1
|
Keshavarz S, Alavi CE, Aghayan H, Jafari-Shakib R, Vojoudi E. Advancements in Degenerative Disc Disease Treatment: A Regenerative Medicine Approach. Stem Cell Rev Rep 2025:10.1007/s12015-025-10882-z. [PMID: 40232618 DOI: 10.1007/s12015-025-10882-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2025] [Indexed: 04/16/2025]
Abstract
Regenerative medicine represents a transformative approach to treating nucleus pulposus degeneration and offers hope for patients suffering from chronic low back pain due to disc degeneration. By focusing on restoring the natural structure and function of the nucleus pulposus rather than merely alleviating symptoms, these innovative therapies hold the potential to significantly improve patient outcomes. As research continues to advance in this field, we may soon witness a paradigm shift in how we approach spinal health and degenerative disc disease. The main purpose of this review is to provide an overview of the various regenerative approaches that target the restoration of the nucleus pulposus, a primary site for initiation of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Samaneh Keshavarz
- School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Cyrus Emir Alavi
- Department of Anesthesiology, Neuroscience Research Center, Avicenna University Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Hamidreza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular- Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Jafari-Shakib
- Department of Immunology, School of Medicine, Guilan University of Medical Sciences, P.O.Box 41635 - 3363, Rasht, Iran.
| | - Elham Vojoudi
- Regenerative Medicine, Organ Procurement and Transplantation Multidisciplinary Center, School of Medicine, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
2
|
Chen X, Li H, Huang B, Ruan J, Li X, Li Q. High impact works on stem cell transplantation in intervertebral disc degeneration. BMC Musculoskelet Disord 2024; 25:1029. [PMID: 39702055 DOI: 10.1186/s12891-024-08131-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Low back pain is a major disorder that causes disability and is strongly associated with intervertebral disc degeneration (IDD). Because of the limitations of contemporary interventions, stem cell transplantation (SCT) has been increasingly used to regenerate degenerative discs. Nevertheless, analyses of high-impact papers in this field are rare. This study aimed to determine and analyze the 100 highest-cited documents on SCT in IDD. METHODS The 100 highest-cited documents were retrieved from the Web of Science (WoS) database. Descriptive statistics were calculated and correlation analysis was conducted to determine the relationship between WoS citations, the Altmetric Attention Score (AAS), and Dimensions citations. RESULTS The citation counts of the top 100 most cited papers ranged from 13 to 372. These studies were conducted in 17 countries and were published in 48 journals between 2003 and 2021. The top three contributing countries were the China (31), United States (22), and Japan (14). Bone marrow-derived stem cells were the most common type of stem cells (70.00%), followed by adipose-derived stem cells (13.75%), and nucleus pulposus-derived stem cells (7.50). Rabbit was the most studied species (41.25%), followed by rat (21.25%), human (13.75%), sheep (8.75%), dog (8.75%), and pig (6.25%). Tokai University School of Medicine (11) had the largest number of documents, followed by The University of Hong Kong (8), and Southeast University (4). Sakai D (10) was the most fruitful author, followed by Cheung KMC (6), Melrose J (3), Pettine K (3), Lotz JC (3), and Murphy MB (3). We observed a very high correlation between the WoS and Dimensions citations (p < 0.001, r = 0.994). CONCLUSIONS This study highlights the highest impact works on SCT in IDD, thereby providing a deeper understanding of the historical works related to SCT in IDD, as well as benefits for future studies in this field.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, Guangzhou, China
| | - Hao Li
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, Guangzhou, China
| | - Baoci Huang
- Department of Ultrasound, Guangdong Second Provincial General Hospital Guangzhou City, Guangzhou, China
| | - Jiajian Ruan
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xi Li
- Department of Dermatology, Panyu Hospital of Chinese Medicine, Guangzhou, China.
| | - Qian Li
- Guangzhou University of Chinese Medicine, Guangzhou, China.
- Department of Dermatology, Panyu Hospital of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
3
|
Peng S, Liu X, Chang L, Liu B, Zhang M, Mao Y, Shen X. Exosomes Derived from Rejuvenated Stem Cells Inactivate NLRP3 Inflammasome and Pyroptosis of Nucleus Pulposus Cells via the Transfer of Antioxidants. Tissue Eng Regen Med 2024; 21:1061-1077. [PMID: 39060654 PMCID: PMC11416441 DOI: 10.1007/s13770-024-00663-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/15/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Accumulating evidence supports the potential of exosomes as a promising therapeutic approach for intervertebral disc degeneration (IDD). Nevertheless, enhancing the efficiency of exosome treatment remains an urgent concern. This study investigated the impact of quercetin on the characteristics of mesenchymal stem cells (MSCs) and their released exosomes. METHODS Exosomes were obtained from quercetin pre-treated MSCs and quantified for the production based on nanoparticle tracking and western blot analysis. The molecules involved in the secretion and cargo sorting of exosomes were investigated using western blot and immunofluorescence analysis. Based on the in vitro biological analysis and in vivo histological analysis, the effects of exosomes derived from conventional or quercetin-treated MSCs on nucleus pulposus (NP) cells were compared. RESULTS A significant enhancement in the production and transportation efficiency of exosomes was observed in quercetin-treated MSCs. Moreover, the exosomes derived from quercetin-treated MSCs exhibited a greater abundance of antioxidant proteins, specifically superoxide dismutase 1 (SOD1), which inhibit the activation of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome in NP cells. Through in vitro and in vivo experiments, it was elucidated that exosomes derived from quercetin-treated MSCs possessed enhanced anti-inflammatory and antioxidant properties. CONCLUSION Collectively, our research underscores an optimized therapeutic strategy for IDD utilizing MSC-derived exosomes, thereby augmenting the efficacy of exosomes in intervertebral disc regeneration.
