1
|
Abdelgalil AI, Yassin AM, Khattab MS, Abdelnaby EA, Marouf SA, Farghali HA, Emam IA. Platelet-rich plasma attenuates the UPEC-induced cystitis via inhibiting MMP-2,9 activities and downregulation of NGF and VEGF in Canis Lupus Familiaris model. Sci Rep 2024; 14:13612. [PMID: 38871929 DOI: 10.1038/s41598-024-63760-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024] Open
Abstract
One of the most prevalent disorders of the urinary system is urinary tract infection, which is mostly brought on by uropathogenic Escherichia coli (UPEC). The objective of this study was to evaluate the regenerative therapeutic and antibacterial efficacy of PRP for induced bacterial cystitis in dogs in comparison to conventional antibiotics. 25 healthy male mongrel dogs were divided into 5 groups (n = 5). Control negative group that received neither induced infection nor treatments. 20 dogs were randomized into 4 groups after two weeks of induction of UPEC cystitis into; Group 1 (control positive; G1) received weekly intravesicular instillation of sodium chloride 0.9%. Group 2 (syst/PRP; G2), treated with both systemic intramuscular antibiotic and weekly intravesicular instillation of PRP; Group 3 (PRP; G3), treated with weekly intravesicular instillation of PRP, and Group 4 (syst; G4) treated with an intramuscular systemic antibiotic. Animals were subjected to weekly clinical, ultrasonographic evaluation, urinary microbiological analysis, and redox status biomarkers estimation. Urinary matrix metalloproteinases (MMP-2, MMP-9) and urinary gene expression for platelet-derived growth factor -B (PDGF-B), nerve growth factor (NGF), and vascular endothelial growth factor (VEGF) were measured. At the end of the study, dogs were euthanized, and the bladder tissues were examined macroscopically, histologically, and immunohistochemically for NF-κB P65 and Cox-2. The PRP-treated group showed significant improvement for all the clinical, Doppler parameters, and the urinary redox status (p < 0.05). The urinary MMPs activity was significantly decreased in the PRP-treated group and the expression level of urinary NGF and VEGF were downregulated while PDGFB was significantly upregulated (p < 0.05). Meanwhile, the urinary viable cell count was significantly reduced in all treatments (P < 0.05). Gross examination of bladder tissue showed marked improvement for the PRP-treated group, expressed in the histopathological findings. Immunohistochemical analysis revealed a marked increase in Cox-2 and NF-κB P65 in the PRP-treated group (P < 0.05). autologous CaCl2-activated PRP was able to overcome the bacterial infection, generating an inflammatory environment to overcome the old one and initiate tissue healing. Hence, PRP is a promising alternative therapeutic for UPEC cystitis instead of conventional antibiotics.
Collapse
Affiliation(s)
- Ahmed I Abdelgalil
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Aya M Yassin
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Marwa S Khattab
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Elshymaa A Abdelnaby
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sherif A Marouf
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Haithem A Farghali
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ibrahim A Emam
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
2
|
Xie AX, Iguchi N, Clarkson TC, Malykhina AP. Pharmacogenetic inhibition of lumbosacral sensory neurons alleviates visceral hypersensitivity in a mouse model of chronic pelvic pain. PLoS One 2022; 17:e0262769. [PMID: 35077502 PMCID: PMC8789164 DOI: 10.1371/journal.pone.0262769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
The study investigated the cellular and molecular mechanisms in the peripheral nervous system (PNS) underlying the symptoms of urologic chronic pelvic pain syndrome (UCPPS) in mice. This work also aimed to test the feasibility of reversing peripheral sensitization in vivo in alleviating UCPPS symptoms. Intravesical instillation of vascular endothelial growth factor A (VEGFA) was used to induce UCPPS-like symptoms in mice. Spontaneous voiding spot assays and manual Von Frey tests were used to evaluate the severity of lower urinary tract symptoms (LUTS) and visceral hypersensitivity in VEGFA-instilled mice. Bladder smooth muscle strip contractility recordings (BSMSC) were used to identify the potential changes in myogenic and neurogenic detrusor muscle contractility at the tissue-level. Quantitative real-time PCR (qPCR) and fluorescent