1
|
Li M, Li D, Wang HY, Zhang W, Zhuo Z, Guo H, Liu J, Zhuo Y, Tang J, He J, Miao L. Leptin decreases Th17/Treg ratio to facilitate neuroblastoma via inhibiting long-chain fatty acid catabolism in tumor cells. Oncoimmunology 2025; 14:2460281. [PMID: 39902867 PMCID: PMC11796542 DOI: 10.1080/2162402x.2025.2460281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/05/2025] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
The exploration of therapeutic targets in neuroblastoma (NB), which needs more attempts, can benefit patients with high-risk NB. Based on metabolomic and transcriptomic data in mediastinal NB tissues, we found that the content of long-chain acylcarnitine (LCAC) was increased and positively associated with leptin expression in advanced NB. Leptin over-expression forced naïve CD4+ T cells to differentiate into Treg cells instead of Th17 cells, which benefited from NB cell proliferation, migration, and drug resistance. Mechanically, leptin in NB cells blunted the activity of carnitine palmitoyltransferase 2 (CPT2), the key enzyme for LCAC catabolism, by inhibiting sirtuin 3-mediated CPT2 deacetylation, which depresses oxidative phosphorylation (OXPHOS) for energy supply and increases lactic acid (LA) production from glycolysis to modulate CD4+ T cell differentiation. These findings highlight that excess leptin contributes to lipid metabolism dysfunction in NB cells and subsequently misdirects CD4+ T cell differentiation in tumor micro-environment (TME), indicating that targeting leptin could be a therapeutic strategy for retarding NB progression.
Collapse
Affiliation(s)
- Meng Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Di Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Hai-Yun Wang
- Department of Pathology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children’s Medical Center for South Central Region, Guangzhou, Guangdong, China
| | - Weixin Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Zhenjian Zhuo
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Huiqin Guo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Jiabin Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Yue Zhuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jue Tang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Wang W, Du Y, Datta S, Fowler JF, Sang HT, Albadari N, Li W, Foster J, Zhang R. Targeting the MYCN-MDM2 pathways for cancer therapy: Are they druggable? Genes Dis 2025; 12:101156. [PMID: 39802403 PMCID: PMC11719324 DOI: 10.1016/j.gendis.2023.101156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 01/16/2025] Open
Abstract
Targeting oncogenes and their interactive partners is an effective approach to developing novel targeted therapies for cancer and other chronic diseases. We and others have long suggested the MDM2 oncogene being an excellent target for cancer therapy, based on its p53-dependent and -independent oncogenic activities in a variety of cancers. The MYC family proteins are transcription factors that also regulate diverse biological functions. Dysregulation of MYC, such as amplification of MYCN, is associated with tumorigenesis, especially for neuroblastoma. Although the general survival rate of neuroblastoma patients has significantly improved over the past few decades, high-risk neuroblastoma still presents a poor prognosis. Therefore, innovative and more potent therapeutic strategies are needed to eradicate these aggressive neoplasms. This review focuses on the oncogenic properties of MYCN and its molecular regulation and summarizes the major therapeutic strategies being developed based on preclinical findings. We also highlight the potential benefits of targeting both the MYCN and MDM2 oncogenes, providing preclinical evidence of the efficacy and safety of this approach. In conclusion, the development of effective small molecules that inhibit both MYCN and MDM2 represents a promising new strategy for the treatment of neuroblastoma and other cancers.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
- Drug Discovery Institute, University of Houston, Houston, TX 77204, USA
| | - Yi Du
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Josef F. Fowler
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Hannah T. Sang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Najah Albadari
- College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Wei Li
- College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jennifer Foster
- Texas Children's Hospital, Department of Pediatrics, Section of Hematology-Oncology Baylor College of Medicine, Houston, TX 77030, USA
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
- Drug Discovery Institute, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
3
|
Zeng Q, Tao J, Qin L, Zeng Y, Liu Z, Xu M, Zeng L. Comprehensive prognostic gene identification and functional characterization of GRAMD1A in Wilms tumor: development of risk prediction models and therapeutic implications. Front Oncol 2024; 14:1501718. [PMID: 39659787 PMCID: PMC11628387 DOI: 10.3389/fonc.2024.1501718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
Background Wilms tumor (WT) is the most common pediatric kidney cancer, with survival rates exceeding 90% in localized cases. However, advanced or recurrent WT remains difficult to treat due to poor prognosis and limited knowledge of its molecular mechanisms. Gene expression profiling has shown promise in identifying prognostic markers and therapeutic targets. This study aimed to identify key prognostic genes and pathways in WT, construct risk prediction models, and validate their role in tumor progression. Methods RNA sequencing and clinical data from 136 WT patients were obtained from the TARGET database. Differential gene expression analysis was conducted using GEO datasets GSE11024 and GSE66405 to compare WT and normal kidney tissues. Identified differentially expressed genes (DEGs) underwent Gene Ontology (GO) and KEGG pathway enrichment analysis to explore biological functions and pathways associated with WT progression. Univariate Cox regression was used to assess the association between DEGs and overall survival (OS) and progression-free survival (PFS). LASSO regression models were developed for risk stratification, and model accuracy was evaluated using time-dependent ROC curves. External validation confirmed key hub genes, while functional assays in WT cell lines (WiT-49) assessed the role of GRAMD1A in tumor behavior. Results A total of 3,395 DEGs were identified, with 1,564 upregulated and 1,831 downregulated genes. Enrichment analyses revealed significant pathways involved in cell cycle regulation and metabolic reprogramming. Six key genes (GRAMD1A, PLXNA3, SPR, EBAG9, RBM47, and RIDA) were associated with both OS and PFS. LASSO models demonstrated strong predictive performance, with GRAMD1A identified as a major risk factor. External validation confirmed differential expression, and functional assays showed that GRAMD1A silencing significantly inhibited WT cell viability, proliferation, migration, and invasion. Conclusions This study identifies novel prognostic genes and potential therapeutic targets in WT. GRAMD1A, SPR, EBAG9, RBM47, and RIDA play critical roles in WT progression, with GRAMD1A as a key oncogenic factor, offering potential for risk stratification and future therapeutic intervention.
Collapse
Affiliation(s)
- Qiang Zeng
- Department of Pediatric Surgery, Jiangxi Maternal and Child Health Hospital, Jiangxi Children’s Medical Center, Nanchang, Jiangxi, China
| | - Junfeng Tao
- Department of Pediatric Surgery, Jiangxi Maternal and Child Health Hospital, Jiangxi Children’s Medical Center, Nanchang, Jiangxi, China
| | - Lilu Qin
- Department of Pediatric Surgery, Jiangxi Maternal and Child Health Hospital, Jiangxi Children’s Medical Center, Nanchang, Jiangxi, China
| | - Yong Zeng
- Department of Pediatric Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zhong Liu
- Department of Pediatric Surgery, Jiangxi Maternal and Child Health Hospital, Jiangxi Children’s Medical Center, Nanchang, Jiangxi, China
| | - Mingxian Xu
- Department of Musculoskeletal Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Linshan Zeng
- Department of Pediatric Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
4
|
Makuku R, Sinaei Far Z, Khalili N, Moyo A, Razi S, Keshavarz-Fathi M, Mahmoudi M, Rezaei N. The Role of Ketogenic Diet in the Treatment of Neuroblastoma. Integr Cancer Ther 2023; 22:15347354221150787. [PMID: 36752115 PMCID: PMC9909060 DOI: 10.1177/15347354221150787] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/15/2022] [Indexed: 02/09/2023] Open
Abstract
The ketogenic diet (KD) was initially used in 1920 for drug-resistant epileptic patients. From this point onward, ketogenic diets became a pivotal part of nutritional therapy research. To date, KD has shown therapeutic potential in many pathologies such as Alzheimer's disease, Parkinson's disease, autism, brain cancers, and multiple sclerosis. Although KD is now an adjuvant therapy for certain diseases, its effectiveness as an antitumor nutritional therapy is still an ongoing debate, especially in Neuroblastoma. Neuroblastoma is the most common extra-cranial solid tumor in children and is metastatic at initial presentation in more than half of the cases. Although Neuroblastoma can be managed by surgery, chemotherapy, immunotherapy, and radiotherapy, its 5-year survival rate in children remains below 40%. Earlier studies have proposed the ketogenic diet as a possible adjuvant therapy for patients undergoing treatment for Neuroblastoma. In this study, we seek to review the possible roles of KD in the treatment of Neuroblastoma.
Collapse
Affiliation(s)
- Rangarirai Makuku
- Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Harare, Zimbabwe
| | - Zeinab Sinaei Far
- Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Neda Khalili
- Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Alistar Moyo
- Universal Scientific Education and Research Network (USERN), Harare, Zimbabwe
| | - Sepideh Razi
- Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Nima Rezaei
- Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Stockholm, Sweden
| |
Collapse
|
5
|
Cornett K, Puderbaugh A, Back O, Craven R. GAPDH in neuroblastoma: Functions in metabolism and survival. Front Oncol 2022; 12:979683. [PMID: 36267982 PMCID: PMC9577191 DOI: 10.3389/fonc.2022.979683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
Neuroblastoma is a pediatric cancer of neural crest cells. It develops most frequently in nerve cells around the adrenal gland, although other locations are possible. Neuroblastomas rely on glycolysis as a source of energy and metabolites, and the enzymes that catalyze glycolysis are potential therapeutic targets for neuroblastoma. Furthermore, glycolysis provides a protective function against DNA damage, and there is evidence that glycolysis inhibitors may improve outcomes from other cancer treatments. This mini-review will focus on glyceraldehyde 3-phosphate dehydrogenase (GAPDH), one of the central enzymes in glycolysis. GAPDH has a key role in metabolism, catalyzing the sixth step in glycolysis and generating NADH. GAPDH also has a surprisingly diverse number of localizations, including the nucleus, where it performs multiple functions, and the plasma membrane. One membrane-associated function of GAPDH is stimulating glucose uptake, consistent with a role for GAPDH in energy and metabolite production. The plasma membrane localization of GAPDH and its role in glucose uptake have been verified in neuroblastoma. Membrane-associated GAPDH also participates in iron uptake, although this has not been tested in neuroblastoma. Finally, GAPDH activates autophagy through a nuclear complex with Sirtuin. This review will discuss these activities and their potential role in cancer metabolism, treatment and drug resistance.