Collapse
Affiliation(s)
- Shuai Peng
- Department of Spine Surgery, Hunan Provincial People's Hospital, 61 Jiefang West Road, Furong District, Changsha, 410005, Hunan, China
| | - Xiangyang Liu
- Department of Spine Surgery, Hunan Provincial People's Hospital, 61 Jiefang West Road, Furong District, Changsha, 410005, Hunan, China
| | - Lei Chang
- Department of Spine Surgery, Hunan Provincial People's Hospital, 61 Jiefang West Road, Furong District, Changsha, 410005, Hunan, China
| | - Bin Liu
- Department of Spine Surgery, Hunan Provincial People's Hospital, 61 Jiefang West Road, Furong District, Changsha, 410005, Hunan, China
| | - Mingyan Zhang
- Department of Spine Surgery, Hunan Provincial People's Hospital, 61 Jiefang West Road, Furong District, Changsha, 410005, Hunan, China
| | - Yan Mao
- Department of Ophthalmology, Hunan Provincial People's Hospital, Changsha, 410005, Hunan, China
| | - Xiongjie Shen
- Department of Spine Surgery, Hunan Provincial People's Hospital, 61 Jiefang West Road, Furong District, Changsha, 410005, Hunan, China.
| |
Collapse
|
4
|
Ye S, Chen R, Shi J, Wu Y. The most influential articles on stem cells in intervertebral disc degeneration. BMC Musculoskelet Disord 2024; 25:116. [PMID: 38331829 PMCID: PMC10851499 DOI: 10.1186/s12891-024-07253-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/02/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Stem cell-related studies have been increasingly conducted to facilitate the regeneration of degenerative discs. However, analyses of high-impact articles focused on this topic are rare. This study aimed to determine and summarize the most-cited studies examining stem cells in the context of intervertebral disc degeneration (IDD). METHODS We searched the Web of Science (WoS) database for stem cell-related articles in IDD, and the 50 highest-cited papers were summarized. A correlation analysis was conducted to determine the relationship among WoS citations, Altmetric Attention Score (AAS), and Dimensions. RESULTS The number of citations of the top 50 manuscripts ranged from 92 to 370. The top three countries were the United States (14), China (10), and Japan (9). Spine (12) was the most prevalent journal, and this was followed by Biomaterials (6). Bone marrow-derived stem cells were the most common subject (38), and they were followed by nucleus pulposus-derived stem cells (4) and annulus fibrosus-derived stem cells (4). Humans were the most studied species (31), and the next most studied were rabbits (9) and rats (7). There was a very high correlation between WoS and Dimension citations (p < 0.001, r = 0.937). CONCLUSIONS For the first time, the highest impact articles examining stem cells in the context of IDD were assessed together. The current study provides a deepened understanding of historical studies focused on stem cells in IDD and is beneficial for future studies in this field.
Collapse
Affiliation(s)
- Shuxi Ye
- Department of Spine Surgery, Ganzhou People's Hospital, No 16, Meiguan Road, Ganzhou, 341099, China
| | - Rongchun Chen
- Department of Spine Surgery, Ganzhou People's Hospital, No 16, Meiguan Road, Ganzhou, 341099, China
| | - Jiangyou Shi
- Department of Spine Surgery, Ganzhou People's Hospital, No 16, Meiguan Road, Ganzhou, 341099, China.
| | - Yaohong Wu
- Department of Spine Surgery, Ganzhou People's Hospital, No 16, Meiguan Road, Ganzhou, 341099, China.
