1
|
Di Donato M, Giovannelli P, Migliaccio A, Castoria G. The nerve growth factor-delivered signals in prostate cancer and its associated microenvironment: when the dialogue replaces the monologue. Cell Biosci 2023; 13:60. [PMID: 36941697 PMCID: PMC10029315 DOI: 10.1186/s13578-023-01008-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/06/2023] [Indexed: 03/22/2023] Open
Abstract
Prostate cancer (PC) represents the most diagnosed and the second most lethal cancer in men worldwide. Its development and progression occur in concert with alterations in the surrounding tumor microenvironment (TME), made up of stromal cells and extracellular matrix (ECM) that dynamically interact with epithelial PC cells affecting their growth and invasiveness. PC cells, in turn, can functionally sculpt the TME through the secretion of various factors, including neurotrophins. Among them, the nerve growth factor (NGF) that is released by both epithelial PC cells and carcinoma-associated fibroblasts (CAFs) triggers the activation of various intracellular signaling cascades, thereby promoting the acquisition of a metastatic phenotype. After many years of investigation, it is indeed well established that aberrations and/or derangement of NGF signaling are involved not only in neurological disorders, but also in the pathogenesis of human proliferative diseases, including PC. Another key feature of cancer progression is the nerve outgrowth in TME and the concept of nerve dependence related to perineural invasion is currently emerging. NGF released by cancer cells can be a driver of tumor neurogenesis and nerves infiltrated in TME release neurotransmitters, which might stimulate the growth and sustainment of tumor cells.In this review, we aim to provide a snapshot of NGF action in the interactions between TME, nerves and PC cells. Understanding the molecular basis of this dialogue might expand the arsenal of therapeutic strategies against this widespread disease.
Collapse
Affiliation(s)
- Marzia Di Donato
- Department of Precision Medicine, University of Campania "L.Vanvitelli", 80138, Naples, Italy.
| | - Pia Giovannelli
- Department of Precision Medicine, University of Campania "L.Vanvitelli", 80138, Naples, Italy.
| | - Antimo Migliaccio
- Department of Precision Medicine, University of Campania "L.Vanvitelli", 80138, Naples, Italy
| | - Gabriella Castoria
- Department of Precision Medicine, University of Campania "L.Vanvitelli", 80138, Naples, Italy
| |
Collapse
|
2
|
Raina K, Kandhari K, Jain AK, Ravichandran K, Maroni P, Agarwal C, Agarwal R. Stage-Specific Effect of Inositol Hexaphosphate on Cancer Stem Cell Pool during Growth and Progression of Prostate Tumorigenesis in TRAMP Model. Cancers (Basel) 2022; 14:4204. [PMID: 36077751 PMCID: PMC9455012 DOI: 10.3390/cancers14174204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/23/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Herein, we assessed the stage-specific efficacy of inositol hexaphosphate (IP6, phytic acid), a bioactive food component, on prostate cancer (PCa) growth and progression in a transgenic mouse model of prostate cancer (TRAMP). Starting at 4, 12, 20, and 30 weeks of age, male TRAMP mice were fed either regular drinking water or 2% IP6 in water for ~8-15 weeks. Pathological assessments at study endpoint indicated that tumor grade is arrested at earlier stages by IP6 treatment; IP6 also prevented progression to more advanced forms of the disease (~55-70% decrease in moderately and poorly differentiated adenocarcinoma incidence was observed in advanced stage TRAMP cohorts). Next, we determined whether the protective effects of IP6 are mediated via its effect on the expansion of the cancer stem cells (CSCs) pool; results indicated that the anti-PCa effects of IP6 are associated with its potential to eradicate the PCa CSC pool in TRAMP prostate tumors. Furthermore, in vitro assays corroborated the above findings as IP6 decreased the % of floating PC-3 prostaspheres (self-renewal of CSCs) by ~90%. Together, these findings suggest the multifaceted chemopreventive-translational potential of IP6 intervention in suppressing the growth and progression of PCa and controlling this malignancy at an early stage.
Collapse
Affiliation(s)
- Komal Raina
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Kushal Kandhari
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anil K. Jain
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kameswaran Ravichandran
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Paul Maroni
- Department of Surgery, Division of Urology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
3
|
Kushwaha PP, Verma S, Kumar S, Gupta S. Role of prostate cancer stem-like cells in the development of antiandrogen resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:459-471. [PMID: 35800367 PMCID: PMC9255247 DOI: 10.20517/cdr.2022.07] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/16/2022] [Accepted: 03/24/2022] [Indexed: 12/22/2022]
Abstract
Androgen deprivation therapy (ADT) is the standard of care treatment for advance stage prostate cancer. Treatment with ADT develops resistance in multiple ways leading to the development of castration-resistant prostate cancer (CRPC). Present research establishes that prostate cancer stem-like cells (CSCs) play a central role in the development of treatment resistance followed by disease progression. Prostate CSCs are capable of self-renewal, differentiation, and regenerating tumor heterogeneity. The stemness properties in prostate CSCs arise due to various factors such as androgen receptor mutation and variants, epigenetic and genetic modifications leading to alteration in the tumor microenvironment, changes in ATP-binding cassette (ABC) transporters, and adaptations in molecular signaling pathways. ADT reprograms prostate tumor cellular machinery leading to the expression of various stem cell markers such as Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1), Prominin 1 (PROM1/CD133), Indian blood group (CD44), SRY-Box Transcription Factor 2 (Sox2), POU Class 5 Homeobox 1(POU5F1/Oct4), Nanog and ABC transporters. These markers indicate enhanced self-renewal and stemness stimulating CRPC evolution, metastatic colonization, and resistance to antiandrogens. In this review, we discuss the role of ADT in prostate CSCs differentiation and acquisition of CRPC, their isolation, identification and characterization, as well as the factors and pathways contributing to CSCs expansion and therapeutic opportunities.
