1
|
An J, An S, Choi M, Jung JH, Kim B. Natural Products for Esophageal Cancer Therapy: From Traditional Medicine to Modern Drug Discovery. Int J Mol Sci 2022; 23:13558. [PMID: 36362345 PMCID: PMC9657766 DOI: 10.3390/ijms232113558] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 02/02/2024] Open
Abstract
Esophageal cancer (EC) is one of the most malignant types of cancer worldwide and has a high incidence and mortality rate in Asian countries. When it comes to treating EC, although primary methods such as chemotherapy and surgery exist, the prognosis remains poor. The purpose of this current research is to review the range of effects that natural products have on cancer by analyzing studies conducted on EC. Fifty-seven studies were categorized into four anti-cancer mechanisms, as well as clinical trials. The studies that were scrutinized in this research were all reported within five years. The majority of the substances reviewed induced apoptosis in EC, acting on a variety of mechanisms. Taken together, this study supports the fact that natural products have the potential to act as a candidate for treating EC.
Collapse
Affiliation(s)
| | | | | | | | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
2
|
Zhang H, Zhao H, He X, Xi F, Liu J. JAK-STAT Domain Enhanced MUC1-CAR-T Cells Induced Esophageal Cancer Elimination. Cancer Manag Res 2020; 12:9813-9824. [PMID: 33116840 PMCID: PMC7549884 DOI: 10.2147/cmar.s264358] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/31/2020] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Chimeric antigen receptor (CAR)-T cells have shown to play a vital role in anti-tumor functions in hematological malignancies, but have poor efficacy in solid tumors. To improve the activation and proliferation of CAR-T cell in solid tumors, we constructed an enhanced CAR-T cells to increase the survival of esophageal cancer. MATERIALS AND METHODS To construct enhanced CAR-T cells, we chose MUC1 as the target of CAR-T cells. Long-term co-culture of target cells and effector cells was applied to verify the antitumor activity of these enhanced MUC1-CAR-T cells in vitro. Moreover, a mouse xenograft model was established to investigate the effects of enhanced MUC1-CAR-T cells on tumor elimination in vivo. RESULTS In vitro studies showed that enhanced MUC1-CAR-T cells have long-lasting tumor killing and proliferative capabilities. Moreover, animal experiments verified that enhanced MUC1-CAR-T cells had significant antitumor function and a prolonged half-life by subcutaneous transplantation models of esophageal cancer and PDX models of esophageal cancer, in vivo. CONCLUSION These results indicated that enhanced MUC1-CAR-T cells have a significant cytotoxic effect on esophageal cancer, and may likely to provide a novel strategy for the treatment of esophageal cancer.
Collapse
Affiliation(s)
- Heng Zhang
- School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, People’s Republic of China
| | - Hui Zhao
- Department of Radiation Therapy, Xinjiang Uygur Autonomous Region People’s Hospital, Urumqi, Xinjiang Uygur Autonomous Region, People’s Republic of China
| | - Xiaolei He
- Department of Hepatology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, People’s Republic of China
| | - Feng Xi
- Medical Department, Xinjiang Uygur Autonomous Region People’s Hospital, Urumqi, Xinjiang Uygur Autonomous Region, People’s Republic of China
| | - Jiwen Liu
- School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, People’s Republic of China
| |
Collapse
|
3
|
Hassan MS, Williams F, Awasthi N, Schwarz MA, Schwarz RE, Li J, von Holzen U. Combination effect of lapatinib with foretinib in HER2 and MET co-activated experimental esophageal adenocarcinoma. Sci Rep 2019; 9:17608. [PMID: 31772236 PMCID: PMC6879590 DOI: 10.1038/s41598-019-54129-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/08/2019] [Indexed: 01/02/2023] Open
Abstract
Recent studies have demonstrated that HER2 and MET receptor tyrosine kinases are co-overexpressed in a subset esophageal adenocarcinoma (EAC). We therefore studied the usefulness of combining HER2 and MET targeting by small-molecule inhibitors lapatinib and foretinib, respectively, both in in-vitro and in-vivo models of experimental EAC. We characterized MET and HER2 activation in a panel of human EAC cell lines, and the differential susceptibility of these EAC cell lines to single agent or combination of foretinib and lapatinib. We then explored the antitumor efficacy with survival advantage following foretinib and lapatinib monotherapy and in combination in murine subcutaneous xenograft and peritoneal metastatic survival models of human EAC. The OE33 EAC cell line with strong expression of phosphorylated both MET and HER2, demonstrated reduced sensitivity to foretinib and lapatinib when used as a single agent. The co-administration of foretinib and lapatinib effectively inhibited both MET and HER2 phosphorylation, enhanced inhibition of cell proliferation and xenograft tumor growth by inducing apoptosis, and significantly enhanced mouse overall survival, overcoming single agent resistance. In the OE19 EAC cell line with mainly HER2 phosphorylation, and the ESO51 EAC cell line with mainly MET phosphorylation, profound cell growth inhibition with induction of apoptosis was observed in response to single agent with lack of enhanced growth inhibition when the two agents were combined. These data suggest that combination therapy with foretinib and lapatinib should be tested as a treatment option for HER2 positive patients with MET-overexpressing EAC, and could be a novel treatment strategy for specific EAC patients.