immunohistochemistry were performed to compare the expression levels of VEGF receptors and nociceptors in lumbosacral dorsal root ganglia (DRG) between VEGFA-instilled mice and saline-instilled controls. To manipulate primary afferent activity, Gi-coupled Designer Receptors Exclusively Activated by Designer Drugs (Gi-DREADD) were expressed in lumbosacral DRG neurons of TRPV1-Cre-ZGreen mice via targeted adeno-associated viral vector (AAVs) injections. A small molecule agonist of Gi-DREADD, clozapine-N-oxide (CNO), was injected into the peritoneum (i. p.) in awake animals to silence TRPV1 expressing sensory neurons in vivo during physiological and behavioral recordings of bladder function. Intravesical instillation of VEGFA in the urinary bladders increased visceral mechanical sensitivity and enhanced RTX-sensitive detrusor contractility. Sex differences were identified in the baseline detrusor contractility responses and VEGF-induced visceral hypersensitivity. VEGFA instillations in the urinary bladder led to significant increases in the mRNA and protein expression of transient receptor potential cation channel subfamily A member 1 (TRPA1) in lumbosacral DRG, whereas the expression levels of transient receptor potential cation channel subfamily V member 1 (TRPV1) and VEGF receptors (VEGFR1 and VEGFR2) remained unchanged when compared to saline-instilled animals. Importantly, the VEGFA-induced visceral hypersensitivity was reversed by Gi-DREADD-mediated neuronal silencing in lumbosacral sensory neurons. Activation of bladder VEGF signaling causes sensory neural plasticity and visceral hypersensitivity in mice, confirming its role of an UCPPS biomarker as identified by the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) research studies. Pharmacogenetic inhibition of lumbosacral sensory neurons in vivo completely reversed VEGFA-induced pelvic hypersensitivity in mice, suggesting the strong therapeutic potential for decreasing primary afferent activity in the treatment of pain severity in UCPPS patients.
Collapse
Affiliation(s)
- Alison Xiaoqiao Xie
- Department of Surgery, School of Medicine, Anschutz Medical Campus, University of Colorado, Denver, Colorado, United States of America
| | - Nao Iguchi
- Department of Surgery, School of Medicine, Anschutz Medical Campus, University of Colorado, Denver, Colorado, United States of America
| | - Taylor C. Clarkson
- Department of Surgery, School of Medicine, Anschutz Medical Campus, University of Colorado, Denver, Colorado, United States of America
| | - Anna P. Malykhina
- Department of Surgery, School of Medicine, Anschutz Medical Campus, University of Colorado, Denver, Colorado, United States of America
| |
Collapse
|
3
|
Urinary Biomarkers in Interstitial Cystitis/Bladder Pain Syndrome and Its Impact on Therapeutic Outcome. Diagnostics (Basel) 2021; 12:diagnostics12010075. [PMID: 35054241 PMCID: PMC8774507 DOI: 10.3390/diagnostics12010075] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/25/2022] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is defined as a chronic bladder disorder with suprapubic pain (pelvic pain) and pressure and/or discomfort related to bladder filling accompanied by lower urinary tract symptoms, such as urinary frequency and urgency without urinary tract infection (UTI) lasting for at least 6 weeks. IC/BPS presents significant bladder pain and frequency urgency symptoms with unknown etiology, and it is without a widely accepted standard in diagnosis. Patients’ pathological features through cystoscopy and histologic features of bladder biopsy determine the presence or absence of Hunner lesions. IC/PBS is categorized into Hunner (ulcerative) type IC/BPS (HIC/BPS) or non-Hunner (nonulcerative) type IC/BPS (NHIC/BPS). The pathophysiology of IC/BPS is composed of multiple possible factors, such as chronic inflammation, autoimmune disorders, neurogenic hyperactivity, urothelial defects, abnormal angiogenesis, oxidative stress, and exogenous urine substances, which play a crucial role in the pathophysiology of IC/BPS. Abnormal expressions of several urine and serum specimens, including growth factor, methylhistamine, glycoprotein, chemokine and cytokines, might be useful as biomarkers for IC/BPS diagnosis. Further studies to identify the key molecules in IC/BPS will help to improve the efficacy of treatment and identify biomarkers of the disease. In this review, we discuss the potential medical therapy and assessment of therapeutic outcome with urinary biomarkers for IC/BPS.