Collapse
Affiliation(s)
- Prem Prakash Kushwaha
- Department of Urology, Case Western Reserve University, Cleveland, OH 44106, USA
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Shiv Verma
- Department of Urology, Case Western Reserve University, Cleveland, OH 44106, USA
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Shashank Kumar
- Molecular Signaling and Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda 151401, India
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, Cleveland, OH 44106, USA
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
- Divison of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| |
Collapse
|
4
|
Sahoo S, Ashraf B, Duddu AS, Biddle A, Jolly MK. Interconnected high-dimensional landscapes of epithelial-mesenchymal plasticity and stemness in cancer. Clin Exp Metastasis 2022; 39:279-290. [PMID: 34993766 DOI: 10.1007/s10585-021-10139-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023]
Abstract
Establishing macrometastases at distant organs is a highly challenging process for cancer cells, with extremely high attrition rates. A very small percentage of disseminated cells have the ability to dynamically adapt to their changing micro-environments through reversibly switching to another phenotype, aiding metastasis. Such plasticity can be exhibited along one or more axes-epithelial-mesenchymal plasticity (EMP) and cancer stem cells (CSCs) being the two most studied, and often tacitly assumed to be synonymous. Here, we review the emerging concepts related to EMP and CSCs across multiple cancers. Both processes are multi-dimensional in nature; for instance, EMP can be defined on morphological, molecular and functional changes, which may or may not be synchronized. Similarly, self-renewal, multi-lineage potential, and resistance to anoikis and/or therapy may not all occur simultaneously in CSCs. Thus, understanding the complexity in defining EMP and CSCs is essential if we are to understand their contribution to cancer metastasis. This will require a more comprehensive understanding of the non-linearity of these processes. These processes are dynamic, reversible, and semi-independent in nature; cells traverse the inter-connected high-dimensional EMP and CSC landscapes in diverse paths, each of which may exhibit a distinct EMP-CSC coupling. Our proposed model offers a potential unifying framework for elucidating the coupled decision-making along these dimensions and highlights a key set of open questions to be answered.
Collapse
Affiliation(s)
- Sarthak Sahoo
- Centre for BioSystems Science and Engineering (BSSE), Indian Institute of Science, Bangalore, 560012, India.,UG Programme, Indian Institute of Science, Bangalore, 560012, India
| | - Bazella Ashraf
- Department of Biotechnology, Central University of Kashmir, Ganderbal, India
| | - Atchuta Srinivas Duddu
- Centre for BioSystems Science and Engineering (BSSE), Indian Institute of Science, Bangalore, 560012, India
| | - Adrian Biddle
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering (BSSE), Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
5
|
Schagdarsurengin U, Luo C, Slanina H, Sheridan D, Füssel S, Böğürcü-Seidel N, Gattenloehner S, Baretton GB, Hofbauer LC, Wagenlehner F, Dansranjav T. Tracing TET1 expression in prostate cancer: discovery of malignant cells with a distinct oncogenic signature. Clin Epigenetics 2021; 13:211. [PMID: 34844636 PMCID: PMC8630881 DOI: 10.1186/s13148-021-01201-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/22/2021] [Indexed: 11/10/2022] Open
Abstract
Background Ten–eleven translocation methylcytosine dioxygenase 1 (TET1) is involved in DNA demethylation and transcriptional regulation, plays a key role in the maintenance of stem cell pluripotency, and is dysregulated in malignant cells. The identification of cancer stem cells (CSCs) driving tumor growth and metastasis is the primary objective of biomarker discovery in aggressive prostate cancer (PCa). In this context, we analyzed TET1 expression in PCa.
Methods A large-scale immunohistochemical analysis of TET1 was performed in normal prostate (NOR) and PCa using conventional slides (50 PCa specimens) and tissue microarrays (669 NOR and 1371 PCa tissue cores from 371 PCa specimens). Western blotting, RT-qPCR, and 450 K methylation array analyses were performed on PCa cell lines. Genome-wide correlation, gene regulatory network, and functional genomics studies were performed using publicly available data sources and bioinformatics tools. Results In NOR, TET1 was exclusively expressed in normal cytokeratin 903 (CK903)–positive basal cells. In PCa, TET1 was frequently detected in alpha-methylacyl-CoA racemase (AMACR)–positive tumor cell clusters and was detectable at all tumor stages and Gleason scores. Pearson’s correlation analyses of PCa revealed 626 TET1-coactivated genes (r > 0.5) primarily encoding chromatin remodeling and mitotic factors. Moreover, signaling pathways regulating antiviral processes (62 zinc finger, ZNF, antiviral proteins) and the pluripotency of stem cells were activated. A significant proportion of detected genes exhibited TET1-correlated promoter hypomethylation. There were 161 genes encoding transcription factors (TFs), of which 133 were ZNF-TFs with promoter binding sites in TET1 and in the vast majority of TET1-coactivated genes. Conclusions TET1-expressing cells are an integral part of PCa and may represent CSCs with oncogenic potential. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01201-7.