Collapse
|
6
|
Tasic L, Avramović N, Quintero M, Stanisic D, Martins LG, da Costa TBBC, Jadranin M, de Souza Accioly MT, Faria P, de Camargo B, de Sá Pereira BM, Maschietto M. A Metabonomic View on Wilms Tumor by High-Resolution Magic-Angle Spinning Nuclear Magnetic Resonance Spectroscopy. Diagnostics (Basel) 2022; 12:diagnostics12010157. [PMID: 35054324 PMCID: PMC8775120 DOI: 10.3390/diagnostics12010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/13/2021] [Accepted: 01/01/2022] [Indexed: 11/16/2022] Open
Abstract
Pediatric cancer NMR-metabonomics might be a powerful tool to discover modified biochemical pathways in tumor development, improve cancer diagnosis, and, consequently, treatment. Wilms tumor (WT) is the most common kidney tumor in young children whose genetic and epigenetic abnormalities lead to cell metabolism alterations, but, so far, investigation of metabolic pathways in WT is scarce. We aimed to explore the high-resolution magic-angle spinning nuclear magnetic resonance (HR-MAS NMR) metabonomics of WT and normal kidney (NK) samples. For this study, 14 WT and 7 NK tissue samples were obtained from the same patients and analyzed. One-dimensional and two-dimensional HR-MAS NMR spectra were processed, and the one-dimensional NMR data were analyzed using chemometrics. Chemometrics enabled us to elucidate the most significant differences between the tumor and normal tissues and to discover intrinsic metabolite alterations in WT. The metabolic differences in WT tissues were revealed by a validated PLS-DA applied on HR-MAS T2-edited 1H-NMR and were assigned to 16 metabolites, such as lipids, glucose, and branched-chain amino acids (BCAAs), among others. The WT compared to NK samples showed 13 metabolites with increased concentrations and 3 metabolites with decreased concentrations. The relative BCAA concentrations were decreased in the WT while lipids, lactate, and glutamine/glutamate showed increased levels. Sixteen tissue metabolites distinguish the analyzed WT samples and point to altered glycolysis, glutaminolysis, TCA cycle, and lipid and BCAA metabolism in WT. Significant variation in the concentrations of metabolites, such as glutamine/glutamate, lipids, lactate, and BCAAs, was observed in WT and opened up a perspective for their further study and clinical validation.
Collapse
Affiliation(s)
- Ljubica Tasic
- Laboratory of Chemical Biology, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Sao Paulo 13083-970, Brazil; (M.Q.); (D.S.); (L.G.M.); (T.B.B.C.d.C.)
- Correspondence:
| | - Nataša Avramović
- Faculty of Medicine, Institute of Medical Chemistry, University of Belgrade, Višegradska 26, 11000 Belgrade, Serbia;
| | - Melissa Quintero
- Laboratory of Chemical Biology, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Sao Paulo 13083-970, Brazil; (M.Q.); (D.S.); (L.G.M.); (T.B.B.C.d.C.)
| | - Danijela Stanisic
- Laboratory of Chemical Biology, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Sao Paulo 13083-970, Brazil; (M.Q.); (D.S.); (L.G.M.); (T.B.B.C.d.C.)
| | - Lucas G. Martins
- Laboratory of Chemical Biology, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Sao Paulo 13083-970, Brazil; (M.Q.); (D.S.); (L.G.M.); (T.B.B.C.d.C.)
| | - Tassia Brena Barroso Carneiro da Costa
- Laboratory of Chemical Biology, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Sao Paulo 13083-970, Brazil; (M.Q.); (D.S.); (L.G.M.); (T.B.B.C.d.C.)
| | - Milka Jadranin
- Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia;
| | | | - Paulo Faria
- Department of Pathology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil;
| | - Beatriz de Camargo
- Clinical Research Department, National Cancer Institute (INCA), Rio de Janeiro 20231-091, Brazil; (B.d.C.); (B.M.d.S.P.)
| | - Bruna M. de Sá Pereira
- Clinical Research Department, National Cancer Institute (INCA), Rio de Janeiro 20231-091, Brazil; (B.d.C.); (B.M.d.S.P.)
| | - Mariana Maschietto
- National Laboratory of Biosciences (LNBio), National Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-100, Brazil;
| |
Collapse
|
7
|
Kunc M, Gabrych A, Dulak D, Hasko K, Styczewska M, Szmyd D, Nilsson K, Iwinski M, Sobocińska-Mirska A, Sawicka-Zukowska M, Krawczyk MA, Bien E. Systemic inflammatory markers and serum lactate dehydrogenase predict survival in patients with Wilms tumour. Arch Med Sci 2022; 18:1253-1261. [PMID: 36160344 PMCID: PMC9479718 DOI: 10.5114/aoms/125543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/19/2020] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION Markers of inflammation such as neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and lymphocyte-to-monocyte ratio (LMR) have been found to be associated with survival in cancer patients. The aim of the current study was to establish the prognostic significance of simple laboratory markers of systemic inflammation in paediatric patients diagnosed with Wilms tumour (WT). Additionally, we aimed to compare the complete blood count (CBC) parameters of WT patients and the non-oncological control group. MATERIAL AND METHODS The study group included 88 children diagnosed with WT. Clinicopathological data, as well as CBC, C-reactive protein (CRP) and lactate dehydrogenase (LDH) levels at diagnosis, were obtained. Additionally, the laboratory results of 62 healthy control paediatric patients were collected. Uni- and multivariate proportional Cox's hazard analyses were computed to create a model predicting relapse-free survival (RFS) and overall survival (OS) in the study group. RESULTS High CRP, LDH, and NLR were associated with a higher stage of WT and shorter RFS, whereas all parameters correlated with OS. In multivariate analysis, only LDH levels had adverse significance in predicting RFS. C-reactive protein and LMR retained their prognostic value in the multivariate model predicting OS. Comparing the WT group with controls, high LDH, high CRP, high NLR, and high PLR were associated with WT presence. CONCLUSIONS Preoperative LDH, CRP, NLR, PLR, and LMR have significant prognostic value in patients with WT independently of age and stage. Combined low CRP and high LMR identified the group of patients with excellent OS. Patients with high LDH were characterized by the highest risk of relapse.
Collapse
Affiliation(s)
- Michał Kunc
- Department of Pathomorphology, Medical University of Gdansk, Gdansk, Poland
| | - Anna Gabrych
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Dominika Dulak
- The English Division Pediatric Oncology Scientific Circle, Medical University of Gdansk, Gdansk, Poland
| | - Karolina Hasko
- The English Division Pediatric Oncology Scientific Circle, Medical University of Gdansk, Gdansk, Poland
| | - Malgorzata Styczewska
- The English Division Pediatric Oncology Scientific Circle, Medical University of Gdansk, Gdansk, Poland
| | - Dagmara Szmyd
- Coronary Care Unit, Cardiology Department, West Cumberland Hospital, Whitehaven, United Kingdom
| | - Kristoffer Nilsson
- The English Division Pediatric Oncology Scientific Circle, Medical University of Gdansk, Gdansk, Poland
| | - Marek Iwinski
- The English Division Pediatric Oncology Scientific Circle, Medical University of Gdansk, Gdansk, Poland
| | - Agata Sobocińska-Mirska
- Department of Pediatrics, Oncology and Hematology, Medical University of Warsaw, Warsaw, Poland
| | - Malgorzata Sawicka-Zukowska
- Department of Pediatrics, Paediatric Oncology, and Hematology, Medical University of Bialystok, Bialystok, Poland
| | - Malgorzata A. Krawczyk
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Ewa Bien
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
8
|
Zhang S, Hua Z, Ba G, Xu N, Miao J, Zhao G, Gong W, Liu Z, Thiele CJ, Li Z. Antitumor effects of the small molecule DMAMCL in neuroblastoma via suppressing aerobic glycolysis and targeting PFKL. Cancer Cell Int 2021; 21:619. [PMID: 34819091 PMCID: PMC8613996 DOI: 10.1186/s12935-021-02330-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
Background Neuroblastoma (NB) is a common solid malignancy in children that is associated with a poor prognosis. Although the novel small molecular compound Dimethylaminomicheliolide (DMAMCL) has been shown to induce cell death in some tumors, little is known about its role in NB. Methods We examined the effect of DMAMCL on four NB cell lines (NPG, AS, KCNR, BE2). Cellular confluence, survival, apoptosis, and glycolysis were detected using Incucyte ZOOM, CCK-8 assays, Annexin V-PE/7-AAD flow cytometry, and Seahorse XFe96, respectively. Synergistic effects between agents were evaluated using CompuSyn and the effect of DMAMCL in vivo was evaluated using a xenograft mouse model. Phosphofructokinase-1, liver type (PFKL) expression was up- and down-regulated using overexpression plasmids or siRNA. Results When administered as a single agent, DMAMCL decreased cell proliferation in a time- and dose-dependent manner, increased the percentage of cells in SubG1 phase, and induced apoptosis in vitro, as well as inhibiting tumor growth and prolonging survival in tumor-bearing mice (NGP, BE2) in vivo. In addition, DMAMCL exerted synergistic effects when combined with etoposide or cisplatin in vitro and displayed increased antitumor effects when combined with etoposide in vivo compared to either agent alone. Mechanistically, DMAMCL suppressed aerobic glycolysis by decreasing glucose consumption, lactate excretion, and ATP production, as well as reducing the expression of PFKL, a key glycolysis enzyme, in vitro and in vivo. Furthermore, PFKL overexpression attenuated DMAMCL-induced cell death, whereas PFKL silencing promoted NB cell death. Conclusions The results of this study suggest that DMAMCL exerts antitumor effects on NB both in vitro and in vivo by suppressing aerobic glycolysis and that PFKL could be a potential target of DMAMCL in NB. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02330-y.
