhou
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Yao Qin
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Jingjing Ma
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Zhiyuan Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Weiwei Heng
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Lei Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Hong Liu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Ruowei Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Miaomiao Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Qiao Peng
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Pei Ye
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Ning Duan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Ting Liu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.
| | - Wenmei Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.
| | - Xiang Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.
| |
Collapse
|
3
|
Saengboonmee C, Sorin S, Sangkhamanon S, Chomphoo S, Indramanee S, Seubwai W, Thithuan K, Chiu CF, Okada S, Gingras MC, Wongkham S. γ-aminobutyric acid B2 receptor: A potential therapeutic target for cholangiocarcinoma in patients with diabetes mellitus. World J Gastroenterol 2023; 29:4416-4432. [PMID: 37576707 PMCID: PMC10415970 DOI: 10.3748/wjg.v29.i28.4416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/05/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND The association between diabetes mellitus (DM) and the increased risk and progression of cholangiocarcinoma (CCA) has been reported with unclear underlying mechanisms. Previous studies showed that γ-aminobutyric acid (GABA) B2 receptor (GABBR2) was upregulated in CCA cells cultured in high glucose (HG) conditions. Roles of GABA receptors in CCA progression have also been studied, but their association with DM and hyperglycemia in CCA remains unclarified. AIM To investigate the effects of hyperglycemia on GABBR2 expression and the potential use of GABBR2 as a CCA therapeutic target. METHODS CCA cells, KKU-055 and KKU-213A, were cultured in Dulbecco Modified Eagle's Medium supplemented with 5.6 mmol/L (normal glucose, NG) or 25 mmol/L (HG) glucose and assigned as NG and HG cells, respectively. GABBR2 expression in NG and HG cells was investigated using real-time quantitative polymerase chain reaction and western blot. Expression and localization of GABBR2 in CCA cells were determined using immunocytofluorescence. GABBR2 expression in tumor tissues from CCA patients with and without DM was studied using immunohistochemistry, and the correlations of GABBR2 with the clinicopathological characteristics of patients were analyzed using univariate analysis. Effects of baclofen, a GABA-B receptor agonist, on CCA cell proliferation and clonogenicity were tested using the MTT and clonogenic assays. Phospho-kinases arrays were used to screen the affected signaling pathways after baclofen treatment, and the candidate signaling molecules were validated using the public transcriptomic data and western blot. RESULTS GABBR2 expression in CCA cells was induced by HG in a dose- and time-dependent manner. CCA tissues from patients with DM and hyperglycemia also showed a significantly higher GABBR2 expression compared with tumor tissues from those with euglycemia (P < 0.01). High GABBR2 expression was significantly associated with a poorer non-papillary histological subtype but with smaller sizes of CCA tumors (P < 0.05). HG cells of both tested CCA cell lines were more sensitive to baclofen treatment. Baclofen significantly suppressed the proliferation and clonogenicity of CCA cells in both NG and HG conditions (P < 0.05). Phospho-kinase arrays suggested glycogen synthase kinase 3 (GSK3), β-catenin, and the signal transducer and activator of transcription 3 (STAT3) as candidate signaling molecules under the regulation of GABBR2, which were verified in NG and HG cells of the individual CCA cell lines. Cyclin D1 and c-Myc, the common downstream targets of GSK3/β-catenin and STAT3 involving cell proliferation, were accordingly downregulated after baclofen treatment. CONCLUSION GABBR2 is upregulated by HG and holds a promising role as a therapeutic target for CCA regardless of the glucose condition.