Collapse
Affiliation(s)
- U Schagdarsurengin
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Giessen, Germany.,Working Group Epigenetics of Urogenital System, Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Giessen, Germany
| | - C Luo
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Giessen, Germany
| | - H Slanina
- Institute of Medical Virology, Justus-Liebig-University Giessen, Giessen, Germany
| | - D Sheridan
- Institute of Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - S Füssel
- Department of Urology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - N Böğürcü-Seidel
- Institute of Neuropathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - S Gattenloehner
- Institute of Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - G B Baretton
- Institute of Pathology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - L C Hofbauer
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III and University Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - F Wagenlehner
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Giessen, Germany
| | - T Dansranjav
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
6
|
Ebersbach C, Beier AMK, Thomas C, Erb HHH. Impact of STAT Proteins in Tumor Progress and Therapy Resistance in Advanced and Metastasized Prostate Cancer. Cancers (Basel) 2021; 13:4854. [PMID: 34638338 PMCID: PMC8508518 DOI: 10.3390/cancers13194854] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/17/2022] Open
Abstract
Signal transducers and activators of transcription (STATs) are a family of transcription factors involved in several biological processes such as immune response, cell survival, and cell growth. However, they have also been implicated in the development and progression of several cancers, including prostate cancer (PCa). Although the members of the STAT protein family are structurally similar, they convey different functions in PCa. STAT1, STAT3, and STAT5 are associated with therapy resistance. STAT1 and STAT3 are involved in docetaxel resistance, while STAT3 and STAT5 are involved in antiandrogen resistance. Expression of STAT3 and STAT5 is increased in PCa metastases, and together with STAT6, they play a crucial role in PCa metastasis. Further, expression of STAT3, STAT5, and STAT6 was elevated in advanced and high-grade PCa. STAT2 and STAT4 are currently less researched in PCa. Since STATs are widely involved in PCa, they serve as potential therapeutic targets. Several inhibitors interfering with STATs signaling have been tested unsuccessfully in PCa clinical trials. This review focuses on the respective roles of the STAT family members in PCa, especially in metastatic disease and provides an overview of STAT-inhibitors evaluated in clinical trials.
Collapse
Affiliation(s)
- Celina Ebersbach
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany; (C.E.); (A.-M.K.B.); (C.T.)
- Mildred Scheel Early Career Center, Department of Urology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Alicia-Marie K. Beier
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany; (C.E.); (A.-M.K.B.); (C.T.)
- Mildred Scheel Early Career Center, Department of Urology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Christian Thomas
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany; (C.E.); (A.-M.K.B.); (C.T.)
| | - Holger H. H. Erb
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany; (C.E.); (A.-M.K.B.); (C.T.)
| |
Collapse
|
7
|
Bahmad HF, Jalloul M, Azar J, Moubarak MM, Samad TA, Mukherji D, Al-Sayegh M, Abou-Kheir W. Tumor Microenvironment in Prostate Cancer: Toward Identification of Novel Molecular Biomarkers for Diagnosis, Prognosis, and Therapy Development. Front Genet 2021; 12:652747. [PMID: 33841508 PMCID: PMC8033163 DOI: 10.3389/fgene.2021.652747] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is by far the most commonly diagnosed cancer in men worldwide. Despite sensitivity to androgen deprivation, patients with advanced disease eventually develop resistance to therapy and may die of metastatic castration-resistant prostate cancer (mCRPC). A key challenge in the management of PCa is the clinical heterogeneity that is hard to predict using existing biomarkers. Defining molecular biomarkers for PCa that can reliably aid in diagnosis and distinguishing patients who require aggressive therapy from those who should avoid overtreatment is a significant unmet need. Mechanisms underlying the development of PCa are not confined to cancer epithelial cells, but also involve the tumor microenvironment. The crosstalk between epithelial cells and stroma in PCa has been shown to play an integral role in disease progression and metastasis. A number of key markers of reactive stroma has been identified including stem/progenitor cell markers, stromal-derived mediators of inflammation, regulators of angiogenesis, connective tissue growth factors, wingless homologs (Wnts), and integrins. Here, we provide a synopsis of the stromal-epithelial crosstalk in PCa focusing on the relevant molecular biomarkers pertaining to the tumor microenvironment and their role in diagnosis, prognosis, and therapy development.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Mohammad Jalloul
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Joseph Azar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Maya M. Moubarak
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Tamara Abdul Samad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Deborah Mukherji
- Department of Internal Medicine, Division of Hematology-Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
8
|
