1
|
Mason NR, Cahill H, Diamond Y, McCleary K, Kotecha RS, Marshall GM, Mateos MK. Down syndrome-associated leukaemias: current evidence and challenges. Ther Adv Hematol 2024; 15:20406207241257901. [PMID: 39050114 PMCID: PMC11268035 DOI: 10.1177/20406207241257901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/13/2024] [Indexed: 07/27/2024] Open
Abstract
Children with Down syndrome (DS) are at increased risk of developing haematological malignancies, in particular acute megakaryoblastic leukaemia and acute lymphoblastic leukaemia. The microenvironment established by abnormal haematopoiesis driven by trisomy 21 is compounded by additional genetic and epigenetic changes that can drive leukaemogenesis in patients with DS. GATA-binding protein 1 (GATA1) somatic mutations are implicated in the development of transient abnormal myelopoiesis and the progression to myeloid leukaemia of DS (ML-DS) and provide a model of the multi-step process of leukaemogenesis in DS. This review summarises key genetic drivers for the development of leukaemia in patients with DS, the biology and treatment of ML-DS and DS-associated acute lymphoblastic leukaemia, late effects of treatments for DS-leukaemias and the focus for future targeted therapy.
Collapse
Affiliation(s)
- Nicola R. Mason
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
| | - Hilary Cahill
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
| | - Yonatan Diamond
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
| | - Karen McCleary
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
- School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Rishi S. Kotecha
- Department of Clinical Haematology, Oncology, Blood and Bone Marrow Transplantation, Perth Children’s Hospital, Perth, WA, Australia
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Glenn M. Marshall
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, Randwick, NSW, Australia School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Marion K. Mateos
- Kids Cancer Centre, Sydney Children’s Hospital, Level 1 South Wing, High Street, Randwick, NSW 2031, Australia
- School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| |
Collapse
|
2
|
Jin M, Ma Z, Dang R, Zhang H, Kim R, Xue H, Pascual J, Finkbeiner S, Head E, Liu Y, Jiang P. A Trisomy 21-linked Hematopoietic Gene Variant in Microglia Confers Resilience in Human iPSC Models of Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584646. [PMID: 38559257 PMCID: PMC10979994 DOI: 10.1101/2024.03.12.584646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
While challenging, identifying individuals displaying resilience to Alzheimer's disease (AD) and understanding the underlying mechanism holds great promise for the development of new therapeutic interventions to effectively treat AD. Down syndrome (DS), or trisomy 21, is the most common genetic cause of AD. Interestingly, some people with DS, despite developing AD neuropathology, show resilience to cognitive decline. Furthermore, DS individuals are at an increased risk of myeloid leukemia due to somatic mutations in hematopoietic cells. Recent studies indicate that somatic mutations in hematopoietic cells may lead to resilience to neurodegeneration. Microglia, derived from hematopoietic lineages, play a central role in AD etiology. We therefore hypothesize that microglia carrying the somatic mutations associated with DS myeloid leukemia may impart resilience to AD. Using CRISPR-Cas9 gene editing, we introduce a trisomy 21-linked hotspot CSF2RB A455D mutation into human pluripotent stem cell (hPSC) lines derived from both DS and healthy individuals. Employing hPSC-based in vitro microglia culture and in vivo human microglia chimeric mouse brain models, we show that in response to pathological tau, the CSF2RB A455D mutation suppresses microglial type-1 interferon signaling, independent of trisomy 21 genetic background. This mutation reduces neuroinflammation and enhances phagocytic and autophagic functions, thereby ameliorating senescent and dystrophic phenotypes in human microglia. Moreover, the CSF2RB A455D mutation promotes the development of a unique microglia subcluster with tissue repair properties. Importantly, human microglia carrying CSF2RB A455D provide protection to neuronal function, such as neurogenesis and synaptic plasticity in chimeric mouse brains where human microglia largely repopulate the hippocampus. When co-transplanted into the same mouse brains, human microglia with CSF2RB A455D mutation phagocytize and replace human microglia carrying the wildtype CSF2RB gene following pathological tau treatment. Our findings suggest that hPSC-derived CSF2RB A455D microglia could be employed to develop effective microglial replacement therapy for AD and other age-related neurodegenerative diseases, even without the need to deplete endogenous diseased microglia prior to cell transplantation.