Collapse
|
4
|
Gonsior A, Neuhaus J. [Interstitial cystitis: the latest findings on its aetiopathogenesis]. Aktuelle Urol 2021; 52:539-546. [PMID: 34847607 DOI: 10.1055/a-1652-1162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
New findings provide progress in the understanding of the complicated aetiopathogenesis of interstitial cystitis/bladder pain syndrome (IC/BPS), whose causalities have only been deciphered in fragments so far. An increasingly complex network of pathomechanisms is emerging, in which the frequently mentioned mast cells and urothelial changes seem to be only a fragment of the pathological changes. The latest findings regarding a possible genetic and epigenetic predisposition are based on pedigree analyses, detection of single nucleotide polymorphisms and significant changes in differentially expressed genes. Multiple alterations can be detected at the molecular level. Platelet-activating factor, VEGF, corticotropin-releasing hormone and the inflammasome are important players in understanding the disease, but the pathomechanism underlying the "activation" of IC remains unclear. New starting points could be the detection of viruses (Epstein-Barr virus, BK polyomaviruses) or bacterial inflammation by pathogens that cannot be detected in standard cultures.
Collapse
Affiliation(s)
- Andreas Gonsior
- Klinik und Poliklinik für Urologie, Universitätsklinikum Leipzig, Leipzig, Deutschland
| | - Jochen Neuhaus
- Klinik und Poliklinik für Urologie, Universitätsklinikum Leipzig, Leipzig, Deutschland
| |
Collapse
|
5
|
Neuhaus J, Berndt-Paetz M, Gonsior A. Biomarkers in the Light of the Etiopathology of IC/BPS. Diagnostics (Basel) 2021; 11:diagnostics11122231. [PMID: 34943467 PMCID: PMC8700473 DOI: 10.3390/diagnostics11122231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 12/25/2022] Open
Abstract
In this review, we focused on putatively interesting biomarkers of interstitial cystitis/bladder pain syndrome (IC/BPS) in relation to the etiopathology of this disease. Since its etiopathology is still under discussion, the development of novel biomarkers is critical for the correct classification of the patients in order to open personalized treatment options, on the one hand, and to separate true IC/BPS from the numerous confusable diseases with comparable symptom spectra on the other hand. There is growing evidence supporting the notion that the classical or Hunner-type IC (HIC) and the non-Hunner-type IC (NHIC) are different diseases with different etiopathologies and different pathophysiology at the full-blown state. While genetic alterations indicate close relationship to allergic and autoimmune diseases, at present, the genetic origin of IC/BPS could be identified. Disturbed angiogenesis and impairment of the microvessels could be linked to altered humoral signaling cascades leading to enhanced VEGF levels which in turn could enhance leucocyte and mast cell invasion. Recurrent or chronic urinary tract infection has been speculated to promote IC/BPS. New findings show that occult virus infections occurred in most IC/BPS patients and that the urinary microbiome was altered, supporting the hypothesis of infections as major players in IC/BPS. Environmental and nutritional factors may also influence IC/BPS, at least at a late state (e.g., cigarette smoking can enhance IC/BPS symptoms). The damage of the urothelial barrier could possibly be the result of many different causality chains and mark the final state of IC/BPS, the causes of this development having been introduced years ago. We conclude that the etiopathology of IC/BPS is complex, involving regulatory mechanisms at various levels. However, using novel molecular biologic techniques promise more sophisticated analysis of this pathophysiological network, resulting in a constantly improvement of our understanding of IC/BPS and related diseases.