| |
Collapse
|
5
|
Nakielski P, Rybak D, Jezierska-Woźniak K, Rinoldi C, Sinderewicz E, Staszkiewicz-Chodor J, Haghighat Bayan MA, Czelejewska W, Urbanek O, Kosik-Kozioł A, Barczewska M, Skomorowski M, Holak P, Lipiński S, Maksymowicz W, Pierini F. Minimally Invasive Intradiscal Delivery of BM-MSCs via Fibrous Microscaffold Carriers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58103-58118. [PMID: 38019273 DOI: 10.1021/acsami.3c11710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Current treatments of degenerated intervertebral discs often provide only temporary relief or address specific causes, necessitating the exploration of alternative therapies. Cell-based regenerative approaches showed promise in many clinical trials, but limitations such as cell death during injection and a harsh disk environment hinder their effectiveness. Injectable microscaffolds offer a solution by providing a supportive microenvironment for cell delivery and enhancing bioactivity. This study evaluated the safety and feasibility of electrospun nanofibrous microscaffolds modified with chitosan (CH) and chondroitin sulfate (CS) for treating degenerated NP tissue in a large animal model. The microscaffolds facilitated cell attachment and acted as an effective delivery system, preventing cell leakage under a high disc pressure. Combining microscaffolds with bone marrow-derived mesenchymal stromal cells demonstrated no cytotoxic effects and proliferation over the entire microscaffolds. The administration of cells attached to microscaffolds into the NP positively influenced the regeneration process of the intervertebral disc. Injectable poly(l-lactide-co-glycolide) and poly(l-lactide) microscaffolds enriched with CH or CS, having a fibrous structure, showed the potential to promote intervertebral disc regeneration. These features collectively address critical challenges in the fields of tissue engineering and regenerative medicine, particularly in the context of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Paweł Nakielski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, Warsaw 02-106, Poland
| | - Daniel Rybak
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, Warsaw 02-106, Poland
| | - Katarzyna Jezierska-Woźniak
- Laboratory for Regenerative Medicine, Department of Neurosurgery, School of Medicine, University of Warmia and Mazury, Warszawska 30, Olsztyn 10-082, Poland
| | - Chiara Rinoldi
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, Warsaw 02-106, Poland
| | - Emilia Sinderewicz
- Laboratory for Regenerative Medicine, Department of Neurosurgery, School of Medicine, University of Warmia and Mazury, Warszawska 30, Olsztyn 10-082, Poland
| | - Joanna Staszkiewicz-Chodor
- Laboratory for Regenerative Medicine, Department of Neurosurgery, School of Medicine, University of Warmia and Mazury, Warszawska 30, Olsztyn 10-082, Poland
| | - Mohammad Ali Haghighat Bayan
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, Warsaw 02-106, Poland
| | - Wioleta Czelejewska
- Laboratory for Regenerative Medicine, Department of Neurosurgery, School of Medicine, University of Warmia and Mazury, Warszawska 30, Olsztyn 10-082, Poland
| | - Olga Urbanek
- Laboratory of Polymers and Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, Warsaw 02-106, Poland
| | - Alicja Kosik-Kozioł
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, Warsaw 02-106, Poland
| | - Monika Barczewska
- Laboratory for Regenerative Medicine, Department of Neurosurgery, School of Medicine, University of Warmia and Mazury, Warszawska 30, Olsztyn 10-082, Poland
| | - Mateusz Skomorowski
- Neurosurgery Clinic, University Clinical Hospital in Olsztyn, Warszawska 30, Olsztyn 10-082, Poland
| | - Piotr Holak
- Laboratory for Regenerative Medicine, Department of Neurosurgery, School of Medicine, University of Warmia and Mazury, Warszawska 30, Olsztyn 10-082, Poland
| | - Seweryn Lipiński
- Department of Electrical Engineering, Power Engineering, Electronics and Automation, Faculty of Technical Sciences, University of Warmia and Mazury, Oczapowskiego 11, Olsztyn 10-082, Poland
| | - Wojciech Maksymowicz
- Laboratory for Regenerative Medicine, Department of Neurosurgery, School of Medicine, University of Warmia and Mazury, Warszawska 30, Olsztyn 10-082, Poland
| | - Filippo Pierini
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, Warsaw 02-106, Poland
| |
Collapse
|
6
|
Hong IS. Enhancing Stem Cell-Based Therapeutic Potential by Combining Various Bioengineering Technologies. Front Cell Dev Biol 2022; 10:901661. [PMID: 35865629 PMCID: PMC9294278 DOI: 10.3389/fcell.2022.901661] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/17/2022] [Indexed: 12/05/2022] Open
Abstract
Stem cell-based therapeutics have gained tremendous attention in recent years due to their wide range of applications in various degenerative diseases, injuries, and other health-related conditions. Therapeutically effective bone marrow stem cells, cord blood- or adipose tissue-derived mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), and more recently, induced pluripotent stem cells (iPSCs) have been widely reported in many preclinical and clinical studies with some promising results. However, these stem cell-only transplantation strategies are hindered by the harsh microenvironment, limited cell viability, and poor retention of transplanted cells at the sites of injury. In fact, a number of studies have reported that less than 5% of the transplanted cells are retained at the site of injury on the first day after transplantation, suggesting extremely low (<1%) viability of transplanted cells. In this context, 3D porous or fibrous national polymers (collagen, fibrin, hyaluronic acid, and chitosan)-based scaffold with appropriate mechanical features and biocompatibility can be used to overcome various limitations of stem cell-only transplantation by supporting their adhesion, survival, proliferation, and differentiation as well as providing elegant 3-dimensional (3D) tissue microenvironment. Therefore, stem cell-based tissue engineering using natural or synthetic biomimetics provides novel clinical and therapeutic opportunities for a number of degenerative diseases or tissue injury. Here, we summarized recent studies involving various types of stem cell-based tissue-engineering strategies for different degenerative diseases. We also reviewed recent studies for preclinical and clinical use of stem cell-based scaffolds and various optimization strategies.
Collapse
Affiliation(s)
- In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Seongnam, South Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Seongnam, South Korea
- *Correspondence: In-Sun Hong,
| |
Collapse
|
7
|
Edifying the Focal Factors Influencing Mesenchymal Stem Cells by the Microenvironment of Intervertebral Disc Degeneration in Low Back Pain. Pain Res Manag 2022; 2022:6235400. [PMID: 35386857 PMCID: PMC8977320 DOI: 10.1155/2022/6235400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/26/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023]
Abstract
Intervertebral disc degeneration (IVDD) is one of the main triggers of low back pain, which is most often associated with patient morbidity and high medical costs. IVDD triggers a wide range of pathologies and clinical syndromes like paresthesia, weakness of extremities, and intermittent/chronic back pain. Mesenchymal stem cells (MSCs) have demonstrated to possess immunomodulatory functions as well as the capability of differentiating into chondrocytes under appropriate microenvironment conditions, which makes them potentially epitome for intervertebral disc (IVD) regeneration. The IVD microenvironment is composed by niche of cells, and their chemical and physical milieus have been exhibited to have robust influence on MSC behavior as well as differentiation. Nevertheless, the contribution of MSCs to the IVD milieu conditions in healthy as well as degeneration situations is still a matter of debate. It is still not clear which factors, if any, are essential for effective and efficient MSC survival, proliferation, and differentiation. IVD microenvironment clues such as nucleopulpocytes, potential of hydrogen (pH), osmotic changes, glucose, hypoxia, apoptosis, pyroptosis, and hydrogels are capable of influencing the MSCs aimed for the treatment of IVDD. Therefore, clinical usage of MSCs ought to take into consideration these microenvironment clues during treatment. Alteration in these factors could function as prognostic indicators during the treatment of patients with IVDD using MSCs. Thus, standardized valves for these microenvironment clues are warranted.