Cancer Stem Cells and Nucleolin as Drivers of Carcinogenesis. Pharmaceuticals (Basel) 2021; 14:ph14010060. [PMID: 33451077 PMCID: PMC7828541 DOI: 10.3390/ph14010060] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer, one of the most mortal diseases worldwide, is characterized by the gain of specific features and cellular heterogeneity. Clonal evolution is an established theory to explain heterogeneity, but the discovery of cancer stem cells expanded the concept to include the hierarchical growth and plasticity of cancer cells. The activation of epithelial-to-mesenchymal transition and its molecular players are widely correlated with the presence of cancer stem cells in tumors. Moreover, the acquisition of certain oncological features may be partially attributed to alterations in the levels, location or function of nucleolin, a multifunctional protein involved in several cellular processes. This review aims at integrating the established hallmarks of cancer with the plasticity of cancer cells as an emerging hallmark; responsible for tumor heterogeneity; therapy resistance and relapse. The discussion will contextualize the involvement of nucleolin in the establishment of cancer hallmarks and its application as a marker protein for targeted anticancer therapies
Collapse
|
9
|
Pinto CIG, Bucar S, Alves V, Fonseca A, Abrunhosa AJ, da Silva CL, Guerreiro JF, Mendes F. Copper-64 Chloride Exhibits Therapeutic Potential in Three-Dimensional Cellular Models of Prostate Cancer. Front Mol Biosci 2020; 7:609172. [PMID: 33335914 PMCID: PMC7736412 DOI: 10.3389/fmolb.2020.609172] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is the second most common cancer type in men, and in advanced metastatic stages is considerable incurable. This justifies the need for efficient early diagnostic methods and novel therapies, particularly radiopharmaceuticals with the potential for simultaneous diagnosis and therapy (theranostics). We have previously demonstrated, using monolayer-cultured cells, that copper-64 chloride, a promising theranostic agent for PCa, has the potential to induce significant damage in cancer cells while having minimal side effects in healthy tissues. Here, we further explored this compound for its theranostic applications using more advanced PCa cellular models, specifically multicellular spheroids. Namely, we evaluated the cellular uptake of 64CuCl2 in three human PCa spheroids (derived from 22RV1, DU145, and LNCaP cells), and characterized the growth profile and viability of those spheroids as well as the clonogenic capacity of spheroid-derived cells after exposure to 64CuCl2. Furthermore, the populations of cancer stem cells (CSCs), known to be important for cancer resistance and recurrence, present in the spheroid models were also evaluated using two different markers (CD44 and CD117). 64CuCl2 was found to have significant detrimental effects in spheroids and spheroid-derived cells, being able to reduce their growth and impair the viability and reproductive ability of spheroids from both castration-resistant (22RV1 and DU145) and hormone-naïve PCa (LNCaP). Interestingly, resistance to 64CuCl2 treatment seemed to be related with the presence of a CSC population, since the most resistant spheroids, derived from the DU145 cell line, had the highest initial percentage of CSCs among the three cell lines under study. Altogether, these results clearly highlight the theranostic potential of 64CuCl2.
Collapse
Affiliation(s)
- Catarina I G Pinto
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Bucar
- Departamento de Bioengenharia, iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Vítor Alves
- CIBIT/ICNAS Instituto de Ciências Nucleares Aplicadas à Saúde, Universidade de Coimbra, Coimbra, Portugal
| | - Alexandra Fonseca
- CIBIT/ICNAS Instituto de Ciências Nucleares Aplicadas à Saúde, Universidade de Coimbra, Coimbra, Portugal
| | - Antero J Abrunhosa
- CIBIT/ICNAS Instituto de Ciências Nucleares Aplicadas à Saúde, Universidade de Coimbra, Coimbra, Portugal
| | - Cláudia L da Silva
- Departamento de Bioengenharia, iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joana F Guerreiro
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Filipa Mendes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
10
|
Babaei G, Khadem Ansari MH, Aziz SGG, Bazl MR. Alantolactone inhibits stem-like cell phenotype, chemoresistance and metastasis in PC3 cells through STAT3 signaling pathway. Res Pharm Sci 2020; 15:551-562. [PMID: 33828598 PMCID: PMC8020850 DOI: 10.4103/1735-5362.301340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/07/2020] [Accepted: 11/14/2020] [Indexed: 12/03/2022] Open
Abstract
Background and purpose: Cancer stem cells (CSCs), as the subpopulation of cancer cells, are associated with carcinogenesis, chemoresistance, and metastasis in malignancies. Also, CSCs are considered as the major reason for treatment failure in prostate cancer (PCa). Alantolactone (ALT), exerts anticancer activity in different types of cancers. In the present study, the relationship between ALT and CSCs in PCa metastasis and the molecular mechanisms involved in the progression of PCa were investigated. Experimental approach: In this study, to evaluate cell viability, MTT assay was performed. Then, PC3 cells were treated with nontoxic concentrations of ALT and after this step wound-healing assay, colony-formation assay and chemosensitization assay were applied to determine cell migration, the ability of colony formation, and chemoresistance, respectively. Also, real-time polymerase chain reaction and western blotting were used for the determination of genes and protein expression, respectively. Findings/Results: Our finding showed that ALT at nontoxic concentrations (0.01 and 0.1 μM) for 72 h suppressed the STAT3 phosphorylation and signaling pathway. Also, ALT was able to modulate the stemness of PCa cells through downregulation of expression of SOX2, Oct-4, Nanog, CD133, CD44, and upregulation of p53 expression. On the other hand, we further found that ALT in nontoxic concentrations sensitized PCa cells to cisplatin Conclusion and implications: ALT combated the stemness of cancer cells and metastasis by antagonizing of STAT3 signaling pathway. In addition, ALT exhibited anti-metastatic properties and may have potential as a new chemotherapy agent for the reduction of PCa metastasis.