Collapse
Affiliation(s)
- Md Sazzad Hassan
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, 46617, USA. .,Harper Cancer Research Institute, South Bend, IN, 46617, USA.
| | - Fiona Williams
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Niranjan Awasthi
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, 46617, USA.,Harper Cancer Research Institute, South Bend, IN, 46617, USA
| | - Margaret A Schwarz
- Harper Cancer Research Institute, South Bend, IN, 46617, USA.,Department of Pediatrics, Indiana University School of Medicine, South Bend, IN, 46617, USA
| | - Roderich E Schwarz
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, 46617, USA.,Harper Cancer Research Institute, South Bend, IN, 46617, USA
| | - Jun Li
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Urs von Holzen
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, 46617, USA.,Goshen Center for Cancer Care, Goshen, Goshen, IN, 46526, USA.,Harper Cancer Research Institute, South Bend, IN, 46617, USA.,University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Zhou Y, Wang Q, Chu L, Dai W, Zhang X, Chen J, Zhang L, Ding P, Zhang X, Gu H, Zhang P, Li L, Zhang W, Li L, Lv X, Zhou D, Cai G, Chen L, Zhao K, Hu W. FOXM1c promotes oesophageal cancer metastasis by transcriptionally regulating IRF1 expression. Cell Prolif 2018; 52:e12553. [PMID: 30485581 PMCID: PMC6496730 DOI: 10.1111/cpr.12553] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 09/14/2018] [Accepted: 10/21/2018] [Indexed: 12/15/2022] Open
Abstract
Objectives We aimed to elucidate the role and molecular mechanisms of FOXM1 in regulating metastasis in oesophageal squamous cell carcinoma (ESCC) as well as its clinical implications. Materials and methods The expression levels of four isoforms of FOXM1 were analysed by real‐time PCR. Next, genetically modification using overexpression and RNAi systems and transwell were employed to examine FOXM1c function in invasion and migration. Dual luciferase and ChIP assays were performed to decipher the underlying mechanism for transcriptional regulation. The expression levels of FOXM1 and IRF1 were determined by immunohistochemistry staining in ESCC specimens. Results The FOXM1c was predominantly overexpressed in ESCC cell lines compared to the other FOXM1 isoforms. Ectopic expression of FOXM1c promoted invasion and migration of ESCC cells lines, whereas downregulation of FOXM1c inhibited these processes. Moreover, FOXM1c expression was positively correlated with IRF1 expression in ESCC cell lines and tumour specimens. IRF1 is, at least in part, responsible for FOXM1c‐mediated invasion and migration. Mechanistically, we identified IRF1 as a transcriptional target of FOXM1c and found a FOXM1c‐binding site in the IRF1 promoter region. Furthermore, high expression levels of both FOXM1c and IRF1 were positively associated with low survival rate and predicted a poor prognosis of oesophageal cancer patients. Conclusion FOXM1c promotes the metastasis by transcriptionally targeting IRF1 and may serve as a potential prognostic predictor for oesophageal cancer.
Collapse
Affiliation(s)
- Yuzhen Zhou
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qi Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li Chu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weixing Dai
- Department of Colorectal Surgery, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaozhou Zhang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianfeng Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Long Zhang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peipei Ding
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Zhang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongyu Gu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Pingzhao Zhang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ling Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Zhang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Luying Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyue Lv
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Danlei Zhou
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guoxiang Cai
- Department of Colorectal Surgery, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liang Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Kuaile Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weiguo Hu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Tiasto V, Mikhailova V, Gulaia V, Vikhareva V, Zorin B, Kalitnik A, Kagansky A. Esophageal cancer research today and tomorrow: Lessons from algae and other perspectives. AIMS GENETICS 2018; 5:75-90. [PMID: 31435514 PMCID: PMC6690251 DOI: 10.3934/genet.2018.1.75] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 03/01/2018] [Indexed: 12/16/2022]
Abstract
Esophageal cancer is an increasing concern due to poor prognosis, aggressive disease modalities, and a lack of efficient therapeutics. The two types of esophageal cancer: esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) are responsible for an estimated 450,000 annual deaths, with over 457,000 new patients diagnosed in 2015, making it the eighth most prevalent and the 10th most fatal cancer worldwide. As esophageal cancer prevalence continues to increase, and so does the pressing need for the development of new and effective strategies for the early diagnostics, prevention, and treatment of this cancer, as well for building the innovative research tools to understand the affected molecular mechanisms. This short review summarizes the current statistics and recent research of the problems and solutions related to the esophageal cancer, and offer a brief overview of its epidemiology, molecular alterations, and existing biomedical tools. We will discuss currently available research tools and discuss selected approaches we deem relevant to find new model systems and therapies for the future with the special focus on novel opportunities presented by the unique molecules found in algae, namely carbohydrates and lipids. Their remarkable chemical variability is connected to their striking structural and functional properties, which combined with the relative novelty of these compounds to cancer biology, warrants interest of the wide biomedical community to these molecules, especially in the esophageal cancer theory and practice.
