1
|
Kang Y, Amoafo EB, Entsie P, Beatty GL, Liverani E. A role for platelets in metabolic reprogramming of tumor-associated macrophages. Front Physiol 2023; 14:1250982. [PMID: 37693009 PMCID: PMC10484008 DOI: 10.3389/fphys.2023.1250982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
Cancer incidence and mortality are growing worldwide. With a lack of optimal treatments across many cancer types, there is an unmet need for the development of novel treatment strategies for cancer. One approach is to leverage the immune system for its ability to survey for cancer cells. However, cancer cells evolve to evade immune surveillance by establishing a tumor microenvironment (TME) that is marked by remarkable immune suppression. Macrophages are a predominant immune cell within the TME and have a major role in regulating tumor growth. In the TME, macrophages undergo metabolic reprogramming and differentiate into tumor-associated macrophages (TAM), which typically assume an immunosuppressive phenotype supportive of tumor growth. However, the plasticity of macrophage biology offers the possibility that macrophages may be promising therapeutic targets. Among the many determinants in the TME that may shape TAM biology, platelets can also contribute to cancer growth and to maintaining immune suppression. Platelets communicate with immune cells including macrophages through the secretion of immune mediators and cell-cell interaction. In other diseases, altering platelet secretion and cell-cell communication has been shown to reprogram macrophages and ameliorate inflammation. Thus, intervening on platelet-macrophage biology may be a novel therapeutic strategy for cancer. This review discusses our current understanding of the interaction between platelets and macrophages in the TME and details possible strategies for reprogramming macrophages into an anti-tumor phenotype for suppressing tumor growth.
Collapse
Affiliation(s)
- Ying Kang
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, United States
| | - Emmanuel Boadi Amoafo
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, United States
| | - Philomena Entsie
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, United States
| | - Gregory L. Beatty
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Elisabetta Liverani
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
2
|
Zhao G, Liang J, Cao J, Jiang S, Lu J, Jiang B. Abnormal Function of Circulating Follicular Helper T Cells Leads to Different Manifestations of B Cell Maturation and Differentiation in Patients with Osteosarcoma. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:3724033. [PMID: 35494526 PMCID: PMC9042599 DOI: 10.1155/2022/3724033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/18/2022] [Accepted: 04/11/2022] [Indexed: 11/24/2022]
Abstract
Objective The objective of this study is to investigate the effect of dysfunctional circulating follicular helper T cells (Tfh) on B cell maturation and differentiation in patients with osteosarcoma (OS). Method Data from 30 OS patients who underwent diagnosis and treatment in our hospital, as well as those of 30 healthy subjects (HC), were collected at the same time. Flow cytometry was employed to identify proportions of CD4+CXCR5+Tfh cells and Tfh cell subtypes Tfh17, Tfh1, and Tfh2 in the patient's peripheral blood. CD40 L and IFNγ levels were detected after stimulating Tfh cells with an influenza antigen; the positive rates of CD27 and CD38 in B cells were detected before and after coculture with Tfh cells. qRT-PCR was carried out for Blimp-1 expression in B cells, and ELISA was employed to identify the levels of IgM, IgG, and IgA in B cells and IL-2, IL-10, and IL-4 in Tfh cells before and after coculture. Results The percentage of CD4+CXCR5+Tfh cells in OS patients' peripheral blood increased significantly. The Tfh cell ratio increased along with the TNM stage, and the Tfh cell ratio in OS metastasis patients is greater than that in nonmetastatic patients. In addition, Tfh2 and Tfh17 cells increased drastically in OS patients, and no meaningful change was seen in Tfh1 cells. CD40 L levels of Tfh cells in OS patients were less than those of the HC group, and IFNγ was substantially increased. After coculturing the OS group's B cells with Tfh cells, the CD27+ and CD38+ cells of B cells were drastically greater, and Blimp-1 expression was also significantly increased. In addition, the levels of IL-21, IL-4, and IL-10 of Tfh cells in the OS group and the levels of IgA, IgG, and IgM in B cells were significantly reduced after coculture. Conclusion Dysfunctional Tfh in OS patients can severely inhibit B cell development, maturation, and differentiation.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Traumatic Orthopaedics, Dongying People's Hospital, Dongying, Shandong, China
| | - Jianxiao Liang
- Department of Radiology, Dongying People's Hospital, Dongying, Shandong, China
| | - Jingjing Cao
- Department of Traumatic Orthopaedics, Dongying People's Hospital, Dongying, Shandong, China
| | - Shanyong Jiang