Collapse
|
8
|
Yamada K, Iwasaki N, Sudo H. Biomaterials and Cell-Based Regenerative Therapies for Intervertebral Disc Degeneration with a Focus on Biological and Biomechanical Functional Repair: Targeting Treatments for Disc Herniation. Cells 2022; 11:602. [PMID: 35203253 PMCID: PMC8870062 DOI: 10.3390/cells11040602] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is a common cause of low back pain and most spinal disorders. As IVD degeneration is a major obstacle to the healthy life of so many individuals, it is a major issue that needs to be overcome. Currently, there is no clinical treatment for the regeneration of degenerated IVDs. However, recent advances in regenerative medicine and tissue engineering suggest the potential of cell-based and/or biomaterial-based IVD regeneration therapies. These treatments may be indicated for patients with IVDs in the intermediate degenerative stage, a point where the number of viable cells decreases, and the structural integrity of the disc begins to collapse. However, there are many biological, biomechanical, and clinical challenges that must be overcome before the clinical application of these IVD regeneration therapies can be realized. This review summarizes the basic research and clinical trials literature on cell-based and biomaterial-based IVD regenerative therapies and outlines the important role of these strategies in regenerative treatment for IVD degenerative diseases, especially disc herniation.
Collapse
Affiliation(s)
- Katsuhisa Yamada
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (K.Y.); (N.I.)
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (K.Y.); (N.I.)
| | - Hideki Sudo
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| |
Collapse
|
9
|
Ekram S, Khalid S, Salim A, Khan I. Regulating the fate of stem cells for regenerating the intervertebral disc degeneration. World J Stem Cells 2021; 13:1881-1904. [PMID: 35069988 PMCID: PMC8727226 DOI: 10.4252/wjsc.v13.i12.1881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/12/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Lower back pain is a leading cause of disability and is one of the reasons for the substantial socioeconomic burden. The etiology of intervertebral disc (IVD) degeneration is complicated, and its mechanism is still not completely understood. Factors such as aging, systemic inflammation, biochemical mediators, toxic environmental factors, physical injuries, and genetic factors are involved in the progression of its pathophysiology. Currently, no therapy for restoring degenerated IVD is available except pain management, reduced physical activities, and surgical intervention. Therefore, it is imperative to establish regenerative medicine-based approaches to heal and repair the injured disc, repopulate the cell types to retain water content, synthesize extracellular matrix, and strengthen the disc to restore normal spine flexion. Cellular therapy has gained attention for IVD management as an alternative therapeutic option. In this review, we present an overview of the anatomical and molecular structure and the surrounding pathophysiology of the IVD. Modern therapeutic approaches, including proteins and growth factors, cellular and gene therapy, and cell fate regulators are reviewed. Similarly, small molecules that modulate the fate of stem cells for their differentiation into chondrocytes and notochordal cell types are highlighted.
Collapse
Affiliation(s)
- Sobia Ekram
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Shumaila Khalid
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan.
| |
Collapse
|
10
|
Stem Cell Therapy and Exercise for Treatment of Intervertebral Disc Degeneration. Stem Cells Int 2021; 2021:7982333. [PMID: 34691192 PMCID: PMC8528633 DOI: 10.1155/2021/7982333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023] Open
Abstract
As part of the motor system, intervertebral disc (IVD) is a complicated tissue with multiple components. The degeneration of IVD may result in low back pain (LBP), which strongly impairs quality of life. Various causes are related to the degeneration of IVD, including cell senescence, hydration lost, and inflammation. Stem cells founded in different tissues have attracted the interest of the researchers and clinicians to study the implication of these cells in the treatment for tissue injury and degeneration. In this report, we will review the study of stem cells in the treatment for IVD degeneration. On the other hand, the effect of exercise on IVD degeneration and the relationship between IVD degeneration and musculoskeletal disorders like sarcopenia are discussed.