Collapse
Affiliation(s)
- Simeng Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.,Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic Diseases, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Zhongyan Hua
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.,Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic Diseases, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Gen Ba
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.,Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic Diseases, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Ning Xu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.,Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic Diseases, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Jianing Miao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.,Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic Diseases, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Guifeng Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.,Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic Diseases, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Wei Gong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.,Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic Diseases, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Zhihui Liu
- Cellular & Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health Bethesda, Bethesda, MD, 20892, USA
| | - Carol J Thiele
- Cellular & Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health Bethesda, Bethesda, MD, 20892, USA
| | - Zhijie Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China. .,Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic Diseases, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
9
|
Role of Energy Metabolism in the Progression of Neuroblastoma. Int J Mol Sci 2021; 22:ijms222111421. [PMID: 34768850 PMCID: PMC8583976 DOI: 10.3390/ijms222111421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022] Open
Abstract
Neuroblastoma is a common childhood cancer possessing a significant risk of death. This solid tumor manifests variable clinical behaviors ranging from spontaneous regression to widespread metastatic disease. The lack of promising treatments calls for new research approaches which can enhance the understanding of the molecular background of neuroblastoma. The high proliferation of malignant neuroblastoma cells requires efficient energy metabolism. Thus, we focus our attention on energy pathways and their role in neuroblastoma tumorigenesis. Recent studies suggest that neuroblastoma-driven extracellular vesicles stimulate tumorigenesis inside the recipient cells. Furthermore, proteomic studies have demonstrated extracellular vesicles (EVs) to cargo metabolic enzymes needed to build up a fully operative energy metabolism network. The majority of EV-derived enzymes comes from glycolysis, while other metabolic enzymes have a fatty acid β-oxidation and tricarboxylic acid cycle origin. The previously mentioned glycolysis has been shown to play a primary role in neuroblastoma energy metabolism. Therefore, another way to modify the energy metabolism in neuroblastoma is linked with genetic alterations resulting in the decreased activity of some tricarboxylic acid cycle enzymes and enhanced glycolysis. This metabolic shift enables malignant cells to cope with increasing metabolic stress, nutrition breakdown and an upregulated proliferation ratio.
Collapse
|
10
|
Identification of the Novel Methylated Genes' Signature to Predict Prognosis in INRG High-Risk Neuroblastomas. JOURNAL OF ONCOLOGY 2021; 2021:1615201. [PMID: 34557229 PMCID: PMC8455188 DOI: 10.1155/2021/1615201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Neuroblastomas are the most frequent extracranial pediatric solid tumors. The prognosis of children with high-risk neuroblastomas has remained poor in the past decade. A powerful signature is required to identify factors associated with prognosis and improved treatment selection. Here, we identified a strong methylation signature that favored the earlier diagnosis of neuroblastoma in patients. METHODS Gene methylation (GM) data of neuroblastoma patients from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) were analyzed using a multivariate Cox regression analysis (MCRA) and univariate Cox proportional hazards regression analysis (UCPHRA). RESULTS The methylated genes' signature consisting of eight genes (NBEA, DDX28, TMED8, LOC151174, EFNB2, GHRHR, MIMT1, and SLC29A3) was selected. The signature divided patients into low- and high-risk categories, with statistically significant survival rates (median survival time: 25.08 vs. >128.80 months, log-rank test, P < 0.001) in the training group, and the validation of the signature's risk stratification ability was carried out in the test group (log-rank test, P < 0.01, median survival time: 30.48 vs. >120.36 months). The methylated genes' signature was found to be an independent predictive factor for neuroblastoma by MCRA. Functional enrichment analysis suggested that these methylated genes were related to butanoate metabolism, beta-alanine metabolism, and glutamate metabolism, all playing different significant roles in the process of energy metabolism in neuroblastomas. CONCLUSIONS The set of eight methylated genes could be used as a new predictive and prognostic signature for patients with INRG high-risk neuroblastomas, thus assisting in treatment, drug development, and predicting survival.
Collapse
|
11
|
Chang X, Bakay M, Liu Y, Glessner J, Rathi KS, Hou C, Qu H, Vaksman Z, Nguyen K, Sleiman PMA, Diskin SJ, Maris JM, Hakonarson H. Mitochondrial DNA Haplogroups and Susceptibility to Neuroblastoma. J Natl Cancer Inst 2021; 112:1259-1266. [PMID: 32096864 DOI: 10.1093/jnci/djaa024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/24/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Neuroblastoma is a childhood malignancy that arises from the developing sympathetic nervous system. Although mitochondrial dysfunctions have been implicated in the pathophysiology of neuroblastoma, the role of mitochondrial DNA (mtDNA) has not been extensively investigated. METHODS A total of 2404 Caucasian children diagnosed with neuroblastoma and 9310 ancestry-matched controls were recruited at the Children's Hospital of Philadelphia. The mtDNA haplogroups were identified from SNP array data of two independent cohorts. We conducted a case-control study to explore potential associations of mtDNA haplogroups with the susceptibility of neuroblastoma. The genetic effect of neuroblastoma was measured by odds ratios (ORs) of mitochondrial haplogroups. All tests were two-sided. RESULTS Haplogroup K was statistically significantly associated with reduced risk of neuroblastoma in the discovery cohort consisting of 1474 cases and 5699 controls (OR = 0.72, 95% confidence interval [CI] = 0.57 to 0.90; P = 4.8 × 10-3). The association was replicated in an independent cohort (OR = 0.69, 95% CI = 0.53 to 0.92; P = .01) of 930 cases and 3611 controls. Pooled analysis was performed by combining the two data sets. The association remained highly statistically significant after correction for multiple testing (OR = 0.71, 95% CI = 0.59 to 0.84, P = 1.96 × 10-4, Pcorrected = .002). Further analysis focusing on neuroblastoma subtypes indicated haplogroup K was more associated with high-risk neuroblastoma (OR = 0.57, 95% CI = 0.43 to 0.76; P = 1.46 × 10-4) than low-risk and intermediate-risk neuroblastoma. CONCLUSIONS Haplogroup K is an independent genetic factor associated with reduced risk of developing neuroblastoma in European descents. These findings provide new insights into the genetic basis of neuroblastoma, implicating mitochondrial DNA encoded proteins in the etiology of neuroblastoma.
Collapse
Affiliation(s)
- Xiao Chang
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marina Bakay
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yichuan Liu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joseph Glessner
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Komal S Rathi
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cuiping Hou
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Huiqi Qu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Zalman Vaksman
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kenny Nguyen
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Patrick M A Sleiman
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sharon J Diskin
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
12
|
Tortolici F, Vumbaca S, Incocciati B, Dayal R, Aquilano K, Giovanetti A, Rufini S. Ionizing Radiation-Induced Extracellular Vesicle Release Promotes AKT-Associated Survival Response in SH-SY5Y Neuroblastoma Cells. Cells 2021; 10:cells10010107. [PMID: 33430027 PMCID: PMC7827279 DOI: 10.3390/cells10010107] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022] Open
Abstract
Radiation therapy is one of the most effective methods of tumor eradication; however, in some forms of neuroblastoma, radiation can increase the risk of secondary neoplasms, due to the ability of irradiated cells to transmit pro-survival signals to non-irradiated cells through vesicle secretion. The aims of this study were to characterize the vesicles released by the human neuroblastoma cell line SH-SY5Y following X-ray radiations and their ability to increase invasiveness in non-irradiated SH-SY5Y cells. We first purified the extracellular vesicles released by the SH-SY5Y cells following X-rays, and then determined their total amount, dimensions, membrane protein composition, and cellular uptake. We also examined the effects of these extracellular vesicles on viability, migration, and DNA damage in recipient SH-SY5Y cells. We found that exposure to X-rays increased the release of extracellular vesicles and altered their protein composition. These vesicles were readily uptaken by non-irradiated cells, inducing an increase in viability, migration, and radio-resistance. The same results were obtained in an MYCN-amplified SK-N-BE cell line. Our study demonstrates that vesicles released from irradiated neuroblastoma cells stimulate proliferation and invasiveness that correlate with the epithelial to mesenchymal transition in non-irradiated cells. Moreover, our results suggest that, at least in neuroblastomas, targeting the extracellular vesicles may represent a novel therapeutic approach to counteract the side effects associated with radiotherapy.
Collapse
Affiliation(s)
- Flavia Tortolici
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (F.T.); (S.V.); (B.I.); (K.A.)
| | - Simone Vumbaca
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (F.T.); (S.V.); (B.I.); (K.A.)
| | - Bernadette Incocciati
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (F.T.); (S.V.); (B.I.); (K.A.)
| | - Renu Dayal
- Sanorva Biotech Private Limited, Mysuru 570008, India;
| | - Katia Aquilano
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (F.T.); (S.V.); (B.I.); (K.A.)
| | - Anna Giovanetti
- ENEA, Department of Energy and Sustainable Economic, 00123 Rome, Italy;
| | - Stefano Rufini
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (F.T.); (S.V.); (B.I.); (K.A.)
- Correspondence:
| |
Collapse
|
13
|
Radogna F, Gérard D, Dicato M, Diederich M. Assessment of Mitochondrial Cell Metabolism by Respiratory Chain Electron Flow Assays. Methods Mol Biol 2021; 2276:129-141. [PMID: 34060037 DOI: 10.1007/978-1-0716-1266-8_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cellular energy metabolism is regulated by complex metabolic pathways. Although anaerobic glycolysis was reported as a primary source of energy in cancer leading to a high rate of lactate production, current evidence shows that the main energy source supporting cancer cell metabolism relies on mitochondrial metabolism. Mitochondria are the key organelle maintaining optimal cellular energy levels. MitoPlate™ S-1 provides a highly reproducible bioenergetics tool to analyze the electron flow rate in live cells. Measuring the rates of electron flow into and through the electron transport chain using different NADH and FADH2-producing metabolic substrates enables the assessment of mitochondrial functionality. MitoPlate™ S-1 are 96-well microplates pre-coated with different substrates used as probes to examine the activity of mitochondrial metabolic pathways based on a colorimetric assay. A comparative metabolic analysis between cell lines or primary cells allows to establish a specific metabolic profile and to detect possible alterations of the mitochondrial function of a tumor cell. Moreover, the direct measurements of electron flux triggered by metabolic pathway activation could highlight targets for potential drug candidates.