Collapse
Affiliation(s)
- Ghader Babaei
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, I.R. Iran
| | - Mohammad Hassan Khadem Ansari
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, I.R. Iran.,Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, I.R. Iran
| | | | - Masoumeh Rajabi Bazl
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran
| |
Collapse
|
11
|
Influence of Intratumor Microbiome on Clinical Outcome and Immune Processes in Prostate Cancer. Cancers (Basel) 2020; 12:cancers12092524. [PMID: 32899474 PMCID: PMC7564876 DOI: 10.3390/cancers12092524] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/19/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary While the intratumor microbiome has been largely unexplored in relation to prostate cancer development, our research shows that microbes may play an anti-tumor or pro-tumor role to significantly alter clinical course in prostate cancer patients. We found that the presence and absence of specific microbes are strongly correlated with known biomarkers of prostate cancer, including increased androgen receptor expression, prostate-specific antigen level, immune-associated gene dysregulation, stem-cell related gene overexpression, cancer pathways, and known chromosomal alterations. Our results provide important insight on potential mechanisms by which intratumor microbes may greatly contribute to prostate cancer progression and prognosis. We hope our results can be validated in future studies, and the key microbes that we identified can be used as effective targets for more specialized prebiotic and probiotic treatments for prostate cancer. Abstract Although 1 in 9 American men will receive a diagnosis of prostate cancer (PC), most men with this diagnosis will not die from it, as most PCs are indolent. However, there is a subset of patients in which the once-indolent PC becomes metastatic and eventually, fatal. In this study, we analyzed microbial compositions of intratumor bacteria in PC to determine the influence of the microbiome on metastatic growth. Using large-scale RNA-sequencing data and corresponding clinical data, we correlated the abundance of microbes to immune pathways and PC risk factors, identifying specific microbes that either significantly deter or contribute to cancer aggressiveness. Interestingly, most of the microbes we found appeared to play anti-tumor roles in PC. Since these anti-tumor microbes were overrepresented in tumor samples, we believe that microbes thrive in the tumor microenvironment, outcompete cancer cells, and directly mitigate tumor growth by recruiting immune cells. These include Listeria monocytogenes, Methylobacterium radiotolerans JCM 2831, Xanthomonas albilineans GPE PC73, and Bradyrhizobium japonicum, which are negatively correlated with Gleason score, Tumor-Node-Metastasis (TNM) stage, prostate-specific antigen (PSA) level, and Androgen Receptor (AR) expression, respectively. We also identified microbes that contribute to tumor growth and are positively correlated with genomic alterations, dysregulated immune-associated (IA) genes, and prostate cancer stem cells (PCSC) genes.
Collapse
|
12
|
STAT3 inhibition with galiellalactone effectively targets the prostate cancer stem-like cell population. Sci Rep 2020; 10:13958. [PMID: 32811873 PMCID: PMC7434889 DOI: 10.1038/s41598-020-70948-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer stem cells (CSCs) are a small subpopulation of quiescent cells with the potential to differentiate into tumor cells. CSCs are involved in tumor initiation and progression and contribute to treatment failure through their intrinsic resistance to chemo- or radiotherapy, thus representing a substantial concern for cancer treatment. Prostate CSCs’ activity has been shown to be regulated by the transcription factor Signal Transducer and Activator of Transcription 3 (STAT3). Here we investigated the effect of galiellalactone (GL), a direct STAT3 inhibitor, on CSCs derived from prostate cancer patients, on docetaxel-resistant spheres with stem cell characteristics, on CSCs obtained from the DU145 cell line in vitro and on DU145 tumors in vivo. We found that GL significantly reduced the viability of docetaxel-resistant and patient-derived spheres. Moreover, CSCs isolated from DU145 cells were sensitive to low concentrations of GL, and the treatment with GL suppressed their viability and their ability to form colonies and spheres. STAT3 inhibition down regulated transcriptional targets of STAT3 in these cells, indicating STAT3 activity in CSCs. Our results indicate that GL can target the prostate stem cell niche in patient-derived cells, in docetaxel-resistant spheres and in an in vitro model. We conclude that GL represents a promising therapeutic approach for prostate cancer patients, as it reduces the viability of prostate cancer-therapy-resistant cells in both CSCs and non-CSC populations.
Collapse
|
13
|
Prostate cancer-derived holoclones: a novel and effective model for evaluating cancer stemness. Sci Rep 2020; 10:11329. [PMID: 32647229 PMCID: PMC7347552 DOI: 10.1038/s41598-020-68187-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer accounts for approximately 13.5% of all newly diagnosed male cancer cases. Significant clinical burdens remain in terms of ineffective prognostication, with overtreatment of insignificant disease. Additionally, the pathobiology underlying disease heterogeneity remains poorly understood. As the role of cancer stem cells in the perpetuation of aggressive carcinoma is being substantiated by experimental evidence, it is crucially important to understand the molecular mechanisms, which regulate key features of cancer stem cells. We investigated two methods for in vitro cultivation of putative prostate cancer stem cells based on ‘high-salt agar’ and ‘monoclonal cultivation’. Data demonstrated ‘monoclonal cultivation’ as the superior method. We demonstrated that ‘holoclones’ expressed canonical stem markers, retained the exclusive ability to generate poorly differentiated tumours in NOD/SCID mice and possessed a unique mRNA-miRNA gene signature. miRNA:Target interactions analysis visualised potentially critical regulatory networks, which are dysregulated in prostate cancer holoclones. The characterisation of this tumorigenic population lays the groundwork for this model to be used in the identification of proteomic or small non-coding RNA therapeutic targets for the eradication of this critical cellular population. This is significant, as it provides a potential route to limit development of aggressive disease and thus improve survival rates.