Collapse
|
11
|
Mrkovački J, Srzentić Dražilov S, Spasovski V, Fazlagić A, Pavlović S, Nikčević G. Case Report: Successful Therapy of Spontaneously Occurring Canine Degenerative Lumbosacral Stenosis Using Autologous Adipose Tissue-Derived Mesenchymal Stem Cells. Front Vet Sci 2021; 8:732073. [PMID: 34631857 PMCID: PMC8495131 DOI: 10.3389/fvets.2021.732073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/20/2021] [Indexed: 01/08/2023] Open
Abstract
The management of degenerative lumbosacral stenosis (DLSS) in dogs usually requires aggressive, costly surgical treatments that may themselves present complications, while do not fully resolve the symptoms of the disease. In this study, the dog diagnosed with severe DLSS, with hind limb paresis, was treated using a new and least invasive treatment. Cultured autologous adipose tissue-derived mesenchymal stem cells (AT-MSCs) were injected bilaterally at the level of L7-S1, in the vicinity of the external aperture of the intervertebral foramen of DLSS patient. In the previously described treatments of spontaneous intervertebral disc degeneration in dogs, intradiscal injections of MSCs did not lead to positive effects. Here, we report a marked improvement in clinical outcome measures related to the ability of a dog to walk and trot, which were expressed by a numeric rating scale based on a veterinary assessment questionnaire. The improved status persisted throughout the observed time course of 4.5 years after the AT-MSC transplantation. To the best of our knowledge, this is the first case of successful therapy, with long-term positive effect, of spontaneously occurring canine DLSS using presented treatment that, we believe, represents a contribution to current knowledge in this field and may shape both animal and human DLSS treatment options.
Collapse
Affiliation(s)
| | - Sanja Srzentić Dražilov
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Vesna Spasovski
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Amira Fazlagić
- National Association for the Improvement and Development of Regenerative Medicine, Belgrade, Serbia
| | - Sonja Pavlović
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Gordana Nikčević
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
12
|
Peck SH, Bendigo JR, Tobias JW, Dodge GR, Malhotra NR, Mauck RL, Smith LJ. Hypoxic Preconditioning Enhances Bone Marrow-Derived Mesenchymal Stem Cell Survival in a Low Oxygen and Nutrient-Limited 3D Microenvironment. Cartilage 2021; 12:512-525. [PMID: 30971109 PMCID: PMC8461160 DOI: 10.1177/1947603519841675] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Skeletal tissues such as intervertebral disc and articular cartilage possess limited innate potential to regenerate, in part due to their avascularity and low cell density. Despite recent advances in mesenchymal stem cell (MSC)-based disc and cartilage regeneration, key challenges remain, including the sensitivity of these cells to in vivo microenvironmental stress such as low oxygen and limited nutrition. The objective of this study was to investigate whether preconditioning with hypoxia and/or transforming growth factor-β 3 (TGF-β3) can enhance MSC survival and extracellular matrix production in a low oxygen and nutrient-limited microenvironment. DESIGN MSCs from multiple bovine donors were preconditioned in monolayer in normoxia or hypoxia, with or without TGF-β3, and the global effects on gene expression were examined using microarrays. Subsequently, the effects of preconditioning on MSC survival and extracellular matrix production were examined using low oxygen and nutrient-limited pellet culture experiments. RESULTS Hypoxic preconditioning resulted in upregulation of genes associated with growth, cell-cell signaling, metabolism, and cell stress response pathways, and significantly enhanced MSC survival for all donors in low oxygen and nutrient-limited pellet culture. In contrast, TGF-β3 preconditioning diminished survival. The nature and magnitude of the effects of preconditioning with either hypoxia or TGF-β3 on glycosaminoglycan production were donor dependent. CONCLUSIONS These results strongly support the use of hypoxic preconditioning to improve postimplantation MSC survival in avascular tissues such as disc and cartilage.
Collapse
Affiliation(s)
- Sun H. Peck
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Justin R. Bendigo
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - John W. Tobias
- Penn Genomic Analysis Core, University of Pennsylvania, Philadelphia, PA, USA
| | - George R. Dodge
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Neil R. Malhotra
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert L. Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Lachlan J. Smith
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| |
Collapse
|
13
|
Bello AB, Kim Y, Park S, Muttigi MS, Kim J, Park H, Lee S. Matrilin3/TGFβ3 gelatin microparticles promote chondrogenesis, prevent hypertrophy, and induce paracrine release in MSC spheroid for disc regeneration. NPJ Regen Med 2021; 6:50. [PMID: 34480032 PMCID: PMC8417285 DOI: 10.1038/s41536-021-00160-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022] Open
Abstract
Degenerative disc disease (DDD) is the leading cause of excruciating lower back pain and disability in adults worldwide. Among the current treatments for DDD, cell-based therapies such as the injection of both disc- and non-disc-derived chondrocytes have shown significant improvements in the patients’ condition. However, further advancement of these therapies is required to not only ensure a supply of healthy chondrocytes but also to promote regeneration of the defective cells in the injury site. Here, we report that the incorporation of gelatin microparticles coloaded with transforming growth factor beta 3 and matrilin 3 promoted chondrogenic differentiation of adipose-derived mesenchymal stem cell spheroids while preventing hypertrophy and terminal differentiation of cells. Moreover, these composite spheroids induced the release of chondrogenic cytokines that, in turn, promoted regeneration of degenerative chondrocytes in vitro. Finally, injections of these composite spheroids in a rat model of intervertebral disc disease promoted restoration of the chondrogenic properties of the cells, thereby allowing regeneration of the chondrogenic tissue in vivo.