Collapse
Affiliation(s)
- Flavia Radogna
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg
| | - Déborah Gérard
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg
| | - Marc Diederich
- College of Pharmacy, Seoul National University, Seoul, South Korea.
| |
Collapse
|
14
|
Yang L, Pei L, Yi J. LINC00839 Regulates Proliferation, Migration, Invasion, Apoptosis and Glycolysis in Neuroblastoma Cells Through miR-338-3p/GLUT1 Axis. Neuropsychiatr Dis Treat 2021; 17:2027-2040. [PMID: 34188473 PMCID: PMC8232867 DOI: 10.2147/ndt.s309467] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/27/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are related to the development and treatment of neuroblastoma. The lncRNA LINC00839 is dysregulated in neuroblastoma, while its function and mechanism in neuroblastoma development remain largely unclear. METHODS The tumor and adjacent noncancerous tissues were collected from 48 neuroblastoma patients. LINC00839, glucose transporter 1 (GLUT1) and microRNA-338-3p (miR-338-3p) abundances were examined via quantitative reverse transcription polymerase chain reaction or Western blot. Cell proliferation, apoptosis, migration, invasion and glycolysis were assessed via Cell Counting Kit-8, colony formation, flow cytometry, wound healing, transwell, glucose uptake and lactate production. The target relationship of miR-338-3p and LINC00839 or GLUT1 was tested via dual-luciferase reporter analysis and RNA immunoprecipitation. The function of LINC00839 on neuroblastoma cell growth in vivo was tested via a xenograft model. RESULTS LINC00839 and GLUT1 abundances were increased in neuroblastoma tissues and cell lines. The high expression of LINC00839 and GLUT1 indicated the lower overall survival. LINC00839 interference constrained neuroblastoma cell proliferation, migration, invasion and glycolysis, and facilitated apoptosis. GLUT1 overexpression or miR-338-3p knockdown could mitigate the influence of LINC00839 silence on neuroblastoma cell processes. LINC00839 could regulate GLUT1 expression via miR-338-3p. LINC00839 knockdown reduced neuroblastoma cell growth in xenograft model. CONCLUSION LINC00839 silence repressed neuroblastoma cell proliferation, migration, invasion and glycolysis and promoted apoptosis via regulating miR-338-3p/GLUT1 axis.
Collapse
Affiliation(s)
- Lixia Yang
- Department of Neurology, The First People's Hospital of Jingmen Affiliated to Hubei Minzu University, Jingmen, 434000, People's Republic of China
| | - Liangyan Pei
- Department of Neurology, The First People's Hospital of Jingmen Affiliated to Hubei Minzu University, Jingmen, 434000, People's Republic of China
| | - Jilong Yi
- Department of Neurology, The First People's Hospital of Jingmen Affiliated to Hubei Minzu University, Jingmen, 434000, People's Republic of China
| |
Collapse
|
15
|
Assessment of Tissue Distribution and Metabolism of MP1, a Novel Pyrrolomycin, in Mice Using a Validated LC-MS/MS Method. Molecules 2020; 25:molecules25245898. [PMID: 33322110 PMCID: PMC7764159 DOI: 10.3390/molecules25245898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 11/16/2022] Open
Abstract
MP1 is a novel marinopyrrole analogue with activity in MYCN amplified neuroblastoma cell lines. A rapid, selective, and sensitive liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method was developed and validated for quantitation of MP1 in mouse plasma. Analyte separation was achieved using a Waters Acquity UPLC®BEH C18 column (1.7 µm, 100 × 2.1 mm). Mobile phase consisted of 0.1% acetic acid in water (10%) and methanol (90%) at a total flow rate of 0.25 mL/min. The mass spectrometer was operated at unit resolution in the multiple reaction monitoring (MRM) mode, using precursor ion > product ion transitions of 324.10 > 168.30 m/z for MP1 and 411.95 > 224.15 m/z for PL-3. The MS/MS response was linear over the concentration range from 0.2-500 ng/mL for MP1, correlation coefficient (r2) of 0.988. Precision (% RSD) and accuracy (% bias) were within the acceptable limits as per FDA guidelines. MP1 was stable under storage and laboratory handling conditions. The validated method was successfully applied to assess the solubility, in-vitro metabolism, plasma protein binding, and bio-distribution studies of MP1.
Collapse
|
16
|
Gan L, Ren Y, Lu J, Ma J, Shen X, Zhuang Z. Synergistic Effect of 3-Bromopyruvate in Combination with Rapamycin Impacted Neuroblastoma Metabolism by Inhibiting Autophagy. Onco Targets Ther 2020; 13:11125-11137. [PMID: 33149623 PMCID: PMC7605667 DOI: 10.2147/ott.s273108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/05/2020] [Indexed: 12/23/2022] Open
Abstract
Background Alterations in the cell metabolism, such as enhanced aerobic glycolysis, have been identified as a prominent hallmark of cancer cells. 3-Bromopyruvate (3-BrPA) is a proverbial hexokinase (HK)-II inhibitor, which can inhibit cancer cell energy metabolism. Rapamycin is a new type macrocyclic lactone, which can inhibit the serine/threonine protein kinase mTOR. In order to comprehend the influence of 3-BrPA on autophagy activity in vitro, we conducted a series of experiments using different human neuroblastoma (NB) cell lines. Materials and Methods The human NB cell lines were exposed to 3-BrPA and/or rapamycin, and the proliferation activity of the cells was detected by Cell Counting Kit-8 (CCK-8) assay. The mRNA expression of the cells treated with 3-BrPA and/or rapamycin was analyzed by quantitative real-time polymerase chain reaction (QPCR) assay. The protein expression of the cells was analyzed by Western Blotting (WB) assay. The effects of 3-BrPA and/or rapamycin treatment on cell cycle and cell apoptosis were analyzed by flow cytometry assay. Meanwhile, the cellular glucose absorption rate, lactate secretion rate and ATP content were also analyzed through the relevant metabolic analysis kits. Results Our results showed that 3-BrPA can induce growth inhibition in a dose-dependent pattern by cell apoptosis. 3-BrPA combined with rapamycin played a synergistic suppression role in NB cells, affected the cell apoptosis, cell cycle and the metabolic pathway. Up-regulated LC3-II accumulation was conscious in NB cells incubated with 3-BrPA and rapamycin. Rapamycin individually discourages the mTOR signaling pathway, while combined with 3-BrPA can enhance this phenomenon and influence cell metabolism of the NB cells. Conclusion The results suggested that 3-BrPA combined with rapamycin could induce cell apoptosis in NB cells by inhibiting mTOR activity. In conclusion, our research proposed that the dual inhibitory effect of the mTOR signaling pathway and the glycolytic activity may indicate a valid therapeutic tactic for NB chemoprevention.
Collapse
Affiliation(s)
- Lei Gan
- Department of Oncology, The Second Affiliated Hospital of Soochow Unive rsity, Suzhou, Jiangsu Province 215004, People's Republic of China
| | - Yang Ren
- Department of Oncology, The Second Affiliated Hospital of Soochow Unive rsity, Suzhou, Jiangsu Province 215004, People's Republic of China
| | - Jicheng Lu
- Department of Oncology, The Second Affiliated Hospital of Soochow Unive rsity, Suzhou, Jiangsu Province 215004, People's Republic of China
| | - Junzhe Ma
- Department of Oncology, The Second Affiliated Hospital of Soochow Unive rsity, Suzhou, Jiangsu Province 215004, People's Republic of China
| | - Xudong Shen
- Department of Oncology, The Second Affiliated Hospital of Soochow Unive rsity, Suzhou, Jiangsu Province 215004, People's Republic of China
| | - Zhixiang Zhuang
- Department of Oncology, The Second Affiliated Hospital of Soochow Unive rsity, Suzhou, Jiangsu Province 215004, People's Republic of China
| |
Collapse
|
17
|
Zhai K, Brockmüller A, Kubatka P, Shakibaei M, Büsselberg D. Curcumin's Beneficial Effects on Neuroblastoma: Mechanisms, Challenges, and Potential Solutions. Biomolecules 2020; 10:biom10111469. [PMID: 33105719 PMCID: PMC7690450 DOI: 10.3390/biom10111469] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Curcumin, a natural polyphenolic compound derived from the South Asian turmeric plant (Curcuma longa), has well-characterized antioxidant, anti-inflammatory, anti-protein-aggregate, and anticancer properties. Neuroblastoma (NB) is a cancer of the nervous system that arises primarily in pediatric patients. In order to reduce the multiple disadvantages and side effects of conventional oncologic modalities and to potentially overcome cancer drug resistance, natural substances such as curcumin are examined as complementary and supportive therapies against NB. In NB cell lines, curcumin by itself promotes apoptosis and cell cycle arrest through the suppression of serine–threonine kinase Akt and nuclear factor kappa of activated B-cells (NF-κB) signaling, induction of mitochondrial dysfunction, and upregulation of p53 and caspase signaling. While curcumin demonstrates anti-NB efficacy in vitro, cross-validation between NB cell types is currently lacking for many of its specific mechanistic activities. Furthermore, curcumin’s low bioavailability by oral administration, poor absorption, and relative insolubility in water pose challenges to its clinical introduction. Numerous curcumin formulations, including nanoparticles, nanocarriers, and microemulsions, have been developed, with these having some success in the treatment of NB. In the future, standardization and further basic and preclinical trials will be required to ensure the safety of curcumin formulations. While the administration of curcumin is clinically safe even at high doses, clinical trials are necessary to substantiate the practical efficacy of curcumin in the prevention and treatment of NB.