- Department of Traumatic Orthopaedics, Dongying People's Hospital, Dongying, Shandong, China
| | - Jianshu Lu
- Department of Traumatic Orthopaedics, Dongying People's Hospital, Dongying, Shandong, China
| | - Baoen Jiang
- Department of Traumatic Orthopaedics, Dongying People's Hospital, Dongying, Shandong, China
| |
Collapse
|
3
|
Dymicka-Piekarska V, Koper-Lenkiewicz OM, Zińczuk J, Kratz E, Kamińska J. Inflammatory cell-associated tumors. Not only macrophages (TAMs), fibroblasts (TAFs) and neutrophils (TANs) can infiltrate the tumor microenvironment. The unique role of tumor associated platelets (TAPs). Cancer Immunol Immunother 2021; 70:1497-1510. [PMID: 33146401 PMCID: PMC8139882 DOI: 10.1007/s00262-020-02758-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Abstract
It is well known that various inflammatory cells infiltrate cancer cells. Next to TAMs (tumor-associated macrophages), TAFs (tumor-associated fibroblasts) and TANs (tumor-associated neutrophils) also platelets form the tumor microenvironment. Taking into account the role of platelets in the development of cancer, we have decided to introduce a new term: tumor associated platelets-TAPs. To the best of our knowledge, thus far this terminology has not been employed by anyone. Platelets are the first to appear at the site of the inflammatory process that accompanies cancer development. Within the first few hours from the start of the colonization of cancer cells platelet-tumor aggregates are responsible for neutrophils recruitment, and further release a number of factors associated with tumor growth, metastasis and neoangiogenesis. On the other hand, it also has been indicated that factors delivered from platelets can induce a cytotoxic effect on the proliferating neoplastic cells, and even enhance apoptosis. Undoubtedly, TAPs' role seems to be more complex when compared to tumor associated neutrophils and macrophages, which do not allow for their division into TAP P1 and TAP P2, as in the case of TANs and TAMs. In this review we discuss the role of TAPs as an important element of tumor invasiveness and as a potentially new therapeutic target to prevent cancer development. Nevertheless, better exploring the interactions between platelets and tumor cells could help in the formulation of new therapeutic goals that support or improve the effectiveness of cancer treatment.
Collapse
Affiliation(s)
- Violetta Dymicka-Piekarska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland
| | - Olga M. Koper-Lenkiewicz
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland
| | - Justyna Zińczuk
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland
| | - Ewa Kratz
- Department of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wrocław, Poland
| | - Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland
| |
Collapse
|
4
|
Caputo D, Digiacomo L, Cascone C, Pozzi D, Palchetti S, Di Santo R, Quagliarini E, Coppola R, Mahmoudi M, Caracciolo G. Synergistic Analysis of Protein Corona and Haemoglobin Levels Detects Pancreatic Cancer. Cancers (Basel) 2020; 13:93. [PMID: 33396882 PMCID: PMC7796289 DOI: 10.3390/cancers13010093] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/04/2020] [Accepted: 12/24/2020] [Indexed: 12/20/2022] Open
Abstract
Simultaneous detection of multiple analytes from a single biological sample is gaining more attention in the development of more reliable and point-of-care diagnostic devices. We developed a multiplexed strategy that combined outcomes of clinical biomarkers with analysis of the protein corona that forms around graphene oxide sheets upon exposure to patient's plasma. As a paradigmatic case study, we selected pancreatic ductal adenocarcinoma (PDAC), mainly because of the absence of effective detection strategies that resulted in an extremely low five-year survival rate after diagnosis (<10%). Association of protein corona analysis and haemoglobin levels discriminated PDAC patients from healthy volunteers in up to 90% of cases. If further confirmed in larger-cohort studies, this approach may be used in the detection of PDAC.
Collapse
Affiliation(s)
- Damiano Caputo
- Department of Surgery, University Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, 00128 Rome, Italy; (D.C.); (C.C.); (R.C.)
| | - Luca Digiacomo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy; (L.D.); (D.P.); (S.P.); (R.D.S.)
| | - Chiara Cascone
- Department of Surgery, University Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, 00128 Rome, Italy; (D.C.); (C.C.); (R.C.)
| | - Daniela Pozzi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy; (L.D.); (D.P.); (S.P.); (R.D.S.)
| | - Sara Palchetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy; (L.D.); (D.P.); (S.P.); (R.D.S.)
| | - Riccardo Di Santo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy; (L.D.); (D.P.); (S.P.); (R.D.S.)
| | - Erica Quagliarini
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Roberto Coppola
- Department of Surgery, University Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, 00128 Rome, Italy; (D.C.); (C.C.); (R.C.)