Collapse
Affiliation(s)
- Charupong Saengboonmee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Supannika Sorin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sakkarn Sangkhamanon
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Surang Chomphoo
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somsiri Indramanee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wunchana Seubwai
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kanyarat Thithuan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ching-Feng Chiu
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Marie-Claude Gingras
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, United States
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, United States
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
4
|
Kaewman P, Nudmamud-Thanoi S, Amatyakul P, Thanoi S. High mRNA expression of GABA receptors in human sperm with oligoasthenoteratozoospermia and teratozoospermia and its association with sperm parameters and intracytoplasmic sperm injection outcomes. Clin Exp Reprod Med 2021; 48:50-60. [PMID: 33648045 PMCID: PMC7943344 DOI: 10.5653/cerm.2020.03972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/17/2020] [Indexed: 11/25/2022] Open
Abstract
Objective This study investigated the mRNA expression of gamma-aminobutyric acid (GABA) receptors in the sperm of oligoasthenoteratozoospermic (OAT) and teratozoospermic (TER) men compared to normozoospermic (NOR) men, as well as the relationships between GABA receptor expression and sperm parameters, fertilization rate, and embryo quality. Methods The mRNA expression of GABA A-α1 and GABA B-R2 receptors in sperm was examined using reverse transcription–polymerase chain reaction in three groups of patients: NOR (n=32), OAT (n=22), and TER (n=45). The fertilization rate and embryo quality were assessed in 35 patients undergoing intracytoplasmic sperm injection (ICSI; 10 NOR, 10 OAT, and 15 TER men). Results OAT men had significantly higher mRNA expression of GABA A-α1 and GABA B-R2 receptors in sperm than NOR men; however, the difference between TER and NOR men was not significant. High levels of these receptors were significantly correlated with low sperm concentration, motility, and morphology, as well as the rate of good-quality embryos (GQEs) at the cleavage stage after ICSI. Patients whose female partners had a >50% GQE rate at the cleavage stage had significantly lower levels of GABA A-α1 receptor expression than those whose partners had a ≤50% GQE rate. Conclusion Our findings indicate that mRNA levels of GABA receptors in human sperm are correlated with poor sperm quality and associated with embryo development after ICSI treatment. The GABA A-α1 receptor in sperm has a stronger relationship with embryo quality at the cleavage stage than the GABA B-R2 receptor.
Collapse
Affiliation(s)
- Paweena Kaewman
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.,Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Sutisa Nudmamud-Thanoi
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.,Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Patcharada Amatyakul
- Department of Obstetrics and Gynecology, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand.,Naresuan Infertility Centre, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand
| | - Samur Thanoi
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.,Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
5
|
Yan L, Gong YZ, Shao MN, Ruan GT, Xie HL, Liao XW, Wang XK, Han QF, Zhou X, Zhu LC, Gao F, Gan JL. Distinct diagnostic and prognostic values of γ-aminobutyric acid type A receptor family genes in patients with colon adenocarcinoma. Oncol Lett 2020; 20:275-291. [PMID: 32565954 PMCID: PMC7286117 DOI: 10.3892/ol.2020.11573] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 02/07/2020] [Indexed: 12/29/2022] Open
Abstract
In the present study, the significance of GABAA genes in colon adenocarcinoma (COAD) were investigated from the view of diagnosis and prognosis. All data were achieved from The Cancer Genome Atlas. Overall survival was analyzed by the Kaplan-Meier analyses and Cox regression model and the hazard ratios and 95% confidence interval were calculated for computation. The Database for Annotation, Visualization and Integrated Discovery, and the Biological Networks Gene Ontology (BiNGO) softwares were applied to assess the biological processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) was used for pathway analysis to predict the biological function of GABAA genes. The associated Gene Ontology and KEGG pathways were conducted by Gene Set Enrichment Analysis (GSEA). From receiver operating characteristics curves analysis, it was found that the expression of GABR, γ-aminobutyric acid type A receptor GABRA2, GABRA3, GABRB2, GABRB3, GABRG2, GABRG3, GABRD, GABRE were correlated with COAD occurrence [P<0.0001, area under the curve (AUC)>0.7]. The low expression of the GABRB1, GABRD, GABRP and GABRQ in genes after tumor staging adjustment were positively correlated with the overall survival rate [P=0.049, hazard ratio (HR)=1.517, 95% confidence interval (CI)=1.001–2.297; P=0.006, HR=1.807, 95% CI=1.180–2.765; P=0.005, HR=1.833, 95% CI=1.196–2.810; P=0.034, HR=1.578, 95% CI=1.036–2.405). GSEA showed enrichment of cell matrix adhesion, integrin binding, angiogenesis, endothelial growth factor and endothelial migration regulation in patients with COAD with GABRD overexpression. GABRB1, GABRD, GABRP and GABRQ were associated with the prognostic factors of COAD. The expression levels of GABRA2, GABRA3, GABRB2, GABRB3, GABRG2, GABRD and GABRE may allow differentiation between tumor tissues and adjacent normal tissues.