Collapse
Affiliation(s)
- Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Aranka Brockmüller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.B.); (M.S.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.B.); (M.S.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
- Correspondence: ; Tel.: +974-4492-8334
| |
Collapse
|
18
|
Anderson CC, Khatri M, Roede JR. Time-dependent simvastatin administration enhances doxorubicin toxicity in neuroblastoma. Toxicol Rep 2020; 7:520-528. [PMID: 32368502 PMCID: PMC7184108 DOI: 10.1016/j.toxrep.2020.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 01/08/2023] Open
Abstract
Statins have a primary indication for the reduction and management of hypercholesterolemia; however, evidence shows that statins have the ability to increase the toxicity of chemotherapeutics within cancer cells by inducing anti-proliferative, anti-metastatic, and anti-angiogenic effects. More recently, lipophilic statins have shown complex interaction with energy metabolism, specifically acute mitochondrial dysfunction and delayed inhibition of glycolysis. With the goal to demonstrate that statin-mediated enhancement of chemotherapeutics is time-dependent, we hypothesized that the lipophilic statin simvastatin, in conjunction with variable co-exposure of doxorubicin or cisplatin, will enhance the toxicity of these drugs in neuroblastoma. Utilizing human SK-N-AS neuroblastoma cells, we assessed cell proliferation, necrosis, caspase activation, and overall apoptosis of these cells. After determining the toxicity of simvastatin at 48 h post-treatment, 10μM was chosen as the intervention concentration. We found that significant cell death resulted from 1.0μM dose of doxorubicin with 24 h pre-treatment of simvastatin. On the other hand, simvastatin enhancement of cisplatin toxicity was only observed in the co-exposure model. As doxorubicin has strict dosage limits due to its primary off-target toxicity in cardiac muscle, we further compared the effects of this drug combination on rat H9C2 cardiomyoblasts. We found that simvastatin did not enhance doxorubicin toxicity in this cell line. We conclude that simvastatin provides time-dependent sensitization of neuroblastoma cells to doxorubicin toxicity, and our results provide strong argument for the consideration of simvastatin as an adjuvant in doxorubicin-based chemotherapy programs.
Collapse
Affiliation(s)
- Colin C Anderson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, United States
| | - Meera Khatri
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, United States
| | - James R Roede
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, United States
| |
Collapse
|
19
|
Caffeine and Cisplatin Effectively Targets the Metabolism of a Triple-Negative Breast Cancer Cell Line Assessed via Phasor-FLIM. Int J Mol Sci 2020; 21:ijms21072443. [PMID: 32244616 PMCID: PMC7177700 DOI: 10.3390/ijms21072443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Triple-negative tumor cells, a malignant subtype of breast cancer, lack a biologically targeted therapy. Given its DNA repair inhibiting properties, caffeine has been shown to enhance the effectiveness of specific tumor chemotherapies. In this work, we have investigated the effects of caffeine, cisplatin, and a combination of the two as potential treatments in energy metabolism for three cell lines, triple-negative breast cancer (MDA-MB-231), estrogen-receptor lacking breast cancer (MCF7) and breast epithelial cells (MCF10A) using a sensitive label-free approach, phasor-fluorescence lifetime imaging microscopy (phasor-FLIM). We found that solely using caffeine to treat MDA-MB-231 shifts their metabolism towards respiratory-chain phosphorylation with a lower ratio of free to bound NADH, and a similar trend is seen in MCF7. However, MDA-MB-231 cells shifted to a higher ratio of free to bound NADH when cisplatin was added. The combination of cisplatin and caffeine together reduced the survival rate for MDA-MD231 and shifted their energy metabolism to a higher fraction of bound NADH indicative of oxidative phosphorylation. The FLIM and viability results of MCF10A cells demonstrate that the treatments targeted cancer cells over the normal breast tissue. The identification of energy metabolism alteration could open up strategies of improving chemotherapy for malignant breast cancer.
Collapse
|
20
|
Cargill K, Sims-Lucas S. Metabolic requirements of the nephron. Pediatr Nephrol 2020; 35:1-8. [PMID: 30554363 DOI: 10.1007/s00467-018-4157-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 12/23/2022]
Abstract
The mammalian kidney is a complex organ that has several metabolically active cell types to aid in waste filtration, salt-water balance, and electrolyte homeostasis in the body. These functions are done primarily through the nephron, which relies on strict regulation of various metabolic pathways. Any deviations in the metabolic profile of nephrons or their precursor cells called nephron progenitors can lead to renal pathologies and abnormal development. Metabolism encompasses the mechanisms by which cells generate intermediate molecules and energy in the form of adenosine triphosphate (ATP). ATP is required by all cells and is mainly generated through glycolysis, fatty acid oxidation, and oxidative phosphorylation. During kidney development, self-renewing or proliferating cells rely on glycolysis to a greater extent than the other metabolic pathways to supply energy, replenish reducing equivalents, and generate nucleotides. However, terminally differentiated cell types rely more heavily on fatty acid oxidation and oxidative phosphorylation performed in the mitochondria to fulfill energy requirements. Further, the mature nephron is comprised of distinct segments and each segment utilizes metabolic pathways to varying degrees depending on the specific function. This review will focus on major metabolic processes performed by the nephron during health and disease.
Collapse
Affiliation(s)
- Kasey Cargill
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, USA.,Department of Pediatrics, Division of Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sunder Sims-Lucas
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, USA. .,Department of Pediatrics, Division of Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
21
|
Wang X, Du G, Wu Y, Zhang Y, Guo F, Liu W, Wu R. Association between different levels of lipid metabolism‑related enzymes and fatty acid synthase in Wilms' tumor. Int J Oncol 2019; 56:568-580. [PMID: 31894270 PMCID: PMC6959468 DOI: 10.3892/ijo.2019.4948] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022] Open
Abstract
Wilms’ tumor is one of the most common malignant tumors of the abdomen in children. However, there is currently no recognized specific biomarker for the clinical diagnosis and prognosis of this tumor. Lipid metabolism is involved in membrane synthesis and oxidation in tumor cells. This process plays an important role in the development of tumors, but it has not yet been investigated in Wilms’ tumor. The aim of the present study was to characterize the changes in lipid metabolism and to contribute to the diagnosis and prognosis of Wilms’ tumor. Proteomics analysis was performed to detect lipid-metabolizing enzymes in 9 tissue samples from Wilms’ tumors and adjacent tissues, and proteomics revealed the presence of 19 differentially expressed lipid-metabolizing enzymes. Protein interaction analysis with the Search Tool for the Retrieval of Interacting Genes/Proteins was used to identify the interacting proteins. Immunohistochemistry (IHC), immunofluorescence and western blotting were used to further confirm whether the expression of fatty acid synthase (FASN) was significantly increased in the tumor tissues. Oncomine database and reverse transcription-PCR analyses further confirmed that the expression of FASN at the gene level was significantly increased in the tumors. Following collection of 65 pediatric cases of Wilms’ tumor at the Shandong Provincial Hospital between 2007 and 2012, the association between the expression of FASN and the clinical characteristics was analyzed, and IHC analysis further demonstrated that FASN expression was significantly associated with tumor stage and size. The association between FASN and the prognosis of children with Wilms’ tumor was analyzed using Kaplan-Meier survival curves. In addition, univariate survival analysis revealed that higher expression of FASN in Wilms’ tumors was associated with poorer prognosis. Our findings revealed that FASN may be used as a prognostic biomarker in patients with Wilms’ tumor. Furthermore, lipid metabolism may play an important role in the occurrence and development of Wilms’ tumor.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Guoqiang Du
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yidi Wu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yongfei Zhang
- Department of Dermatology, Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| | - Feng Guo
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Wei Liu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Rongde Wu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
22
|
Quintero Escobar M, Maschietto M, Krepischi ACV, Avramovic N, Tasic L. Insights into the Chemical Biology of Childhood Embryonal Solid Tumors by NMR-Based Metabolomics. Biomolecules 2019; 9:biom9120843. [PMID: 31817982 PMCID: PMC6995504 DOI: 10.3390/biom9120843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 01/19/2023] Open
Abstract
Most childhood cancers occur as isolated cases and show very different biological behavior when compared with cancers in adults. There are some solid tumors that occur almost exclusively in children among which stand out the embryonal solid tumors. These cancers main types are neuroblastoma, nephroblastoma (Wilms tumors), retinoblastoma and hepatoblastomas and tumors of the central nervous system (CNS). Embryonal solid tumors represent a heterogeneous group of cancers supposedly derived from undifferentiated cells, with histological features that resemble tissues of origin during embryogenesis. This key observation suggests that tumorigenesis might begin during early fetal or child life due to the errors in growth or pathways differentiation. There are not many literature data on genomic, transcriptomic, epigenetic, proteomic, or metabolomic differences in these types of cancers when compared to the omics- used in adult cancer research. Still, metabolomics by nuclear magnetic resonance (NMR) in childhood embryonal solid tumors research can contribute greatly to understand better metabolic pathways alterations and biology of the embryonal solid tumors and potential to be used in clinical applications. Different types of samples, such as tissues, cells, biofluids, mostly blood plasma and serum, can be analyzed by NMR to detect and identify cancer metabolic signatures and validated biomarkers using enlarged group of samples. The literature search for biomarkers points to around 20-30 compounds that could be associated with pediatric cancer as well as metastasis.
