1
|
Kercher EM, Spring BQ. Photodynamic Treatments for Disseminated Cancer Metastases Using Fiber-Optic Technologies. Methods Mol Biol 2022; 2451:185-201. [PMID: 35505019 DOI: 10.1007/978-1-0716-2099-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tumor-targeted and -activatable photosensitizer delivery platforms are creating new opportunities to develop photodynamic therapy (PDT) of metastatic disease. This is possible by confining the activity of the photosensitizing chemical (i.e., the PDT agent) to the tumor in combination with diffuse near-infrared light irradiation for wide-field treatment. This chapter outlines protocols and research tools for preclinical development of light-activated therapies of cancer metastases using advanced-stage ovarian cancer as a model system. We also describe an in vivo molecular imaging approach that uniquely enables tracking intraperitoneal micrometastatic burden and responses to treatment using fluorescence microendoscopy.
Collapse
Affiliation(s)
- Eric M Kercher
- Translational Biophotonics Cluster, Northeastern University, Boston, MA, USA
- Nanomedicine Science and Technology Center, Northeastern University, Boston, MA, USA
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Bryan Q Spring
- Translational Biophotonics Cluster, Northeastern University, Boston, MA, USA.
- Department of Physics, Northeastern University, Boston, MA, USA.
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
2
|
Tung CH, Han MS, Shen Z, Gray BD, Pak KY, Wang J. Near-Infrared Fluorogenic Spray for Rapid Tumor Sensing. ACS Sens 2021; 6:3657-3666. [PMID: 34549942 DOI: 10.1021/acssensors.1c01370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Surgical resection of cancerous tissues is a critical procedure for solid tumor treatment. During the operation, the surgeon mostly identifies the cancerous tissues by naked-eye visualization under white light without aid, therefore, the outcome heavily relies on the surgeon's experience. A near-infrared pH-responsive fluorogenic dye, CypH-11, was designed to be used as a sensitive cancer spray to highlight cancerous tissues during surgical operations, minimizing the surgeon's subjective judgment. CypH-11, pKa 6.0, emits almost no fluorescence at neutral pH but fluoresces brightly in an acidic environment, a ubiquitous consequence of cancer cell proliferation. After topical application, CypH-11 was absorbed quickly, and its fluorescence signal in the cancerous tissue was developed within a minute. The signal-to-background ratio was 1.3 and 1.5 at 1 and 10 min, respectively. The fluorogenic property and near-instant signal development capability enable the "spray-and-see" concept. This fast-acting CypH-11 spray could be a handy and effective tool for fluorescence-guided surgery, identifying small cancerous lesions in real time for optimal resection without systemic toxicity.
Collapse
Affiliation(s)
- Ching-Hsuan Tung
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Myung Shin Han
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Zhenhua Shen
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Brian D. Gray
- Molecular Targeting Technologies, Inc., West Chester, Pennsylvania 19380, United States
| | - Koon Y. Pak
- Molecular Targeting Technologies, Inc., West Chester, Pennsylvania 19380, United States
| | - Jianguang Wang
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York 10021, United States
| |
Collapse
|
3
|
Mangeolle T, Yakavets I, Marchal S, Debayle M, Pons T, Bezdetnaya L, Marchal F. Fluorescent Nanoparticles for the Guided Surgery of Ovarian Peritoneal Carcinomatosis. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E572. [PMID: 30050022 PMCID: PMC6116267 DOI: 10.3390/nano8080572] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/20/2018] [Accepted: 07/22/2018] [Indexed: 01/07/2023]
Abstract
Complete surgical resection is the ideal cure for ovarian peritoneal carcinomatosis, but remains challenging. Fluorescent guided surgery can be a promising approach for precise cytoreduction when appropriate fluorophore is used. In the presence paper, we review already developed near- and short-wave infrared fluorescent nanoparticles, which are currently under investigation for peritoneal carcinomatosis fluorescence imaging. We also highlight the main ways to improve the safety of nanoparticles, for fulfilling prerequisites of clinical application.
Collapse
Affiliation(s)
- Tristan Mangeolle
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506 Vandoeuvre-lès-Nancy, France.
- Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France.
| | - Ilya Yakavets
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506 Vandoeuvre-lès-Nancy, France.
- Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France.
- Laboratory of Biophysics and Biotechnology, Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk, Belarus.
| | - Sophie Marchal
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506 Vandoeuvre-lès-Nancy, France.
- Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France.
| | - Manon Debayle
- LPEM, ESPCI Paris, PSL Research University, CNRS, Sorbonne Université, 75005 Paris, France.
| | - Thomas Pons
- LPEM, ESPCI Paris, PSL Research University, CNRS, Sorbonne Université, 75005 Paris, France.
| | - Lina Bezdetnaya
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506 Vandoeuvre-lès-Nancy, France.
- Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France.
| | - Frédéric Marchal
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506 Vandoeuvre-lès-Nancy, France.
- Surgical Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
4
|
Tung CH, Qi J, Hu L, Han MS, Kim Y. A Quick Responsive Fluorogenic pH Probe for Ovarian Tumor Imaging. Theranostics 2015; 5:1166-74. [PMID: 26284146 PMCID: PMC4533099 DOI: 10.7150/thno.12813] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/09/2015] [Indexed: 12/25/2022] Open
Abstract
A novel cell-permeable compound, CypH-1, that is non-fluorescent at neutral pH, but fluoresces under mildly acidic conditions with a near infrared maximum emission wavelength was designed for the detection of tumors in the clinical setting. The potential of CypH-1 in ovarian cancer imaging was demonstrated using a murine model. The intraperitoneally administered CypH-1 results in a robust fluorescence signal of discrete neoplastic lesions with millimeter range resolution within few hours. Moreover, fluorescence signal is strikingly enhanced at peripheral regions of tumors at the microscopic level suggesting a sharp physiological difference at the tumor/normal tissue interface. This robust acid-activated imaging agent is expected to have significant impact in broad surgical and diagnostic applications.
Collapse
|