Collapse
|
14
|
Talukdar S, Das SK, Pradhan AK, Emdad L, Windle JJ, Sarkar D, Fisher PB. MDA-9/Syntenin (SDCBP) Is a Critical Regulator of Chemoresistance, Survival and Stemness in Prostate Cancer Stem Cells. Cancers (Basel) 2019; 12:cancers12010053. [PMID: 31878027 PMCID: PMC7017101 DOI: 10.3390/cancers12010053] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
Despite some progress, treating advanced prostate cancer remains a major clinical challenge. Recent studies have shown that prostate cancer can originate from undifferentiated, rare, stem cell-like populations within the heterogeneous tumor mass, which play seminal roles in tumor formation, maintenance of tumor homeostasis and initiation of metastases. These cells possess enhanced propensity toward chemoresistance and may serve as a prognostic factor for prostate cancer recurrence. Despite extensive studies, selective targeted therapies against these stem cell-like populations are limited and more detailed experiments are required to develop novel targeted therapeutics. We now show that MDA-9/Syntenin/SDCBP (MDA-9) is a critical regulator of survival, stemness and chemoresistance in prostate cancer stem cells (PCSCs). MDA-9 regulates the expression of multiple stem-regulatory genes and loss of MDA-9 causes a complete collapse of the stem-regulatory network in PCSCs. Loss of MDA-9 also sensitizes PCSCs to multiple chemotherapeutics with different modes of action, such as docetaxel and trichostatin-A, suggesting that MDA-9 may regulate multiple drug resistance. Mechanistically, MDA-9-mediated multiple drug resistance, stemness and survival are regulated in PCSCs through activation of STAT3. Activated STAT3 regulates chemoresistance in PCSCs through protective autophagy as well as regulation of MDR1 on the surface of the PCSCs. We now demonstrate that MDA-9 is a critical regulator of PCSC survival and stemness via exploiting the inter-connected STAT3 and c-myc pathways.
Collapse
Affiliation(s)
- Sarmistha Talukdar
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.T.); (S.K.D.); (A.K.P.); (L.E.); (J.J.W.); (D.S.)
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Swadesh K. Das
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.T.); (S.K.D.); (A.K.P.); (L.E.); (J.J.W.); (D.S.)
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Anjan K. Pradhan
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.T.); (S.K.D.); (A.K.P.); (L.E.); (J.J.W.); (D.S.)
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.T.); (S.K.D.); (A.K.P.); (L.E.); (J.J.W.); (D.S.)
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jolene J. Windle
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.T.); (S.K.D.); (A.K.P.); (L.E.); (J.J.W.); (D.S.)
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.T.); (S.K.D.); (A.K.P.); (L.E.); (J.J.W.); (D.S.)
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.T.); (S.K.D.); (A.K.P.); (L.E.); (J.J.W.); (D.S.)
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence: ; Tel.: +1-804-628-3506 or +1-804-628-3336; Fax: +1-804-827-1124
| |
Collapse
|
15
|
Lee CH, Decker AM, Cackowski FC, Taichman RS. Bone microenvironment signaling of cancer stem cells as a therapeutic target in metastatic prostate cancer. Cell Biol Toxicol 2019; 36:115-130. [PMID: 31250347 DOI: 10.1007/s10565-019-09483-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 06/18/2019] [Indexed: 01/06/2023]
Abstract
Prostate cancer (PCa) is one of the most prevalent cancers and the second leading cause of cancer death among US males. When diagnosed in an early disease stage, primary tumors of PCa may be treated with surgical resection or radiation, sometimes combined with androgen deprivation therapy, with favorable outcomes. Unfortunately, the treatment efficacy of each approach decreases significantly in later stages of PCa that involve metastasis to soft tissues and bone. Metastatic PCa is a heterogeneous disease containing host cells, mature cancer cells, and subpopulation of cancer stem cells (CSC). CSCs are highly tumorigenic due to their self-renewing and differentiating potential, clinically resulting in recurrence and resistance to standard therapies. Therefore, there is a large unmet clinical need to develop therapies, which target CSC activity. In this review, we summarize the main signaling pathways that are implicated in the current pre-clinical and clinical studies of recurrent metastatic PCa within the bone microenvironment targeting CSCs and discuss the trajectory of therapeutics moving forward.
Collapse
Affiliation(s)
- Clara H Lee
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Ann M Decker
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Frank C Cackowski
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - Russell S Taichman
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA. .,Department of Periodontology, University of Alabama Birmingham School of Dentistry, Birmingham, Alabama, USA.
| |
Collapse
|
16
|
Abstract
Since the introduction of the cancer stem cell (CSC) hypothesis, accumulating evidence shows that most cancers present stem-like niches. However, therapies aimed at targeting this niche have not been as successful as expected. New evidence regarding CSCs hierarchy, similarities with normal tissue stem cells and cell plasticity might be key in understanding their role in cancer biology and how to efficiently eliminate them. In this Chapter, we discuss what is known in breast and prostate CSCs from their initial discoveries to the current therapeutic efforts in the field. Future challenges towards better CSC identification and isolation strategies will be key to shed light into how CSCs could accurately be targeted in combination to traditional therapies to ultimately prolong patient survival.
Collapse
Affiliation(s)
- Rocío G Sampayo
- Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, CA, United States
| | - Mina J Bissell
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
17
|
Sarveswaran S, Varma NRS, Morisetty S, Ghosh J. Inhibition of 5-lipoxygenase downregulates stemness and kills prostate cancer stem cells by triggering apoptosis via activation of c-Jun N-terminal kinase. Oncotarget 2019; 10:424-436. [PMID: 30728896 PMCID: PMC6355185 DOI: 10.18632/oncotarget.13422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/07/2016] [Indexed: 11/25/2022] Open
Abstract
The cancer stem cell (CSC) concept suggests that neoplastic clones are maintained exclusively by a rare group of cells possessed with stem cell properties. CSCs are characterized by features that include self-renewal, pluripotency and tumorigenicity, and are thought to be solely responsible for tumor recurrence and metastasis. A hierarchically organized CSC model is becoming increasingly evident for various types of cancer, including prostate cancer. The CD44 (+), CD133 (+) cell subpopulations were isolated from human prostate tumors which exhibit stem-like properties showing therapeutic-resistance, capacity of self-renewal, and exact recapitulation of the original tumor in vivo. Thus, an important challenge is to find measures to eliminate these cancer stem cells, which will stop tumor growth and prevent disease-recurrence. However, knowledge about molecular features critical for the survival of prostate cancer stem cells (PCSC) is meager. Here we report that inhibition of 5-lipoxygenase (5-Lox) by shRNA or MK591 dramatically kills PCSC by inducing apoptosis, suggesting that 5-Lox plays an essential role in the survival of PCSC. Interestingly, MK591 treatment decreases protein levels and inhibits transcriptional activities of Nanog and c-Myc. Since Nanog and c-Myc play important roles as stemness factors, our findings indicate that the 5-Lox activity plays a causal role in maintaining prostate cancer stemness via regulation of Nanog and c-Myc, and suggest that further exploration of 5-Lox-mediated signaling in PCSC may lead to development of novel, target-based, durable strategies to effectively block development and growth of prostate tumors, and prevent prostate cancer recurrence.