Collapse
Affiliation(s)
- Melissa Quintero Escobar
- Biological Chemistry Group, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083-970, Brazil;
- Laboratory of Blood Coagulation, Department of Medical Physiopathology, Hemocentro, University of Campinas (UNICAMP), Campinas 13083-878, Brazil
| | - Mariana Maschietto
- Research Center, Boldrini Children’s Hospital, Campinas 13083-884, Brazil;
| | - Ana C. V. Krepischi
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo (USP), Sao Paulo 05508-0970, Brazil;
| | - Natasa Avramovic
- Institute of Medical Chemistry, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia;
| | - Ljubica Tasic
- Biological Chemistry Group, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083-970, Brazil;
- Correspondence: ; Tel.: +55-19-3521-1106
| |
Collapse
|
23
|
MYCN-enhanced Oxidative and Glycolytic Metabolism Reveals Vulnerabilities for Targeting Neuroblastoma. iScience 2019; 21:188-204. [PMID: 31670074 PMCID: PMC6889365 DOI: 10.1016/j.isci.2019.10.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/10/2019] [Accepted: 10/08/2019] [Indexed: 12/21/2022] Open
Abstract
In pediatric neuroblastoma, MYCN-amplification correlates to poor clinical outcome and new treatment options are needed for these patients. Identifying the metabolic adaptations crucial for tumor progression may be a promising strategy to discover novel therapeutic targets. Here, we have combined proteomics, gene expression profiling, functional analysis, and metabolic tracing to decipher the impact of MYCN on neuroblastoma cell metabolism. We found that high MYCN levels are correlated with altered expression of proteins involved in multiple metabolic processes, including enhanced glycolysis and increased oxidative phosphorylation. Unexpectedly, we discovered that MYCN-amplified cells showed de novo glutamine synthesis. Furthermore, inhibition of β-oxidation reduced the viability of MYCN-amplified cells in vitro and decreased tumor burden in vivo, while not affecting non-MYCN–amplified tumors. Our data provide information on metabolic processes in MYCN expressing tumors, which could be exploited for the development of novel targeted therapies. High MYCN expression enhances glycolysis and oxidative phosphorylation in neuroblastoma Neuroblastoma cells with MYCN-amplification display de novo glutamine synthesis MYCN-amplified cells show fatty acid–dependent mitochondrial respiration Fatty acid oxidation is a vulnerability in MYCN-amplified neuroblastoma
Collapse
|
24
|
McGuire TR, Coulter DW, Bai D, Sughroue JA, Li J, Yang Z, Qiao Z, Liu Y, Murry DJ, Chhonker YS, McIntyre EM, Alexander G, Sharp JG, Li R. Effects of novel pyrrolomycin MP1 in MYCN amplified chemoresistant neuroblastoma cell lines alone and combined with temsirolimus. BMC Cancer 2019; 19:837. [PMID: 31455317 PMCID: PMC6712804 DOI: 10.1186/s12885-019-6033-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 08/13/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The activity of MP1, a pyrrolomycin, was studied in MYCN amplified neuroblastoma (NB) alone and combined with temsirolimus (TEM). METHODS Activity of MP1 was tested in MYCN amplified (BE-2c, IMR) and non amplified (SKN-AS) NB cells. The effect of MP1 on MYCN, MCL-1, cleaved PARP, LC3II/LC3I, bcl-2, BAX, and BRD-4 were determined by western blot and RNAseq. The effect of MP1 on metabolism, mitochondrial morphology, and cell cycle was determined. Toxicology and efficacy of MP1 plus TEM were evaluated. RESULTS The IC50 of MP1 was 0.096 μM in BE-2c cells compared to 0.89 μM in IMR, and >50 μM in SKN-AS. The IC50 of MP1 plus TEM in BE-2c cells was 0.023 μM. MP1 inhibited metabolism leading to quiescence and produced a decline in cell cycle S-phase. Electron microscopy showed cristae loss and rounding up of mitochondria. Gene and protein expression for MYCN and MCL-1 declined while LCII and cleaved PARP increased. Protein expression of BAX, bcl-2, and BRD-4 were not significantly changed after MP1 treatment. The in-vivo concentrations of MP1 in blood and tumor were sufficient to produce the biologic effects seen in-vitro. MP1 plus TEM produced a complete response in 3 out of 5 tumor bearing mice. In a second mouse study, the combination of MP1 and TEM slowed tumor growth compared to control. CONCLUSIONS MP1 has a potent inhibitory effect on the viability of MYCN amplified NB. Inhibition of metabolism by MP1 induced quiescence and autophagy with a favorable toxicology and drug distribution profile. When combined with TEM anti-tumor activity was potentiated in-vitro and in-vivo.
Collapse
Affiliation(s)
- Timothy R McGuire
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA.
| | - Don W Coulter
- College of Medicine, Division of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dachang Bai
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Jason A Sughroue
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Jerry Li
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Zunhua Yang
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Zhen Qiao
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Yan Liu
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Daryl J Murry
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Yashpal S Chhonker
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Erin M McIntyre
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Gracey Alexander
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - John G Sharp
- Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rongshi Li
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA.
- Chemistry and Medicinal Chemistry, UNMC Center for Drug Discovery & Department of Pharmaceutical Sciences, 986125 Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
25
|
Klepinin A, Ounpuu L, Mado K, Truu L, Chekulayev V, Puurand M, Shevchuk I, Tepp K, Planken A, Kaambre T. The complexity of mitochondrial outer membrane permeability and VDAC regulation by associated proteins. J Bioenerg Biomembr 2018; 50:339-354. [PMID: 29998379 PMCID: PMC6209068 DOI: 10.1007/s10863-018-9765-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/05/2018] [Indexed: 12/18/2022]
Abstract
Previous studies have shown that class II β-tubulin plays a key role in the regulation of oxidative phosphorylation (OXPHOS) in some highly differentiated cells, but its role in malignant cells has remained unclear. To clarify these aspects, we compared the bioenergetic properties of HL-1 murine sarcoma cells, murine neuroblastoma cells (uN2a) and retinoic acid - differentiated N2a cells (dN2a). We examined the expression and possible co-localization of mitochondrial voltage dependent anion channel (VDAC) with hexokinase-2 (HK-2) and βII-tubulin, the role of depolymerized βII-tubuline and the effect of both proteins in the regulation of mitochondrial outer membrane (MOM) permeability. Our data demonstrate that neuroblastoma and sarcoma cells are prone to aerobic glycolysis, which is partially mediated by the presence of VDAC bound HK-2. Microtubule destabilizing (colchicine) and stabilizing (taxol) agents do not affect the MOM permeability for ADP in N2a and HL-1 cells. The obtained results show that βII-tubulin does not regulate the MOM permeability for adenine nucleotides in these cells. HL-1 and NB cells display comparable rates of ADP-activated respiration. It was also found that differentiation enhances the involvement of OXPHOS in N2a cells due to the rise in their mitochondrial reserve capacity. Our data support the view that the alteration of mitochondrial affinity for ADNs is one of the characteristic features of cancer cells. It can be concluded that the binding sites for tubulin and hexokinase within the large intermembrane protein supercomplex Mitochondrial Interactosome, could be different between muscle and cancer cells.
Collapse
Affiliation(s)
- Aleksandr Klepinin
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Lyudmila Ounpuu
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Kati Mado
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Laura Truu
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Vladimir Chekulayev
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Marju Puurand
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Igor Shevchuk
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Kersti Tepp
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Anu Planken
- Oncology and Hematology Clinic at the North Estonia Medical Centre, Tallinn, Estonia
| | - Tuuli Kaambre
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia.
| |
Collapse
|
26
|
Aras O, Pearce G, Watkins AJ, Nurili F, Medine EI, Guldu OK, Tekin V, Wong J, Ma X, Ting R, Unak P, Akin O. An in-vivo pilot study into the effects of FDG-mNP in cancer in mice. PLoS One 2018; 13:e0202482. [PMID: 30125303 PMCID: PMC6101388 DOI: 10.1371/journal.pone.0202482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 08/04/2018] [Indexed: 11/19/2022] Open
Abstract
Purpose Previously, fluorodeoxy glucose conjugated magnetite nanoparticles (FDG-mNPs) injected into cancer cells in conjunction with the application of magnetic hyperthermia have shown promise in new FDG-mNPs applications. The aim of this study was to determine potential toxic or unwanted effects involving both tumour cells and normal tissue in other organs when FDG-mNPs are administered intravenously or intratumourally in mice. Materials and methods FDG-mNPs were synthesized. A group of six prostate-tumour bearing mice were injected with 23.42 mg/ml FDG-mNPs (intravenous injection, n = 3; intratumoural injection into the prostate tumour, n = 3). Mice were euthanized and histological sampling of tissue was conducted for the prostate tumour, as well as for lungs, lymph nodes, liver, kidneys, spleen, and brain, at 1 hour (n = 2) and 7 days (n = 4) post-injection. A second group of two normal (non-cancerous) mice received the same injection intravenously into the tail vein and were euthanised at 3 and 6 months post-injection, respectively, to investigate if FDG-mNPs remained in organs at those time points. Results In prostate-tumour bearing mice, FDG-mNPs concentrated in the prostate tumour, while relatively small amounts were found in the organs of other tissues, particularly the spleen and the liver; FDG-mNP concentrations decreased over time in all tissues. In normal mice, no detrimental effects were found in either mouse at 3 or 6 months. Conclusion Intravenous or intratumoural FDG-mNPs can be safely administered for effective cancer cell destruction. Further research on the clinical utility of FDG-mNPs will be conducted by applying hyperthermia in conjunction with FDG-mNPs in mice.
Collapse
Affiliation(s)
- Omer Aras
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
- * E-mail:
| | - Gillian Pearce
- School of Engineering and Applied Sciences, Aston University, Birmingham, United Kingdom
| | - Adam J. Watkins
- Aston Research Centre for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
- Division of Child Health, Obstetrics and Gynaecology, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Fuad Nurili
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Emin Ilker Medine
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
- Department of Nuclear Applications, Institute of Nuclear Sciences, Ege University, Izmir, Turkey
| | - Ozge Kozgus Guldu
- Department of Nuclear Applications, Institute of Nuclear Sciences, Ege University, Izmir, Turkey
| | - Volkan Tekin
- Department of Nuclear Applications, Institute of Nuclear Sciences, Ege University, Izmir, Turkey
| | - Julian Wong
- Division of Vascular & Endovascular Surgery, Department of Cardiac, Thoracic & Vascular Surgery, National University Heart Centre, Singapore, Singapore
| | - Xianghong Ma
- Division of Child Health, Obstetrics and Gynaecology, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Richard Ting
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, New York, United States of America
| | - Perihan Unak
- Department of Nuclear Applications, Institute of Nuclear Sciences, Ege University, Izmir, Turkey
| | - Oguz Akin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| |
Collapse
|
27
|
Calabrese FM, Clima R, Pignataro P, Lasorsa VA, Hogarty MD, Castellano A, Conte M, Tonini GP, Iolascon A, Gasparre G, Capasso M. A comprehensive characterization of rare mitochondrial DNA variants in neuroblastoma. Oncotarget 2018; 7:49246-49258. [PMID: 27351283 PMCID: PMC5226504 DOI: 10.18632/oncotarget.10271] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/09/2016] [Indexed: 02/07/2023] Open
Abstract
Background Neuroblastoma, a tumor of the developing sympathetic nervous system, is a common childhood neoplasm that is often lethal. Mitochondrial DNA (mtDNA) mutations have been found in most tumors including neuroblastoma. We extracted mtDNA data from a cohort of neuroblastoma samples that had undergone Whole Exome Sequencing (WES) and also used snap-frozen samples in which mtDNA was entirely sequenced by Sanger technology. We next undertook the challenge of determining those mutations that are relevant to, or arisen during tumor development. The bioinformatics pipeline used to extract mitochondrial variants from matched tumor/blood samples was enriched by a set of filters inclusive of heteroplasmic fraction, nucleotide variability, and in silico prediction of pathogenicity. Results Our in silico multistep workflow applied both on WES and Sanger-sequenced neuroblastoma samples, allowed us to identify a limited burden of somatic and germline mitochondrial mutations with a potential pathogenic impact. Conclusions The few singleton germline and somatic mitochondrial mutations emerged, according to our in silico analysis, do not appear to impact on the development of neuroblastoma. Our findings are consistent with the hypothesis that most mitochondrial somatic mutations can be considered as ‘passengers’ and consequently have no discernible effect in this type of cancer.