Collapse
Affiliation(s)
- Ling Yan
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yi-Zhen Gong
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Meng-Nan Shao
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Guo-Tian Ruan
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hai-Lun Xie
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xi-Wen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiang-Kun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Quan-Fa Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Li-Cheng Zhu
- Department of Immunology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Feng Gao
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jia-Liang Gan
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
6
|
Chen W, Zhang Q, Wang H, Tan D, Tan Y. Unique and independent role of the GABA B1 subunit in embryo implantation and uterine decidualization in mice. Genes Dis 2019; 8:79-86. [PMID: 33569516 PMCID: PMC7859463 DOI: 10.1016/j.gendis.2019.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/26/2023] Open
Abstract
Embryo implantation and decidualization are crucial for successful pregnancy, which include multiple genes and signaling pathways, while the precise mechanism regarding embryo implantation and decidualization has yet to be explored. The GABA which activates GABAA or GABAB receptors has been found playing an important role in early pregnancy. Here we seek to investigate whether GABAB receptors participate in embryo implantation in mice. This study first characterized the spatiotemporal expression pattern of GABAB receptors in the uterus during the peri-implantation period and found that GABAB1 expression was drastically upregulated in stromal cells on days 4–6, a period of embryo implantation and early stages of decidualization. Embryo delayed implantation and oil-induced decidualization models were further used to confirm that the GABAB1 was associated with embryo implantation and decidualization. We also found estrogen or progesterone had no directly effect on expression of GABAB1 in ovariectomized model. Because we were unable to detect significant GABAB2 which couples with GABAB1 to form whole GABAB receptors, and the agonist and antagonist of whole GABAB receptors had weak effect on the proliferation and differentiation of stromal cells as well, we excluded the possibility whole GABAB receptors function, and concluded it should be non-classical signals of GABAB1 involving in embryo implantation and decidualization. Future studies should focus on investigating the roles and mechanisms of GABAB1 during embryo implantation and decidualization.
Collapse
Affiliation(s)
- Wenhao Chen
- Laboratory Animal Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Qian Zhang
- Laboratory Animal Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Haibin Wang
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, PR China.,Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, 361102, Fujian, PR China
| | - Dongmei Tan
- Laboratory Animal Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yi Tan
- Laboratory Animal Center, Chongqing Medical University, Chongqing, 400016, PR China
| |
Collapse
|
7
|
An Updated Review on Pharmaceutical Properties of Gamma-Aminobutyric Acid. Molecules 2019; 24:molecules24152678. [PMID: 31344785 PMCID: PMC6696076 DOI: 10.3390/molecules24152678] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/08/2019] [Accepted: 07/19/2019] [Indexed: 12/19/2022] Open
Abstract
Gamma-aminobutyric acid (Gaba) is a non-proteinogenic amino acid that is widely present in microorganisms, plants, and vertebrates. So far, Gaba is well known as a main inhibitory neurotransmitter in the central nervous system. Its physiological roles are related to the modulation of synaptic transmission, the promotion of neuronal development and relaxation, and the prevention of sleeplessness and depression. Besides, various pharmaceutical properties of Gaba on non-neuronal peripheral tissues and organs were also reported due to anti-hypertension, anti-diabetes, anti-cancer, antioxidant, anti-inflammation, anti-microbial, anti-allergy, hepato-protection, reno-protection, and intestinal protection. Therefore, Gaba may be considered as potential alternative therapeutics for prevention and treatment of various diseases. Accordingly, this updated review was mainly focused to describe the pharmaceutical properties of Gaba as well as emphasize its important role regarding human health.