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI 48824, USA;
| | - Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy; (L.D.); (D.P.); (S.P.); (R.D.S.)
| |
Collapse
|
5
|
Figueiredo CR, Kalirai H, Sacco JJ, Azevedo RA, Duckworth A, Slupsky JR, Coulson JM, Coupland SE. Loss of BAP1 expression is associated with an immunosuppressive microenvironment in uveal melanoma, with implications for immunotherapy development. J Pathol 2020; 250:420-439. [PMID: 31960425 PMCID: PMC7216965 DOI: 10.1002/path.5384] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/28/2019] [Accepted: 01/14/2020] [Indexed: 12/22/2022]
Abstract
Immunotherapy using immune checkpoint inhibitors (ICIs) induces durable responses in many metastatic cancers. Metastatic uveal melanoma (mUM), typically occurring in the liver, is one of the most refractory tumours to ICIs and has dismal outcomes. Monosomy 3 (M3), polysomy 8q, and BAP1 loss in primary uveal melanoma (pUM) are associated with poor prognoses. The presence of tumour-infiltrating lymphocytes (TILs) within pUM and surrounding mUM - and some evidence of clinical responses to adoptive TIL transfer - strongly suggests that UMs are indeed immunogenic despite their low mutational burden. The mechanisms that suppress TILs in pUM and mUM are unknown. We show that BAP1 loss is correlated with upregulation of several genes associated with suppressive immune responses, some of which build an immune suppressive axis, including HLA-DR, CD38, and CD74. Further, single-cell analysis of pUM by mass cytometry confirmed the expression of these and other markers revealing important functions of infiltrating immune cells in UM, most being regulatory CD8+ T lymphocytes and tumour-associated macrophages (TAMs). Transcriptomic analysis of hepatic mUM revealed similar immune profiles to pUM with BAP1 loss, including the expression of IDO1. At the protein level, we observed TAMs and TILs entrapped within peritumoural fibrotic areas surrounding mUM, with increased expression of IDO1, PD-L1, and β-catenin (CTNNB1), suggesting tumour-driven immune exclusion and hence the immunotherapy resistance. These findings aid the understanding of how the immune response is organised in BAP1 - mUM, which will further enable functional validation of detected biomarkers and the development of focused immunotherapeutic approaches. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Carlos R Figueiredo
- Department of Molecular and Clinical Cancer Medicine, ITMUniversity of LiverpoolLiverpoolUK
- Department of the Faculty of Medicine, MediCity Research Laboratory and Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Helen Kalirai
- Department of Molecular and Clinical Cancer Medicine, ITMUniversity of LiverpoolLiverpoolUK
| | - Joseph J Sacco
- Department of Molecular and Clinical Cancer Medicine, ITMUniversity of LiverpoolLiverpoolUK
- Department of Medical OncologyThe Clatterbridge Cancer CentreWirralUK
| | - Ricardo A Azevedo
- Department of Cancer BiologyThe University of Texas–MD Anderson Cancer CenterHoustonTXUSA
| | - Andrew Duckworth
- Department of Molecular and Clinical Cancer Medicine, ITMUniversity of LiverpoolLiverpoolUK
| | - Joseph R Slupsky
- Department of Molecular and Clinical Cancer Medicine, ITMUniversity of LiverpoolLiverpoolUK
| | - Judy M Coulson
- Department of Cellular and Molecular PhysiologyUniversity of LiverpoolLiverpoolUK
| | - Sarah E Coupland
- Department of Molecular and Clinical Cancer Medicine, ITMUniversity of LiverpoolLiverpoolUK
- Liverpool Clinical LaboratoriesRoyal Liverpool University HospitalLiverpoolUK
| |
Collapse
|
6
|
Harlepp S, Thalmann F, Follain G, Goetz JG. Hemodynamic forces can be accurately measured in vivo with optical tweezers. Mol Biol Cell 2017; 28:3252-3260. [PMID: 28904205 PMCID: PMC5687027 DOI: 10.1091/mbc.e17-06-0382] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/15/2022] Open
Abstract
Force sensing and generation at the tissue and cellular scale is central to many biological events. There is a growing interest in modern cell biology for methods enabling force measurements in vivo. Optical trapping allows noninvasive probing of piconewton forces and thus emerged as a promising mean for assessing biomechanics in vivo. Nevertheless, the main obstacles lie in the accurate determination of the trap stiffness in heterogeneous living organisms, at any position where the trap is used. A proper calibration of the trap stiffness is thus required for performing accurate and reliable force measurements in vivo. Here we introduce a method that overcomes these difficulties by accurately measuring hemodynamic profiles in order to calibrate the trap stiffness. Doing so, and using numerical methods to assess the accuracy of the experimental data, we measured flow profiles and drag forces imposed to trapped red blood cells of living zebrafish embryos. Using treatments enabling blood flow tuning, we demonstrated that such a method is powerful in measuring hemodynamic forces in vivo with accuracy and confidence. Altogether this study demonstrates the power of optical tweezing in measuring low range hemodynamic forces in vivo and offers an unprecedented tool in both cell and developmental biology.