Collapse
Affiliation(s)
| | - Rosanna Clima
- Department of Medical and Surgical Sciences-DIMEC, Medical Genetics Unit, University of Bologna, Bologna, Italy
| | - Piero Pignataro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Vito Alessandro Lasorsa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Michael D Hogarty
- Department of Pediatrics, Division of Oncology, Children's Hospital of Philadelphia, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, USA
| | - Aurora Castellano
- Paediatric Haematology/Oncology Department, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Massimo Conte
- Oncology Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Gian Paolo Tonini
- Pediatric Research Institute (IRP) - Fondazione Città della Speranza, Neuroblastoma Laboratory, Padua, Italy
| | - Achille Iolascon
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences-DIMEC, Medical Genetics Unit, University of Bologna, Bologna, Italy
| | - Mario Capasso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Napoli, Italy.,IRCCS SDN, Istituto di Ricerca Diagnostica e Nucleare, Naples, Italy
| |
Collapse
|
28
|
TrkAIII signals endoplasmic reticulum stress to the mitochondria in neuroblastoma cells, resulting in glycolytic metabolic adaptation. Oncotarget 2017; 9:8368-8390. [PMID: 29492201 PMCID: PMC5823587 DOI: 10.18632/oncotarget.23618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/30/2017] [Indexed: 12/14/2022] Open
Abstract
Alternative TrkAIII splicing characterises advanced stage metastatic disease and post-therapeutic relapse in neuroblastoma (NB), and in NB models TrkAIII exhibits oncogenic activity. In this study, we report a novel role for TrkAIII in signaling ER stress to the mitochondria in SH-SY5Y NB cells that results in glycolytic metabolic adaptation. The ER stress-inducing agents DTT, A23187 and thapsigargin activated the ER stress-response in control pcDNA SH-SY5Y and TrkAIII expressing SH-SY5Y cells and in TrkAIII SH-SY5Y cells increased TrkAIII targeting to mitochondria and internalisation into inner-mitochondrial membranes. Within inner-mitochondrial membranes, TrkAIII was subjected to Omi/HtrA2-dependent cleavage to tyrosine phosphorylated 45–48kDa carboxyl terminal active fragments, localised predominantly in tyrosine kinase-domain mitochondrial matrix orientation. This stress-induced activation of mitochondrial TrkAIII was associated with increased ROS production, prevented by the ROS scavenger Resveratrol and underpinned by changes in Ca2+ movement, implicating ROS/Ca2+ interplay in overcoming the mitochondrial TrkAIII activation threshold. Stress-induced, cleavage-activation of mitochondrial TrkAIII resulted in mitochondrial PDHK1 tyrosine phosphorylation, leading to glycolytic metabolic adaptation. This novel mitochondrial role for TrkAIII provides a potential self-perpetuating, drug reversible way through which tumour microenvironmental stress may maintain the metastasis promoting “Warburg effect” in TrkAIII expressing NBs.
Collapse
|
29
|
Morscher RJ, Aminzadeh-Gohari S, Hauser-Kronberger C, Feichtinger RG, Sperl W, Kofler B. Combination of metronomic cyclophosphamide and dietary intervention inhibits neuroblastoma growth in a CD1-nu mouse model. Oncotarget 2017; 7:17060-73. [PMID: 26959744 PMCID: PMC4941371 DOI: 10.18632/oncotarget.7929] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/05/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND MYCN-amplification in high-grade Neuroblastoma (NB) tumors correlates with increased vascularization and therapy resistance. This study combines an anti-angiogenic approach with targeting NB metabolism for treatment. METHODS AND RESULTS Metronomic cyclophosphamide (MCP) monotherapy significantly inhibited NB growth and prolonged host survival. Growth inhibition was more pronounced in MYCN-amplified xenografts. Immunohistochemical evaluation of this subtype showed significant decrease in blood vessel density and intratumoral hemorrhage accompanied by blood vessel maturation and perivascular fibrosis. Up-regulation of VEGFA was not sufficient to compensate for the effects of the MCP regimen. Reduced Bcl-2 expression and increased caspase-3 cleavage were evident. In contrast non MYCN-amplified tumors developed resistance, which was accompanied by Bcl-2-up-regulation. Combining MCP with a ketogenic diet and/or calorie-restriction significantly enhanced the anti-tumor effect. Calorie-restricted ketogenic diet in combination with MCP resulted in tumor regression in all cases. CONCLUSIONS Our data show efficacy of combining an anti-angiogenic cyclophosphamide dosing regimen with dietary intervention in a preclinical NB model. These findings might open a new front in NB treatment.
Collapse
Affiliation(s)
- Raphael Johannes Morscher
- Laura Bassi Centre of Expertise-THERAPEP, Department of Pediatrics, Paracelsus Medical University, 5020 Salzburg, Austria.,Division of Medical Genetics, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Sepideh Aminzadeh-Gohari
- Laura Bassi Centre of Expertise-THERAPEP, Department of Pediatrics, Paracelsus Medical University, 5020 Salzburg, Austria
| | | | - René Günther Feichtinger
- Laura Bassi Centre of Expertise-THERAPEP, Department of Pediatrics, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Wolfgang Sperl
- Department of Pediatrics, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Barbara Kofler
- Laura Bassi Centre of Expertise-THERAPEP, Department of Pediatrics, Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
30
|
Subramanian M, Pearce G, Guldu OK, Tekin V, Miaskowski A, Aras O, Unak P. A Pilot Study Into the Use of FDG-mNP as an Alternative Approach in Neuroblastoma Cell Hyperthermia. IEEE Trans Nanobioscience 2017; 15:517-525. [PMID: 27824574 DOI: 10.1109/tnb.2016.2584543] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Herein, we present a pilot study concerning the use of fluorodeoxy glucose conjugated magnetite nanoparticles (FDG-mNP) as a potential agent in magnetic nanoparticle mediated neuroblastoma cancer cell hyperthermia. This approach makes use of the 'Warburg effect', utilizing the fact that cancer cells have a higher metabolic rate than normal cells. FDG-mNP were synthesized, then applied to the SH-SY5Y neuroblastoma cancer cell line and exposed to an ac magnetic field. 3D Calorimetry was performed on the FDG-mNP compound. Simulations were performed using SEMCAD X software using Thelonious, (an anatomically correct male child model) in order to understand more about the end requirements with respect to cancer cell destruction. We investigated FDG-mNP mediated neuroblastoma cytotoxicity in conjunction with ac magnetic field exposure. Results are presented for 3D FDG-mNP SAR mnp (10.86 ± 0.99 W/g of particles) using a therapeutic dose of 0.83 mg/ mL. Human model simulations suggest that 43 W/kg SAR Theo would be required to obtain 42 °C within the centre of a liver tumor (Tumor size, bounding box x = 64, y = 61, z = 65 [mm]), and that the temperature distribution is inhomogeneous within the tumor. Our study suggests that this approach could potentially be used to increase the temperature within cells that would result in cancer cell death due to hyperthermia. Further development of this research will also involve using whole tumors removed from living organisms in conjunction with magnetic resonance imaging and positron emission tomography.
Collapse
|
31
|
Aminzadeh-Gohari S, Feichtinger RG, Vidali S, Locker F, Rutherford T, O'Donnel M, Stöger-Kleiber A, Mayr JA, Sperl W, Kofler B. A ketogenic diet supplemented with medium-chain triglycerides enhances the anti-tumor and anti-angiogenic efficacy of chemotherapy on neuroblastoma xenografts in a CD1-nu mouse model. Oncotarget 2017; 8:64728-64744. [PMID: 29029389 PMCID: PMC5630289 DOI: 10.18632/oncotarget.20041] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/31/2017] [Indexed: 01/04/2023] Open
Abstract
Neuroblastoma (NB) is a pediatric malignancy characterized by a marked reduction in aerobic energy metabolism. Recent preclinical data indicate that targeting this metabolic phenotype by a ketogenic diet (KD), especially in combination with calorie restriction, slows tumor growth and enhances metronomic cyclophosphamide (CP) therapy of NB xenografts. Because calorie restriction would be contraindicated in most cancer patients, the aim of the present study was to optimize the KD such that the tumors are sensitized to CP without the need of calorie restriction. In a NB xenograft model, metronomic CP was combined with KDs of different triglyceride compositions and fed to CD1-nu mice ad libitum. Metronomic CP in combination with a KD containing 8-carbon medium-chain triglycerides exerted a robust anti-tumor effect, suppressing growth and causing a significant reduction of tumor blood-vessel density and intratumoral hemorrhage, accompanied by activation of AMP-activated protein kinase in NB cells. Furthermore, the KDs caused a significant reduction in the serum levels of essential amino acids, but increased those of serine, glutamine and glycine. Our data suggest that targeting energy metabolism by a modified KD may be considered as part of a multimodal treatment regimen to improve the efficacy of classic anti-NB therapy.