Collapse
|
8
|
Kuol N, Stojanovska L, Apostolopoulos V, Nurgali K. Role of the nervous system in cancer metastasis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:5. [PMID: 29334991 PMCID: PMC5769535 DOI: 10.1186/s13046-018-0674-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/30/2017] [Indexed: 12/20/2022]
Abstract
Cancer remains as one of the leading cause of death worldwide. The development of cancer involves an intricate process, wherein many identified and unidentified factors play a role. Although most studies have focused on the genetic abnormalities which initiate and promote cancer, there is overwhelming evidence that tumors interact within their environment by direct cell-to-cell contact and with signaling molecules, suggesting that cancer cells can influence their microenvironment and bidirectionally communicate with other systems. However, only in recent years the role of the nervous system has been recognized as a major contributor to cancer development and metastasis. The nervous system governs functional activities of many organs, and, as tumors are not independent organs within an organism, this system is integrally involved in tumor growth and progression.
Collapse
Affiliation(s)
- Nyanbol Kuol
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Lily Stojanovska
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Vasso Apostolopoulos
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Kulmira Nurgali
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia. .,Department of Medicine, Western Health, The University of Melbourne, Regenerative Medicine and Stem Cells Program, AIMSS, Melbourne, Australia.
| |
Collapse
|
9
|
Aberrant epigenetic regulation of GABRP associates with aggressive phenotype of ovarian cancer. Exp Mol Med 2017; 49:e335. [PMID: 28524180 PMCID: PMC5454450 DOI: 10.1038/emm.2017.62] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/07/2016] [Accepted: 01/04/2017] [Indexed: 11/18/2022] Open
Abstract
Metastasis is a major cause of therapeutic failure in ovarian cancer. To elucidate molecular mechanisms of ovarian cancer metastasis, we previously established a metastatic xenograft mouse model using human ovarian carcinoma SK-OV-3 cells. Using gene expression profiling, we found that γ-aminobutyric acid (GABA)A receptor π subunit (GABRP) expression was upregulated (>4-fold) in metastatic tissues from our xenograft mice compared with SK-OV-3 cells. Importantly, GABRP knockdown diminished the migration and invasion of SK-OV-3 cells, and reduced extracellular signal-regulated kinase (ERK) activation while overexpression of GABRP exhibited significantly increased cell migration, invasion and ERK activation. Moreover, treatment with the mitogen-activated protein kinase (MAPK)/ERK kinase (MEK) inhibitor U0126 similarly suppressed the migration and invasion of SK-OV-3 cells, implying that GABRP promotes these cellular behaviors by activating the MAPK/ERK pathway. Using genome-wide DNA methylation profiling, we identified hypomethylated CpG sites in the GABRP promoter in metastatic tissues from the xenograft mice compared with SK-OV-3 cells. Treatment with a DNA methyltransferase inhibitor demonstrated that methylation at −963 bp from the GABRP transcription start site (−963 CpG site) was critical for the epigenetic regulation of GABRP. Finally, we analyzed human ovarian cancer patient samples and showed DNA hypomethylation at the GABRP −963 CpG site in advanced stage, but not early-stage, primary tumors compared with their paired normal tissues. These findings suggest that GABRP enhances the aggressive phenotype of ovarian cancer cells, and that the DNA methylation status of the GABRP −963 CpG site may be useful for predicting the metastatic potential in ovarian cancer patients.