Collapse
Affiliation(s)
- Sivalokanathan Sarveswaran
- Vattikuti Urology Institute and Josephine Ford Cancer Center, Henry Ford Health System, Detroit, MI 48202, USA
| | - Nadimpalli R S Varma
- Vattikuti Urology Institute and Josephine Ford Cancer Center, Henry Ford Health System, Detroit, MI 48202, USA
| | - Shravan Morisetty
- Vattikuti Urology Institute and Josephine Ford Cancer Center, Henry Ford Health System, Detroit, MI 48202, USA
| | - Jagadananda Ghosh
- Vattikuti Urology Institute and Josephine Ford Cancer Center, Henry Ford Health System, Detroit, MI 48202, USA
| |
Collapse
|
18
|
Lee YS, Lee CH, Bae JT, Nam KT, Moon DB, Hwang OK, Choi JS, Kim TH, Jun HO, Jung YS, Hwang DY, Han SB, Yoon DY, Hong JT. Inhibition of skin carcinogenesis by suppression of NF-κB dependent ITGAV and TIMP-1 expression in IL-32γ overexpressed condition. J Exp Clin Cancer Res 2018; 37:293. [PMID: 30486830 PMCID: PMC6263970 DOI: 10.1186/s13046-018-0943-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Interleukin-32 (IL-32) has been associated with various diseases. Previous studies have shown that IL-32 inhibited the development of several tumors. However, the role of IL-32γ, an isotype of IL-32, in skin carcinogenesis remains unknown. METHODS We compared 7,12-Dimethylbenz[a]anthracene/12-O-Tetradecanoylphorbol-13-acetate (DMBA/TPA)-induced skin carcinogenesis in wild type (WT) and IL-32γ-overexpressing mice to evaluate the role of IL-32γ. We also analyzed cancer stemness and NF-κB signaling in skin cancer cell lines with or without IL-32γ expression by western blotting, quantitative real-time PCR and immunohistochemistry analysis. RESULTS Carcinogen-induced tumor incidence in IL-32γ mice was significantly reduced in comparison to that in WT mice. Infiltration of inflammatory cells and the expression levels of pro-inflammatory mediators were decreased in the skin tumor tissues of IL-32γ mice compared with WT mice. Using a genome-wide association study analysis, we found that IL-32 was associated with integrin αV (ITGAV) and tissue inhibitor of metalloproteinase-1 (TIMP-1), which are critical factor for skin carcinogenesis. Reduced expression of ITGAV and TIMP-1 were identified in DMBA/TPA-induced skin tissues of IL-32γ mice compared to that in WT mice. NF-κB activity was also reduced in DMBA/TPA-induced skin tissues of IL-32γ mice. IL-32γ decreased cancer cell sphere formation and expression of stem cell markers, and increased chemotherapy-induced cancer cell death. IL-32γ also downregulated expression of ITGAV and TIMP-1, accompanied with the inhibition of NF-κB activity. In addition, IL-32γ expression with NF-κB inhibitor treatment further reduced skin inflammation, epidermal hyperplasia, and cancer cell sphere formation and downregulated expression levels of ITGAV and TIMP-1. CONCLUSIONS These findings indicated that IL-32γ suppressed skin carcinogenesis through the inhibition of both stemness and the inflammatory tumor microenvironment by the downregulation of TIMP-1 and ITGAV via inactivation of NF-κB signaling.