Collapse
Affiliation(s)
- Jochen Neuhaus
- Department of Urology, Research Laboratory, University of Leipzig, 04103 Leipzig, Germany;
- Correspondence: ; Tel.: +49-341-9717-688
| | - Mandy Berndt-Paetz
- Department of Urology, Research Laboratory, University of Leipzig, 04103 Leipzig, Germany;
| | - Andreas Gonsior
- Department of Urology, University Hospital Leipzig AöR, 04103 Leipzig, Germany;
| |
Collapse
|
6
|
Difference in electron microscopic findings among interstitial cystitis/bladder pain syndrome with distinct clinical and cystoscopic characteristics. Sci Rep 2021; 11:17258. [PMID: 34446784 PMCID: PMC8390653 DOI: 10.1038/s41598-021-96810-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/10/2021] [Indexed: 12/30/2022] Open
Abstract
Urothelial dysfunction may be a key pathomechanism underlying interstitial cystitis/bladder pain syndrome (IC/BPS). We therefore examined if clinical severity is associated with the extent of urothelial damage as revealed by electron microscopic (EM) analysis of biopsy tissue. One hundred IC/BPS patients were enrolled and 24 patients with stress urinary incontinence served as controls. Clinical symptoms were evaluated by visual analog scale pain score and O’Leary-Sant Symptom score. Bladder biopsies were obtained following cystoscopic hydrodistention. The presence of Hunner’s lesions and glomerulation grade after hydrodistention were recorded and patients classified as Hunner-type IC (HIC) or non-Hunner-type IC (NHIC). HIC patients exhibited more severe defects in urothelium cell layers, including greater loss of umbrella cells, umbrella cell surface uroplakin plaque, and tight junctions between adjacent umbrella cells, compared to control and NHIC groups (all p < 0.05). Both NHIC and HIC groups demonstrated more severe lamina propria inflammatory cell infiltration than controls (p = 0.011, p < 0.001, respectively). O’Leary-Sant Symptom scores were significantly higher among patients with more severe urothelial defects (p = 0.030). Thus, urothelium cell layer defects on EM are associated with greater clinical symptom severity.
Collapse
|
7
|
Jiang YH, Kuo YC, Jhang JF, Lee CL, Hsu YH, Ho HC, Kuo HC. Repeated intravesical injections of platelet-rich plasma improve symptoms and alter urinary functional proteins in patients with refractory interstitial cystitis. Sci Rep 2020; 10:15218. [PMID: 32939046 PMCID: PMC7495440 DOI: 10.1038/s41598-020-72292-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 08/27/2020] [Indexed: 01/30/2023] Open
Abstract
Repeated intravesical injections of autologous platelet-rich plasma (PRP) have been shown to improve symptoms in patients with interstitial cystitis/bladder pain syndrome (IC/BPS); however, there is a paucity of objective evidence of the effectiveness of this therapy. In this study, we investigated the changes in urinary markers after PRP treatment. Forty patients with IC/BPS who were refractory to conventional therapy received four injections of PRP at monthly intervals; 10 mL PRP solution with 2.5 times the peripheral blood platelet concentration was used. Urine levels of thirteen functional proteins, growth factors, and cytokines were assessed at baseline and at the 4th PRP injection. The clinical parameters included visual analog scale (VAS) pain score, daily urinary frequency, nocturia episodes, functional bladder capacity, and global response assessment (GRA). The GRA and symptom score significantly decreased post-treatment. In patients with GRA ≥ 2, the success rates at 1 month and at 3 months after the 4th PRP injection were 70.6% and 76.7%, respectively. The VAS pain score, frequency, and nocturia showed a significant decrease (all p < 0.05). Urinary levels of nerve growth factor, matrix metalloproteinase-13, and vascular endothelial growth factor significantly decreased post-treatment (p = 0.043, p = 0.02, and p = 0.000, respectively); platelet-derived growth factor-AB showed a significant increase (p = 0.004) at the 4th PRP treatment compared with baseline. In this study, repeated intravesical PRP injections provided significant symptom improvement in IC/BPS patients with concomitant changes in the related biomarker levels.Trial registration: ClinicalTrial.gov: NCT03104361; IRB: TCGH 105-48-A.