Collapse
Affiliation(s)
- Vladlena Tiasto
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, FEFU, 8 Sukhanova str, Vladivostok, Primorsky region, 690950, Russian Federation
| | - Valeriia Mikhailova
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, FEFU, 8 Sukhanova str, Vladivostok, Primorsky region, 690950, Russian Federation
| | - Valeriia Gulaia
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, FEFU, 8 Sukhanova str, Vladivostok, Primorsky region, 690950, Russian Federation
| | - Valeriia Vikhareva
- Laboratory of Pharmacology and Bioassays, School of Biomedicine, FEFU, 8 Sukhanova str, Vladivostok, Primorsky region, 690950, Russian Federation
| | - Boris Zorin
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology for Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| | - Alexandra Kalitnik
- Laboratory of Pharmacology and Bioassays, School of Biomedicine, FEFU, 8 Sukhanova str, Vladivostok, Primorsky region, 690950, Russian Federation
| | - Alexander Kagansky
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, FEFU, 8 Sukhanova str, Vladivostok, Primorsky region, 690950, Russian Federation
| |
Collapse
|
6
|
Lubner SJ, Uboha NV, Deming DA. Primary and acquired resistance to biologic therapies in gastrointestinal cancers. J Gastrointest Oncol 2017; 8:499-512. [PMID: 28736637 PMCID: PMC5506279 DOI: 10.21037/jgo.2017.01.16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 11/09/2016] [Indexed: 12/11/2022] Open
Abstract
Improvements in the understanding of cancer biology have led to therapeutic advances in the treatment of gastrointestinal cancers. Drugs which target the vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR) pathways have led the way in colon cancer. Monoclonal antibodies (mAbs) such as bevacizumab, ramucirumab, cetuximab, and panitumumab, have improved progression free survival and overall survival (OS) for colorectal cancers and were quickly adopted. Human epidermal growth factor receptor 2 (HER2) has demonstrated significant benefit for gastroesophageal cancers and in the setting of HER2 amplification, trastuzumab in combination with chemotherapy has become the standard of care. However, responses have not been as durable nor as robust as once hoped. Mechanisms of resistance for each of these biologic compounds have been hypothesized and are in the process of being better elucidated. This review will approach the innate and acquired mechanisms of resistance of the above compounds. Additionally, we will explore some ongoing clinical trials to capitalize on the mechanisms of resistance in the hopes of retaining the promise of targeting these pathways.
Collapse
Affiliation(s)
- Sam J Lubner
- Department of Medicine, Hematology-Oncology Section, University of Wisconsin Carbone Cancer Center, Madison, WI 53792, USA
| | - Nataliya V Uboha
- Department of Medicine, Hematology-Oncology Section, University of Wisconsin Carbone Cancer Center, Madison, WI 53792, USA
| | - Dustin A Deming
- Department of Medicine, Hematology-Oncology Section, University of Wisconsin Carbone Cancer Center, Madison, WI 53792, USA
| |
Collapse
|
7
|
Feng W, Zhang P, Zheng X, Chen M, Mao WM. Incidence and treatment of brain metastasis in patients with esophageal carcinoma. World J Gastroenterol 2015; 21:5805-5812. [PMID: 26019444 PMCID: PMC4438014 DOI: 10.3748/wjg.v21.i19.5805] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/28/2015] [Accepted: 03/31/2015] [Indexed: 02/06/2023] Open
Abstract
Brain metastasis from esophageal carcinoma (BMEC) is very rare, but its incidence has increased in the United States, Japan, China and other counties. Reports on BMEC have largely been focused on examining whether adjuvant therapy for esophageal cancer influences the survival duration of BMEC patients and on the imaging characteristics of BMEC determined using new medical equipment. The difference between different pathological types of esophageal cancer, especially adenocarcinoma and squamous cell carcinoma, is one important factor used to assess the influence of BMEC. Adjuvant therapy, including radiotherapy and chemotherapy, for esophageal cancer with different characteristics in different countries may affect BMEC treatment outcomes. The degree of popularization of advanced medical equipment is a major concern related to the prevalence of BMEC. Furthermore, targeted BMEC treatment is under development in developed countries. In this article, we reviewed the debate surrounding BMEC and analyzed BMEC studies from different perspectives.
Collapse
|