Collapse
|
10
|
Moela P, Motadi LR. RBBP6: a potential biomarker of apoptosis induction in human cervical cancer cell lines. Onco Targets Ther 2016; 9:4721-35. [PMID: 27536134 PMCID: PMC4973719 DOI: 10.2147/ott.s100964] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Overexpression of RBBP6 in cancers of the colon, lung, and esophagus makes it a potential target in anticancer therapy. This is especially important because RBBP6 associates with the tumor suppressor gene p53, the inactivation of which has been linked to over 50% of all cancer types. However, the expression of RBBP6 in cancer and its interaction with p53 are yet to be understood in order to determine whether or not RBBP6 is cancer promoting and therefore a potential biomarker. In this study, we manipulated RBBP6 expression levels followed by treatment with either camptothecin or γ-aminobutyric acid in cervical cancer cells to induce apoptosis or cell cycle arrest. We began by staining human cervical cancer tissue sections with anti-RBBP6 monoclonal antibody to evaluate the extent of expression of RBBP6 in patients’ specimens. We followed on with silencing the overexpression of RBBP6 and treatment with anticancer agents to evaluate how the specimens respond to combinational therapy. Apoptosis induction was evaluated through confocal microscope, and flow cytometry using annexin V staining, and also by checking the mitochondrial and caspase-3/7 activity. Cell cycle arrest was evaluated using flow cytometry through staining with propidium iodide. RBBP6 was highly expressed in cervical cancer tissue sections that were in stage II or III of development. Silencing RBBP6 followed by treatment with γ-aminobutyric acid and camptothecin seems to sensitize cells to apoptosis induction rather than cell cycle arrest. Overexpression of RBBP6 seems to promote S-phase in cell cycle and cell proliferation. These results predict a proliferative role of RBBP6 in cancer progression rather than as a cancer-causing gene. Furthermore, sensitization of cells to camptothecin-induced apoptosis by RBBP6 targeting suggests a promising tool for halting cervical cancer progression.
Collapse
Affiliation(s)
- Pontsho Moela
- Department of Biochemistry, North-West University, Potchefstroom, South Africa
| | | |
Collapse
|
11
|
Xie K, Nian J, Zhu X, Geng X, Liu F. Modulatory role of garlicin in migration and invasion of intrahepatic cholangiocarcinoma via PI3K/AKT pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:14028-14033. [PMID: 26823715 PMCID: PMC4713501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
Increasing evidences have indicated the role of garlicin in inhibiting the progression of various tumors including glioma, pulmonary carcinoma and pancreatic carcinoma, via mediating cell apoptosis or cell cycle. The regulatory effect and related molecular mechanism of garlicin in intrahepatic cholangiocarcinoma, however, remained unknown. This study thus aimed to investigate this scientific issue. HCCC-9810 cell line was treated with serially diluted garlicin, followed by cell proliferation assay using MTT approach. Transwell migration and invasion assays were further employed the regulatory effect of garlicin. The expression level of p-AKT and AKT proteins in tumor cells was quantified by Western blot. The growth of tumor cells was significantly inhibited by high concentration of garlicin (> 1.5 μM). Lower concentration of garlicin showed dose-dependent inhibition of tumor cell invasion and migration. After using specific agonist IGF-1 (50 ng/mL) of PI3K/AKT signaling pathway, such facilitating effects of garlicin were depressed (P < 0.05). Western blotting showed significantly decreased phosphorylation level of AKT after treated with gradient concentrations of garlicin, while leaving the total AKT protein level unchanged. Garlicin may inhibit the invasion and migration of intrahepatic cholangiocarcinoma cells via inhibiting PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Kun Xie
- Department of General Surgery, The First Affiliated Hospital of Medical University of Anhui Hefei 230022, Anhui, China
| | - Jianze Nian
- Department of General Surgery, The First Affiliated Hospital of Medical University of Anhui Hefei 230022, Anhui, China
| | - Xingyang Zhu
- Department of General Surgery, The First Affiliated Hospital of Medical University of Anhui Hefei 230022, Anhui, China
| | - Xiaoping Geng
- Department of General Surgery, The First Affiliated Hospital of Medical University of Anhui Hefei 230022, Anhui, China
| | - Fubao Liu
- Department of General Surgery, The First Affiliated Hospital of Medical University of Anhui Hefei 230022, Anhui, China
| |
Collapse
|