Collapse
Affiliation(s)
- Sepideh Aminzadeh-Gohari
- Department of Pediatrics, Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Paracelsus Medical University, Salzburg, Austria
| | - René Günther Feichtinger
- Department of Pediatrics, Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Paracelsus Medical University, Salzburg, Austria
| | - Silvia Vidali
- Department of Pediatrics, Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Paracelsus Medical University, Salzburg, Austria
| | - Felix Locker
- Department of Pediatrics, Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Paracelsus Medical University, Salzburg, Austria
| | | | - Maura O'Donnel
- Clinical Nutrition Vitaflo International, Liverpool, United Kingdom
| | | | | | - Wolfgang Sperl
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kofler
- Department of Pediatrics, Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
32
|
The ketogenic diet is not feasible as a therapy in a CD-1 nu/nu mouse model of renal cell carcinoma with features of Stauffer's syndrome. Oncotarget 2017; 8:57201-57215. [PMID: 28915665 PMCID: PMC5593636 DOI: 10.18632/oncotarget.19306] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/27/2017] [Indexed: 12/29/2022] Open
Abstract
The ketogenic diet (KD), a high-fat low-carbohydrate diet, has shown some efficacy in the treatment of certain types of tumors such as brain tumors and neuroblastoma. These tumors are characterized by the Warburg effect. Because renal cell carcinoma (RCC) presents similar energetic features as neuroblastoma, KD might also be effective in the treatment of RCC. To test this, we established xenografts with RCC 786-O cells in CD-1 nu/nu mice and then randomized them to a control diet or to KDs with different triglyceride contents. Although the KDs tended to reduce tumor growth, mouse survival was dramatically reduced due to massive weight loss. A possible explanation comes from observations of human RCC patients, who often experience secondary non-metastatic hepatic dysfunction due to secretion of high levels of inflammatory cytokines by the RCCs. Measurement of the mRNA levels of tumor necrosis factor alpha (TNFα) and interleukin-6 revealed high expression in the RCC xenografts compared to the original 786-O cells. The expression of TNFα, interleukin-6 and C-reactive protein were all increased in the livers of tumor-bearing mice, and KD significantly boosted their expression. KDs did not cause weight loss or liver inflammation in healthy mice, suggesting that KDs are per se safe, but might be contraindicated in the treatment of RCC patients presenting with Stauffer's syndrome, because they potentially worsen the associated hepatic dysfunction.
Collapse
|
33
|
Maser T, Rich M, Hayes D, Zhao P, Nagulapally AB, Bond J, Saulnier Sholler G. Tolcapone induces oxidative stress leading to apoptosis and inhibition of tumor growth in Neuroblastoma. Cancer Med 2017; 6:1341-1352. [PMID: 28429453 PMCID: PMC5463066 DOI: 10.1002/cam4.1065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/13/2017] [Accepted: 03/04/2017] [Indexed: 01/11/2023] Open
Abstract
Catechol‐O‐methyltransferase (COMT) is an enzyme that inactivates dopamine and other catecholamines by O‐methylation. Tolcapone, a drug commonly used in the treatment of Parkinson's disease, is a potent inhibitor of COMT and previous studies indicate that Tolcapone increases the bioavailability of dopamine in cells. In this study, we demonstrate that Tolcapone kills neuroblastoma (NB) cells in preclinical models by inhibition of COMT. Treating four established NB cells lines (SMS‐KCNR, SH‐SY5Y, BE(2)‐C, CHLA‐90) and two primary NB cell lines with Tolcapone for 48 h decreased cell viability in a dose‐dependent manner, with IncuCyte imaging and Western blotting indicating that cell death was due to caspase‐3‐mediated apoptosis. Tolcapone also increased ROS while simultaneously decreasing ATP‐per‐cell in NB cells. Additionally, COMT was inhibited by siRNA in NB cells and showed similar increases in apoptotic markers compared to Tolcapone. In vivo xenograft models displayed inhibition of tumor growth and a significant decrease in time‐to‐event in mice treated with Tolcapone compared to untreated mice. These results indicate that Tolcapone is cytotoxic to neuroblastoma cells and invite further studies into Tolcapone as a promising novel therapy for the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Tyler Maser
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital, Grand Rapids, Michigan
| | - Maria Rich
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital, Grand Rapids, Michigan
| | - David Hayes
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital, Grand Rapids, Michigan
| | - Ping Zhao
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital, Grand Rapids, Michigan
| | - Abhinav B Nagulapally
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital, Grand Rapids, Michigan
| | - Jeffrey Bond
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital, Grand Rapids, Michigan
| | - Giselle Saulnier Sholler
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital, Grand Rapids, Michigan.,College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| |
Collapse
|
34
|
Navrátilová J, Karasová M, Kohutková Lánová M, Jiráková L, Budková Z, Pacherník J, Šmarda J, Beneš P. Selective elimination of neuroblastoma cells by synergistic effect of Akt kinase inhibitor and tetrathiomolybdate. J Cell Mol Med 2017; 21:1859-1869. [PMID: 28244639 PMCID: PMC5571524 DOI: 10.1111/jcmm.13106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/25/2016] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma is the most common extracranial solid tumour of infancy. Pathological activation of glucose consumption, glycolysis and glycolysis‐activating Akt kinase occur frequently in neuroblastoma cells, and these changes correlate with poor prognosis of patients. Therefore, several inhibitors of glucose utilization and the Akt kinase activity are in preclinical trials as potential anti‐cancer drugs. However, metabolic plasticity of cancer cells might undermine efficacy of this approach. In this work, we identified oxidative phosphorylation as compensatory mechanism preserving viability of neuroblastoma cells with inhibited glucose uptake/Akt kinase. It was oxidative phosphorylation that maintained intracellular level of ATP and proliferative capacity of these cells. The oxidative phosphorylation inhibitors (rotenone, tetrathiomolybdate) synergized with inhibitor of the Akt kinase/glucose uptake in down‐regulation of both viability of neuroblastoma cells and clonogenic potential of cells forming neuroblastoma spheroids. Interestingly, tetrathiomolybdate acted as highly specific inhibitor of oxygen consumption and activator of lactate production in neuroblastoma cells, but not in normal fibroblasts and neuronal cells. Moreover, the reducing effect of tetrathiomolybdate on cell viability and the level of ATP in the cells with inhibited Akt kinase/glucose uptake was also selective for neuroblastoma cells. Therefore, efficient elimination of neuroblastoma cells requires inhibition of both glucose uptake/Akt kinase and oxidative phosphorylation activities. The use of tetrathiomolybdate as a mitochondrial inhibitor contributes to selectivity of this combined treatment, preferentially targeting neuroblastoma cells.
Collapse
Affiliation(s)
- Jarmila Navrátilová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.,Center for Biological and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Martina Karasová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martina Kohutková Lánová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ludmila Jiráková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zuzana Budková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jiří Pacherník
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Šmarda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Beneš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.,Center for Biological and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
35
|
Yoon HI, Kwon OR, Kang KN, Shin YS, Shin HS, Yeon EH, Kwon KY, Hwang I, Jeon YK, Kim Y, Kim CW. Diagnostic Value of Combining Tumor and Inflammatory Markers in Lung Cancer. J Cancer Prev 2016; 21:187-193. [PMID: 27722145 PMCID: PMC5051593 DOI: 10.15430/jcp.2016.21.3.187] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 09/08/2016] [Accepted: 09/11/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Despite major advances in lung cancer treatment, early detection remains the most promising way of improving outcomes. To detect lung cancer in earlier stages, many serum biomarkers have been tested. Unfortunately, no single biomarker can reliably detect lung cancer. We combined a set of 2 tumor markers and 4 inflammatory or metabolic markers and tried to validate the diagnostic performance in lung cancer. METHODS We collected serum samples from 355 lung cancer patients and 590 control subjects and divided them into training and validation datasets. After measuring serum levels of 6 biomarkers (human epididymis secretory protein 4 [HE4], carcinoembryonic antigen [CEA], regulated on activation, normal T cell expressed and secreted [RANTES], apolipoprotein A2 [ApoA2], transthyretin [TTR], and secretory vascular cell adhesion molecule-1 [sVCAM-1]), we tested various sets of biomarkers for their diagnostic performance in lung cancer. RESULTS In a training dataset, the area under the curve (AUC) values were 0.821 for HE4, 0.753 for CEA, 0.858 for RANTES, 0.867 for ApoA2, 0.830 for TTR, and 0.552 for sVCAM-1. A model using all 6 biomarkers and age yielded an AUC value of 0.986 and sensitivity of 93.2% (cutoff at specificity 94%). Applying this model to the validation dataset showed similar results. The AUC value of the model was 0.988, with sensitivity of 93.33% and specificity of 92.00% at the same cutoff point used in the validation dataset. Analyses by stages and histologic subtypes all yielded similar results. CONCLUSIONS Combining multiple tumor and systemic inflammatory markers proved to be a valid strategy in the diagnosis of lung cancer.
Collapse
Affiliation(s)
- Ho Il Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | | | | | | | | | | | - Keon Young Kwon
- Department of Pathology, Korea Regional Bank, Keimyung University School of Medicine, Daegu, Korea
| | - Ilseon Hwang
- Department of Pathology, Korea Regional Bank, Keimyung University School of Medicine, Daegu, Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Yongdai Kim
- Department of Statistics, College of Natural Science, Seoul National University, Seoul, Korea
| | - Chul Woo Kim
- BioInfra, Inc., Seoul, Korea; Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
36
|
Functional and Proteomic Investigations Reveal Major Royal Jelly Protein 1 Associated with Anti-hypertension Activity in Mouse Vascular Smooth Muscle Cells. Sci Rep 2016; 6:30230. [PMID: 27444336 PMCID: PMC4957218 DOI: 10.1038/srep30230] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/01/2016] [Indexed: 12/14/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) are a major cell type of the arterial wall and their functionality is associated with blood pressure regulation. Although royal jelly (RJ) has reported effects on anti-hypertension, the mechanism of blood pressure regulation by major royal jelly protein 1 (MRJP1), the most abundant RJ protein, is still unknown. The mrjp1 gene was inserted into mouse VSMCs to investigate how MRJP1 influences VSMC functionality by functional and proteomic analysis. The expression of MRJP1 in VSMCs significantly reduced cell contraction, migration, and proliferation, suggesting a potential role in decreasing hypertension via action on VSMCs. These anti-hypertension activities were further observed in the changes of the proteome setting of mouse VSMCs. Among 675 different proteins after MRJP1 expression, 646 were down-regulated and significantly enriched in pathways implicated in VSMC contraction and migration, which suggest MRJP1 lowers VSMC contraction and migration by inhibiting muscle filament movement. The down-regulated proteins also enriched pathways in proliferation, indicating that MRJP1 hinders VSMC proliferation by reducing the supply of energy and genetic material. This is the first report integrating MRJP1 into VSMC, revealing the function and mechanism correlated with anti-hypertensive activity. This offers a therapeutic potential to control hypertension by gene-therapy using bee-products.
Collapse
|