Collapse
Affiliation(s)
- Yuan-Hong Jiang
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and Tzu Chi University, Hualien, Taiwan
| | - Yuh-Chen Kuo
- Department of Urology, Yangming Branch of Taipei City Hospital, Taipei, Taiwan
| | - Jia-Fong Jhang
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and Tzu Chi University, Hualien, Taiwan
| | - Cheng-Ling Lee
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and Tzu Chi University, Hualien, Taiwan
| | - Yung-Hsiang Hsu
- Department of Pathology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and Tzu Chi University, Hualien, Taiwan
| | - Han-Chen Ho
- Department of Anatomy, Tzu Chi University, Hualien, Taiwan
| | - Hann-Chorng Kuo
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
8
|
Update on the Pathophysiology of Interstitial Cystitis /Bladder Pain Syndrome. CURRENT BLADDER DYSFUNCTION REPORTS 2020. [DOI: 10.1007/s11884-019-00569-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Keagy CD. The potential role of folate metabolism in interstitial cystitis. Int Urogynecol J 2018; 30:363-370. [PMID: 30293165 DOI: 10.1007/s00192-018-3771-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/14/2018] [Indexed: 12/30/2022]
Abstract
The topic of interstitial cystitis (IC), also known as painful bladder syndrome (PBS), and folate/one carbon metabolism has previously been unaddressed in research. This narrative review highlights a potential connection for those with mast cell-related IC and histamine-mediated pain that is explored through four conceptual sections. The first section focuses on the nature of mast cell involvement and histamine-mediated pain in some interstitial cystitis patients. The second section reviews the literature on folate status in wider allergic conditions. The third section addresses the role of folate and methylation in general in histamine excretion. Finally, folate metabolism and vascular function are addressed because of the vascular abnormalities present in some IC bladders.
Collapse
Affiliation(s)
- Carolyn D Keagy
- Kaiser Permanente, 1795 Second Street, Berkeley, CA, 94710, USA.
| |
Collapse
|
10
|
Birder LA, Kullmann FA. Role of neurogenic inflammation in local communication in the visceral mucosa. Semin Immunopathol 2018; 40:261-279. [PMID: 29582112 PMCID: PMC5960632 DOI: 10.1007/s00281-018-0674-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/06/2018] [Indexed: 12/27/2022]
Abstract
Intense research has focused on the involvement of the nervous system in regard to cellular mechanisms underlying neurogenic inflammation in the pelvic viscera. Evidence supports the neural release of inflammatory factors, trophic factors, and neuropeptides in the initiation of inflammation. However, more recently, non-neuronal cells including epithelia, endothelial, mast cells, and paraneurons are likely important participants in nervous system functions. For example, the urinary bladder urothelial cells are emerging as key elements in the detection and transmission of both physiological and nociceptive stimuli in the lower urinary tract. There is mounting evidence that these cells are involved in sensory mechanisms and can release mediators. Further, localization of afferent nerves next to the urothelium suggests these cells may be targets for transmitters released from bladder nerves and that chemicals released by urothelial cells may alter afferent excitability. Modifications of this type of communication in a number of pathological conditions can result in altered release of epithelial-derived mediators, which can activate local sensory nerves. Taken together, these and other findings highlighted in this review suggest that neurogenic inflammation involves complex anatomical and physiological interactions among a number of cell types in the bladder wall. The specific factors and pathways that mediate inflammatory responses in both acute and chronic conditions are not well understood and need to be further examined. Elucidation of mechanisms impacting on these pathways may provide insights into the pathology of various types of disorders involving the pelvic viscera.
Collapse
Affiliation(s)
- Lori A Birder
- Department of Medicine, University of Pittsburgh School of Medicine, A 1217 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA, 15261, USA.
- Department of Chemical Biology and Pharmacology, University of Pittsburgh School of Medicine, A 1217 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA, 15261, USA.
| | - F Aura Kullmann
- Department of Medicine, University of Pittsburgh School of Medicine, A 1217 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| |
Collapse
|
11
|
Girard BM, Tooke K, Vizzard MA. PACAP/Receptor System in Urinary Bladder Dysfunction and Pelvic Pain Following Urinary Bladder Inflammation or Stress. Front Syst Neurosci 2017; 11:90. [PMID: 29255407 PMCID: PMC5722809 DOI: 10.3389/fnsys.2017.00090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022] Open
Abstract
Complex organization of CNS and PNS pathways is necessary for the coordinated and reciprocal functions of the urinary bladder, urethra and urethral sphincters. Injury, inflammation, psychogenic stress or diseases that affect these nerve pathways and target organs can produce lower urinary tract (LUT) dysfunction. Numerous neuropeptide/receptor systems are expressed in the neural pathways of the LUT and non-neural components of the LUT (e.g., urothelium) also express peptides. One such neuropeptide receptor system, pituitary adenylate cyclase-activating polypeptide (PACAP; Adcyap1) and its cognate receptor, PAC1 (Adcyap1r1), have tissue-specific distributions in the LUT. Mice with a genetic deletion of PACAP exhibit bladder dysfunction and altered somatic sensation. PACAP and associated receptors are expressed in the LUT and exhibit neuroplastic changes with neural injury, inflammation, and diseases of the LUT as well as psychogenic stress. Blockade of the PACAP/PAC1 receptor system reduces voiding frequency in preclinical animal models and transgenic mouse models that mirror some clinical symptoms of bladder dysfunction. A change in the balance of the expression and resulting function of the PACAP/receptor system in CNS and PNS bladder reflex pathways may underlie LUT dysfunction including symptoms of urinary urgency, increased voiding frequency, and visceral pain. The PACAP/receptor system in micturition pathways may represent a potential target for therapeutic intervention to reduce LUT dysfunction.