Collapse
Affiliation(s)
- Yong Sun Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Chung Hee Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
- Hanbul Co, Ltd. R&D center, 634 Eon Ju-Ro, Gangnam-gu, Seoul, Republic of Korea
| | - Jun Tae Bae
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Kyung Tak Nam
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Dae Bong Moon
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Ok Kyung Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Jeong Soon Choi
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Tae Hoon Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Hyoung Ok Jun
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Young Suk Jung
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Dae Yeon Hwang
- Department of Biomaterial Science, Pusan National University, Miryang, Kyungnam 50463 Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Do Young Yoon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Gwangjin-gu, Seoul, 05029 Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| |
Collapse
|
19
|
Astrologo L, Zoni E, Karkampouna S, Gray PC, Klima I, Grosjean J, Goumans MJ, Hawinkels LJAC, van der Pluijm G, Spahn M, Thalmann GN, Ten Dijke P, Kruithof-de Julio M. ALK1Fc Suppresses the Human Prostate Cancer Growth in in Vitro and in Vivo Preclinical Models. Front Cell Dev Biol 2017; 5:104. [PMID: 29259971 PMCID: PMC5723291 DOI: 10.3389/fcell.2017.00104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/22/2017] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer is the second most common cancer in men and lethality is normally associated with the consequences of metastasis rather than the primary tumor. Therefore, targeting the molecular pathways that underlie dissemination of primary tumor cells and the formation of metastases has a great clinical value. Bone morphogenetic proteins (BMPs) play a critical role in tumor progression and this study focuses on the role of BMP9- Activin receptor-Like Kinase 1 and 2 (ALK1 and ALK2) axis in prostate cancer. In order to study the effect of BMP9 in vitro and in vivo on cancer cells and tumor growth, we used a soluble chimeric protein consisting of the ALK1 extracellular domain (ECD) fused to human Fc (ALK1Fc) that prevents binding of BMP9 to its cell surface receptors and thereby blocks its ability to activate downstream signaling. ALK1Fc sequesters BMP9 and the closely related BMP10 while preserving the activation of ALK1 and ALK2 through other ligands. We show that ALK1Fc acts in vitro to decrease BMP9-mediated signaling and proliferation of prostate cancer cells with tumor initiating and metastatic potential. In line with these observations, we demonstrate that ALK1Fc also reduces tumor cell proliferation and tumor growth in vivo in an orthotopic transplantation model, as well as in the human patient derived xenograft BM18. Furthermore, we also provide evidence for crosstalk between BMP9 and NOTCH and find that ALK1Fc inhibits NOTCH signaling in human prostate cancer cells and blocks the induction of the NOTCH target Aldehyde dehydrogenase member ALDH1A1, which is a clinically relevant marker associated with poor survival and advanced-stage prostate cancer. Our study provides the first demonstration that ALK1Fc inhibits prostate cancer progression, identifying BMP9 as a putative therapeutic target and ALK1Fc as a potential therapy. Altogether, these findings support the validity of ongoing clinical development of drugs blocking ALK1 and ALK2 receptor activity.
Collapse
Affiliation(s)
- Letizia Astrologo
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Eugenio Zoni
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland.,Department of Urology, Leiden University Medical Centre, Leiden, Netherlands
| | - Sofia Karkampouna
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland.,Department of Molecular Cell Biology, Cancer Genomics Center, Leiden University Medical Centre, Leiden, Netherlands
| | - Peter C Gray
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Irena Klima
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Joël Grosjean
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Marie J Goumans
- Department of Molecular Cell Biology, Cancer Genomics Center, Leiden University Medical Centre, Leiden, Netherlands
| | - Lukas J A C Hawinkels
- Department of Molecular Cell Biology, Cancer Genomics Center, Leiden University Medical Centre, Leiden, Netherlands.,Department of Gastroenterology-Hepatology, Leiden University Medical Centre, Leiden, Netherlands
| | | | - Martin Spahn
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - George N Thalmann
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Peter Ten Dijke
- Department of Molecular Cell Biology, Cancer Genomics Center, Leiden University Medical Centre, Leiden, Netherlands
| | - Marianna Kruithof-de Julio
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland.,Department of Urology, Leiden University Medical Centre, Leiden, Netherlands.,Department of Molecular Cell Biology, Cancer Genomics Center, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
20
|
Baust JG, Bischof JC, Jiang-Hughes S, Polascik TJ, Rukstalis DB, Gage AA, Baust JM. Re-purposing cryoablation: a combinatorial 'therapy' for the destruction of tissue. Prostate Cancer Prostatic Dis 2015; 18:87-95. [PMID: 25622539 DOI: 10.1038/pcan.2014.54] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/18/2014] [Accepted: 12/10/2014] [Indexed: 11/09/2022]
Abstract
It is now recognized that the tumor microenvironment creates a protective neo-tissue that isolates the tumor from the various defense strategies of the body. Evidence demonstrates that, with successive therapeutic attempts, cancer cells acquire resistance to individual treatment modalities. For example, exposure to cytotoxic drugs results in the survival of approximately 20-30% of the cancer cells as only dividing cells succumb to each toxic exposure. With follow-up treatments, each additional dose results in tumor-associated fibroblasts secreting surface-protective proteins, which enhance cancer cell resistance. Similar outcomes are reported following radiotherapy. These defensive strategies are indicative of evolved capabilities of cancer to assure successful tumor growth through well-established anti-tumor-protective adaptations. As such, successful cancer management requires the activation of multiple cellular 'kill switches' to prevent initiation of diverse protective adaptations. Thermal therapies are unique treatment modalities typically applied as monotherapies (without repetition) thereby denying cancer cells the opportunity to express defensive mutations. Further, the destructive mechanisms of action involved with cryoablation (CA) include both physical and molecular insults resulting in the disruption of multiple defensive strategies that are not cell cycle dependent and adds a damaging structural (physical) element. This review discusses the application and clinical outcomes of CA with an emphasis on the mechanisms of cell death induced by structural, metabolic, vascular and immune processes. The induction of diverse cell death cascades, resulting in the activation of apoptosis and necrosis, allows CA to be characterized as a combinatorial treatment modality. Our understanding of these mechanisms now supports adjunctive therapies that can augment cell death pathways.
Collapse
Affiliation(s)
- J G Baust
- 1] Institute of Biomedical Technology, State University of New York at Binghamton, Binghamton, NY, USA [2] Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
| | - J C Bischof
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - S Jiang-Hughes
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - T J Polascik
- Division of Urology, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - D B Rukstalis
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - A A Gage
- Department of Surgery, State University of New York at Buffalo, Medical School, Buffalo, NY, USA
| | | |
Collapse
|