Collapse
Affiliation(s)
- Sébastien Harlepp
- Université de Strasbourg, 67000 Strasbourg, France .,IPCMS, UMR7504, 67200 Strasbourg, France.,LabEx NIE, Université de Strasbourg, 67000 Strasbourg, France
| | - Fabrice Thalmann
- Université de Strasbourg, 67000 Strasbourg, France.,ICS, UPR22, 67034 Strasbourg, France
| | - Gautier Follain
- Université de Strasbourg, 67000 Strasbourg, France.,Inserm UMR_S1109, MN3T, 67200 Strasbourg, France.,LabEx Medalis, Université de Strasbourg, 67000 Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France
| | - Jacky G Goetz
- Université de Strasbourg, 67000 Strasbourg, France .,Inserm UMR_S1109, MN3T, 67200 Strasbourg, France.,LabEx Medalis, Université de Strasbourg, 67000 Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France
| |
Collapse
|
7
|
Ma JC, Sun XW, Su H, Chen Q, Guo TK, Li Y, Chen XC, Guo J, Gong ZQ, Zhao XD, Qi JB. Fibroblast-derived CXCL12/SDF-1α promotes CXCL6 secretion and co-operatively enhances metastatic potential through the PI3K/Akt/mTOR pathway in colon cancer. World J Gastroenterol 2017; 23:5167-5178. [PMID: 28811711 PMCID: PMC5537183 DOI: 10.3748/wjg.v23.i28.5167] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/13/2017] [Accepted: 05/09/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the underlying mechanism by which CXCL12 and CXCL6 influences the metastatic potential of colon cancer and internal relation of colon cancer and stromal cells.
METHODS Western blotting was used to detect the expression of CXCL12 and CXCL6 in colon cancer cells and stromal cells. The co-operative effects of CXCL12 and CXCL6 on proliferation and invasion of colon cancer cells and human umbilical vein endothelial cells (HUVECs) were determined by enzyme-linked immunosorbent assay, and proliferation and invasion assays. The angiogenesis of HUVECs through interaction with cancer cells and stromal cells was examined by angiogenesis assay. We eventually investigated activation of PI3K/Akt/mTOR signaling by CXCL12 involved in the metastatic process of colon cancer.
RESULTS CXCL12 was expressed in DLD-1 cancer cells and fibroblasts. The secretion level of CXCL6 by colon cancer cells and HUVECs were significantly promoted by fibroblasts derived from CXCL12. CXCL6 and CXCL2 could significantly enhance HUVEC proliferation and migration (P < 0.01). CXCL6 and CXCL2 enhanced angiogenesis by HUVECs when cultured with fibroblast cells and colon cancer cells (P < 0.01). CXCL12 also enhanced the invasion of colon cancer cells. Stromal cell-derived CXCL12 promoted the secretion level of CXCL6 and co-operatively promoted metastasis of colon carcinoma through activation of the PI3K/Akt/mTOR pathway.
CONCLUSION Fibroblast-derived CXCL12 enhanced the CXCL6 secretion of colon cancer cells, and both CXCL12 and CXCL6 co-operatively regulated the metastasis via the PI3K/Akt/mTOR signaling pathway. Blocking this pathway may be a potential anti-metastatic therapeutic target for patients with colon cancer.
Collapse
|