Collapse
Affiliation(s)
| | | | - Margaret A. Vizzard
- Department of Neurological Sciences, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| |
Collapse
|
12
|
Girard BM, Malley S, May V, Vizzard MA. Effects of CYP-Induced Cystitis on Growth Factors and Associated Receptor Expression in Micturition Pathways in Mice with Chronic Overexpression of NGF in Urothelium. J Mol Neurosci 2016; 59:531-43. [PMID: 27259880 DOI: 10.1007/s12031-016-0774-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/26/2016] [Indexed: 12/31/2022]
Abstract
We have determined if cyclophosphamide (CYP)-induced cystitis produces additional changes in growth factor/receptors expression in the urinary bladder (urothelium, detrusor) and lumbosacral (L6-S1) dorsal root ganglia (DRG) in a transgenic mouse model with chronic urothelial overexpression of NGF (NGF-OE). Functionally, NGF-OE mice treated with CYP exhibit significant increases in voiding frequency above that observed in control NGF-OE mice (no CYP). Quantitative PCR was used to determine NGF, BDNF, VEGF, and receptors (TrkA, TrkB, p75(NTR)) transcripts expression in tissues from NGF-OE and wild-type (WT) mice with CYP-induced cystitis of varying duration (4 h, 48 h, 8 days). In urothelium of control NGF-OE mice, NGF mRNA was significantly (p ≤ 0.001) increased. Urothelial expression of NGF mRNA in NGF-OE mice treated with CYP (4 h, 48 h, 8 days) was not further increased but maintained with all durations of CYP treatment evaluated. In contrast, CYP-induced cystitis (4 h, 48 h, 8 days) in NGF-OE mice demonstrated significant (p ≤ 0.05) regulation in BDNF, VEGF, TrkA, TrkB, and P75(NTR) mRNA in urothelium and detrusor smooth muscle. Similarly, CYP-induced cystitis (4 h, 48 h, 8 days) in NGF-OE mice resulted in significant (p ≤ 0.05), differential changes in transcript expression for NGF, BDNF, and receptors (TrkA, TrkB, p75(NTR)) in S1 DRG that was dependent on the duration-of CYP-induced cystitis. In general, NGF, BDNF, TrkA, and TrkB protein content in the urinary bladder increased in WT and NGF-OE mice with CYP-induced cystitis (4 h). Changes in NGF, TrkA and TrkB expression in the urinary bladder were significantly (p ≤ 0.05) greater in NGF-OE mice with CYP-induced cystitis (4 h) compared to WT mice with cystitis (4 h). However, the magnitude of change between WT and NGF-OE mice was only significantly (p ≤ 0.05) different for TrkB expression in urinary bladder of NGF-OE mice treated with CYP. These studies are consistent with target-derived NGF and other inflammatory mediators affecting neurochemical plasticity with potential contributions to reflex function of micturition pathways.
Collapse
Affiliation(s)
- Beatrice M Girard
- Department of Neurological Sciences, University of Vermont College of Medicine, D405A Given Research Building, Burlington, VT, 05405, USA
| | - Susan Malley
- Department of Neurological Sciences, University of Vermont College of Medicine, D405A Given Research Building, Burlington, VT, 05405, USA
| | - Victor May
- Department of Neurological Sciences, University of Vermont College of Medicine, D405A Given Research Building, Burlington, VT, 05405, USA
| | - Margaret A Vizzard
- Department of Neurological Sciences, University of Vermont College of Medicine, D405A Given Research Building, Burlington, VT, 05405, USA.
| |
Collapse
|