Collapse
Affiliation(s)
- Alvin Bacero Bello
- School of Integrative Engineering, Chung-Ang University, Seoul, 06911, Korea.,Department of Medical Biotechnology, Dongguk University, Seoul, 04620, Korea
| | - Yunkyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06911, Korea
| | - Sunghyun Park
- Department of Life Science, CHA University, Seongnam, 13488, Korea
| | | | - Jiseong Kim
- Department of Medical Biotechnology, Dongguk University, Seoul, 04620, Korea
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul, 06911, Korea.
| | - Soohong Lee
- Department of Medical Biotechnology, Dongguk University, Seoul, 04620, Korea.
| |
Collapse
|
14
|
Dou Y, Sun X, Ma X, Zhao X, Yang Q. Intervertebral Disk Degeneration: The Microenvironment and Tissue Engineering Strategies. Front Bioeng Biotechnol 2021; 9:592118. [PMID: 34354983 PMCID: PMC8329559 DOI: 10.3389/fbioe.2021.592118] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 05/18/2021] [Indexed: 12/16/2022] Open
Abstract
Intervertebral disk degeneration (IVDD) is a leading cause of disability. The degeneration is inevitable, and the mechanisms are complex. Current therapeutic strategies mainly focus on the relief of symptoms, not the intrinsic regeneration of the intervertebral disk (IVD). Tissue engineering is a promising strategy for IVDD due to its ability to restore a healthy microenvironment and promote IVD regeneration. This review briefly summarizes the IVD anatomy and composition and then sets out elements of the microenvironment and the interactions. We rationalized different scaffolds based on tissue engineering strategies used recently. To fulfill the complete restoration of a healthy IVD microenvironment, we propose that various tissue engineering strategies should be combined and customized to create personalized therapeutic strategies for each individual.
Collapse
Affiliation(s)
- Yiming Dou
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xun Sun
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xinlong Ma
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
15
|
Jerome MA, Lutz C, Lutz GE. Risks of Intradiscal Orthobiologic Injections: A Review of the Literature and Case Series Presentation. Int J Spine Surg 2021; 15:26-39. [PMID: 34376494 DOI: 10.14444/8053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Intervertebral disc disease (IDD) is responsible for a large portion of back pain with historically suboptimal treatments for long-term improvement. IDD pathogenesis is thought to arise at a cellular and biochemical level, making biologically based injections an area of clinical interest. Although human studies have shown promise, emerging data suggest there may be risks inherent to such injections that were previously unrecognized. The aim of this review is to summarize the known risks to date and provide mitigation steps to reduce potential complications in the future. In addition, we present a small case series of serious adverse events (SAEs) from our clinical practice. METHODS A literature review was performed to identify human intradiscal autologous biologic injection studies to date, including mesenchymal signaling cells (MSCs) and platelet-rich plasma (PRP) preparations, which were reviewed for complications. Cases of complication following intradiscal orthobiologic injection were identified from a single outpatient center and reviewed. RESULTS Publications of MSC-based intradiscal injection documented 136 total patients treated with two SAEs reported, one infection and one progressive disc herniation. Publications of PRP intradiscal injection included 194 patients with one SAE reported. We also review three cases of previously unpublished SAEs, including one case of confirmed infection with Cutibacterium acnes (C acnes) and two presumed cases of discitis without pathogen confirmation. Bone marrow concentrate was the injectate in all three cases. CONCLUSIONS Although biologic intradiscal injection shows promise for the treatment of discogenic back pain, there are inherent risks to be considered and mitigated. We currently recommend a leukocyte-rich PRP and a two-needle delivery technique coupled with intradiscal gentamicin to mitigate the risk of postinjection spondylodiscitis. Further research is needed using large registries to not only track clinical outcomes but also complication rates.
Collapse
Affiliation(s)
| | - Christopher Lutz
- Regenerative SportsCare Institute, New York, New York.,Department of Physiatry, Hospital for Special Surgery, New York, New York.,Department of Rehabilitation Medicine, Weill Cornell Medical College, New York, New York
| | - Gregory E Lutz
- Regenerative SportsCare Institute, New York, New York.,Department of Physiatry, Hospital for Special Surgery, New York, New York.,Department of Rehabilitation Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
16
|
Zhao Y, Qin Y, Wu S, Huang D, Hu H, Zhang X, Hao D. Mesenchymal stem cells regulate inflammatory milieu within degenerative nucleus pulposus cells via p38 MAPK pathway. Exp Ther Med 2020; 20:22. [PMID: 32934687 PMCID: PMC7471866 DOI: 10.3892/etm.2020.9150] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 02/05/2020] [Indexed: 12/13/2022] Open
Abstract
It has been established that excessive apoptosis of nucleus pulposus cells (NPCs) are responsible for pathogenesis of human intervertebral disc degeneration (IDD). The present study aimed to shed light on the molecular mechanisms underlying the protective effects of mesenchymal stem cells (MSCs) on NPCs in an inflammatory environment. NPCs were treated with TNF-α to induce inflammation and then co-cultured with Wharton's Jelly-derived MSCs (WJ-MSCs)without direct interaction. The levels of inflammation markers (IL-1β, IL-6 and IL-8) in NPCs were detected by performing enzyme-linked immunosorbent assay (ELISA), and expression of metalloproteases and aggrecan, as well as the activity of p38 MAPK pathway were determined through immunoblotting. SB-203580 was used to inhibit p38 signaling, prior to evaluation of the effects of Wharton's Jelly-derived MSCs (WJ-MSCs) on inflammatory response within the co-cultured NPCs. After TNF-α treatment, the levels of inflammatory cytokines, MMP-3, and MMP-13 in NPCs were increased whereas aggrecan was decreased, which was then dramatically reversed by WJ-MSCs co-culture. Likewise, WJ-MSCs suppressed TNF-α-induced phosphorylation of p38 MAPK signaling components including p38, ASK-1, MKK-3 and MKK-6. Blocking p38 MAPK pathway enhanced the anti-inflammatory impact of WJ-MSCs, and there was no significant difference between NPCs co-cultured with WJ-MSCs or the cells cultured alone. WJ-MSCs co-culture mitigate TNF-α-induced inflammatory response and ECM degeneration in NPCs, the major pathological events are implicated in IDD development, probably by suppressing the p38 MAPK signaling cascade.
Collapse
Affiliation(s)
- Yuanting Zhao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Yue Qin
- Department of Anesthesiology, Honghui Hospital, Xi'an University, Xi'an, Shaanxi 710054, P.R. China
| | - Shufang Wu
- Center for Translational Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Dageng Huang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Huimin Hu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Xinliang Zhang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| |
Collapse
|
17
|
Stergar J, Gradisnik L, Velnar T, Maver U. Intervertebral disc tissue engineering: A brief review. Bosn J Basic Med Sci 2019; 19:130-137. [PMID: 30726701 DOI: 10.17305/bjbms.2019.3778] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 07/29/2018] [Indexed: 12/12/2022] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD) is associated with low back pain and significantly affects the patient's quality of life. Degeneration of the IVD alters disk height and the mechanics of the spine, leading to chronic segmental spinal instability. The pathophysiology of IVD disease is still not well understood. Current therapies for IDD include conservative and invasive approaches, but none of those treatments are able to restore the disc structure and function. Recently, tissue engineering techniques emerged as a possible approach to treat IDD, by replacing a damaged IVD with scaffolds and appropriate cells. Advances in manufacturing techniques, material processing and development, surface functionalization, drug delivery systems and cell incorporation furthered the development of tissue engineering therapies. In this review, biomaterial scaffolds and cell-based therapies for IVD regeneration are briefly discussed.
Collapse
Affiliation(s)
- Janja Stergar
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia Laboratory of Inorganic Chemistry, Faculty of Chemistry and Chemical Technology, University of Maribor, Maribor, Slovenia.
| | | | | | | |
Collapse
|
18
|
Castilla-Casadiego DA, García JR, García AJ, Almodovar J. Heparin/Collagen Coatings Improve Human Mesenchymal Stromal Cell Response to Interferon Gamma. ACS Biomater Sci Eng 2019; 5:2793-2803. [DOI: 10.1021/acsbiomaterials.9b00008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- David A. Castilla-Casadiego
- Department of Chemical Engineering, University of Puerto Rico Mayaguez, Call Box 9000, Mayaguez, Puerto Rico 00681-9000, United States
| | - José R. García
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, 315 Ferst Dr., Georgia Institute of Technology, Atlanta, Georgia 30332-0363, United States
| | - Andrés J. García
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, 315 Ferst Dr., Georgia Institute of Technology, Atlanta, Georgia 30332-0363, United States
| | - Jorge Almodovar
- Department of Chemical Engineering, University of Puerto Rico Mayaguez, Call Box 9000, Mayaguez, Puerto Rico 00681-9000, United States
| |
Collapse
|
19
|
Uniaxial Cyclic Tensile Stretching at 8% Strain Exclusively Promotes Tenogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stromal Cells. Stem Cells Int 2019; 2019:9723025. [PMID: 30918524 PMCID: PMC6409073 DOI: 10.1155/2019/9723025] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/13/2018] [Accepted: 11/08/2018] [Indexed: 12/18/2022] Open
Abstract
The present study was conducted to establish the amount of mechanical strain (uniaxial cyclic stretching) required to provide optimal tenogenic differentiation expression in human mesenchymal stromal cells (hMSCs) in vitro, in view of its potential application for tendon maintenance and regeneration. Methods. In the present study, hMSCs were subjected to 1 Hz uniaxial cyclic stretching for 6, 24, 48, and 72 hours; and were compared to unstretched cells. Changes in cell morphology were observed under light and atomic force microscopy. The tenogenic, osteogenic, adipogenic, and chondrogenic differentiation potential of hMSCs were evaluated using biochemical assays, extracellular matrix expressions, and selected mesenchyme gene expression markers; and were compared to primary tenocytes. Results. Cells subjected to loading displayed cytoskeletal coarsening, longer actin stress fiber, and higher cell stiffness as early as 6 hours. At 8% and 12% strains, an increase in collagen I, collagen III, fibronectin, and N-cadherin production was observed. Tenogenic gene expressions were highly expressed (p < 0.05) at 8% (highest) and 12%, both comparable to tenocytes. In contrast, the osteoblastic, chondrogenic, and adipogenic marker genes appeared to be downregulated. Conclusion. Our study suggests that mechanical loading at 8% strain and 1 Hz provides exclusive tenogenic differentiation; and produced comparable protein and gene expression to primary tenocytes.
Collapse
|
20
|
Liu H, Kang H, Song C, Lei Z, Li L, Guo J, Xu Y, Guan H, Fang Z, Li F. Urolithin A Inhibits the Catabolic Effect of TNFα on Nucleus Pulposus Cell and Alleviates Intervertebral Disc Degeneration in vivo. Front Pharmacol 2018; 9:1043. [PMID: 30283339 PMCID: PMC6157327 DOI: 10.3389/fphar.2018.01043] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022] Open
Abstract
Low back pain (LBP) is a common worldwide disease that causes an enormous social economic burden. Intervertebral disc degeneration (IDD) is considered as a major cause of LBP. The process of IDD is complicated and involves both inflammation and senescence. The production of pro-inflammatory cytokines, including tumor necrosis factor (TNF)α and interleukin (IL)-1β, is increased in the degenerating intervertebral disc, inducing extracellular matrix degradation. Urolithin A (UA) is a metabolite compound resulting from the degradation of ellagitannins by gut bacteria. UA has been reported to be useful for the treatment of diseases associated with inflammation, senescence, and oxidative damage. Therefore, we hypothesized that UA may be an effective treatment for IDD. This study examined the effects of UA on IDD in vitro and in vivo and explored their underlying mechanisms. Our findings indicated that UA could attenuate cellular senescence induced by hydrogen peroxide in nucleus pulposus cells. UA treatment decreased TNFα-induced matrix metalloproteinase production and the loss of collagen II. At the molecular level, UA considerably blocked the phosphorylation of the extracellular signal-regulated kinase, c-JUN N-terminal kinase, and Akt pathways. In vivo study illustrated that UA treatment could ameliorate IDD in a needle-punctured rat tail model, which was evaluated by X-ray imaging, magnetic resonance imaging, and histological analysis. Thus, the results of our study revealed that UA may be a useful therapeutic agent for the treatment of IDD.
Collapse
Affiliation(s)
- Huiyong Liu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honglei Kang
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Song
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zuowei Lei
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianfeng Guo
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Xu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanfeng Guan
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhong Fang
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Li
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Han Z, Gao L, Shi Q, Chen L, Chen C. Quantitative magnetic resonance imaging for diagnosis of intervertebral disc degeneration of the cervico-thoracic junction: a pilot study. Am J Transl Res 2018; 10:925-935. [PMID: 29636882 PMCID: PMC5883133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to appraise two quantitative magnetic resonance imaging techniques, T2* imaging and diffusion-weighted imaging (DWI), for the diagnosis of the intervertebral disc degeneration of the cervico-thoracic junction. Influence of specific factors and diagnostic accuracy of both techniques were particularly explored. Sixty-one volunteers with neck and upper back pain were recruited and evaluated with both T2* imaging and DWI. The Pfirrmann grade, T2* relaxation time and apparent diffusion coefficient (ADC) value of each disc between C7 and T3 were recorded. Stratified analyses were performed for different anatomic levels, genders, age ranges and Pfirrmann grades. The diagnostic accuracy of both techniques was investigated using the receiver operating characteristic (ROC) curves. No statistically significant difference of either T2* relaxation time or ADC value was detected between males and females. Both parameters decreased with the increasing age and Pfirrmann grade. The ROC curves showed the higher sensitivity and specificity for T2* imaging than DWI to quantitatively identify the disc degeneration. Particularly, T2* imaging allowed for a quantitative distinguishing the normal, mild and moderate disc degeneration from the severe degeneration, which was unable to accomplish with DWI. In conclusion, we demonstrated that T2* imaging possess a better accuracy than DWI to quantitatively diagnose the intervertebral disc degeneration at the cervico-thoracic junction.
Collapse
Affiliation(s)
- Zhihua Han
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, PR China
- Frankfurt Initiative for Regenerative Medicine, JW Goethe-UniversityFrankfurt am Main 60528, Germany
| | - Liang Gao
- Center of Experimental Orthopaedics, Saarland UniversityHomburg/Saar 66421, Germany
| | - Qinglei Shi
- Siemens Ltd., China Healthcare Sector MR Business GroupBeijing 100102, PR China
| | - Lei Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, PR China
| | - Chun Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, PR China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and EngineeringWenzhou 325001, PR China
| |
Collapse
|
22
|
Silk-based multilayered angle-ply annulus fibrosus construct to recapitulate form and function of the intervertebral disc. Proc Natl Acad Sci U S A 2017; 115:477-482. [PMID: 29282316 DOI: 10.1073/pnas.1715912115] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recapitulation of the form and function of complex tissue organization using appropriate biomaterials impacts success in tissue engineering endeavors. The annulus fibrosus (AF) represents a complex, multilamellar, hierarchical structure consisting of collagen, proteoglycans, and elastic fibers. To mimic the intricacy of AF anatomy, a silk protein-based multilayered, disc-like angle-ply construct was fabricated, consisting of concentric layers of lamellar sheets. Scanning electron microscopy and fluorescence image analysis revealed cross-aligned and lamellar characteristics of the construct, mimicking the native hierarchical architecture of the AF. Induction of secondary structure in the silk constructs was confirmed by infrared spectroscopy and X-ray diffraction. The constructs showed a compressive modulus of 499.18 ± 86.45 kPa. Constructs seeded with porcine AF cells and human mesenchymal stem cells (hMSCs) showed ∼2.2-fold and ∼1.7-fold increases in proliferation on day 14, respectively, compared with initial seeding. Biochemical analysis, histology, and immunohistochemistry results showed the deposition of AF-specific extracellular matrix (sulfated glycosaminoglycan and collagen type I), indicating a favorable environment for both cell types, which was further validated by the expression of AF tissue-specific genes. The constructs seeded with porcine AF cells showed ∼11-, ∼5.1-, and ∼6.7-fold increases in col Iα 1, sox 9, and aggrecan genes, respectively. The differentiation of hMSCs to AF-like tissue was evident from the enhanced expression of the AF-specific genes. Overall, the constructs supported cell proliferation, differentiation, and ECM deposition resulting in AF-like tissue features based on ECM deposition and morphology, indicating potential for future studies related to intervertebral disc replacement therapy.
Collapse
|