Collapse
Affiliation(s)
- Mengmeng Jin
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Ziyuan Ma
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Rui Dang
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Haiwei Zhang
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Rachael Kim
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Haipeng Xue
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Jesse Pascual
- Department of Pathology and Laboratory Medicine, Department of Neurology, University of California, Irvine, CA 92697, USA
| | - Steven Finkbeiner
- Ceter for Systems and Therapeutics and the Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes; University of California, San Francisco, CA 94158, USA
- Departments of Neurology and Physiology, University of California, San Francisco, CA 94158, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, Department of Neurology, University of California, Irvine, CA 92697, USA
| | - Ying Liu
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| |
Collapse
|
3
|
Sessa R, Trombetti S, Bianco AL, Amendola G, Catapano R, Cesaro E, Petruzziello F, D'Armiento M, Maruotti GM, Menna G, Izzo P, Grosso M. miR-1202 acts as anti-oncomiR in myeloid leukaemia by down-modulating GATA-1 S expression. Open Biol 2024; 14:230319. [PMID: 38350611 PMCID: PMC10864098 DOI: 10.1098/rsob.230319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/21/2023] [Indexed: 02/15/2024] Open
Abstract
Transient abnormal myelopoiesis (TAM) is a Down syndrome-related pre-leukaemic condition characterized by somatic mutations in the haematopoietic transcription factor GATA-1 that result in exclusive production of its shorter isoform (GATA-1S). Given the common hallmark of altered miRNA expression profiles in haematological malignancies and the pro-leukaemic role of GATA-1S, we aimed to search for miRNAs potentially able to modulate the expression of GATA-1 isoforms. Starting from an in silico prediction of miRNA binding sites in the GATA-1 transcript, miR-1202 came into our sight as potential regulator of GATA-1 expression. Expression studies in K562 cells revealed that miR-1202 directly targets GATA-1, negatively regulates its expression, impairs GATA-1S production, reduces cell proliferation, and increases apoptosis sensitivity. Furthermore, data from TAM and myeloid leukaemia patients provided substantial support to our study by showing that miR-1202 down-modulation is accompanied by increased GATA-1 levels, with more marked effects on GATA-1S. These findings indicate that miR-1202 acts as an anti-oncomiR in myeloid cells and may impact leukaemogenesis at least in part by down-modulating GATA-1S levels.
Collapse
Affiliation(s)
- Raffaele Sessa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Silvia Trombetti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Alessandra Lo Bianco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Giovanni Amendola
- Department of Pediatrics and Intensive Care Unit, Umberto I Hospital, Nocera Inferiore, Italy
| | - Rosa Catapano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Elena Cesaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Fara Petruzziello
- Department of Pediatric Hemato-Oncology, AORN Santobono-Pausilipon, Naples, Italy
| | - Maria D'Armiento
- Department of Public Health, Section of Pathology, University of Naples Federico II, Naples, Italy
| | - Giuseppe Maria Maruotti
- Gynecology and Obstetrics Unit, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Giuseppe Menna
- Department of Pediatric Hemato-Oncology, AORN Santobono-Pausilipon, Naples, Italy
| | - Paola Izzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate 'Franco Salvatore', Naples, Italy
| | - Michela Grosso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate 'Franco Salvatore', Naples, Italy
| |
Collapse
|
4
|
de Matos RRC, Ferreira GM, Bonecker S, Rouxinol M, da Costa ES, Mello FV, Abdelhay E, Ribeiro RC, Zalcberg I, Silva MLM. BCR- ABL1 co-occurring with CBFA2T3- GLIS2 and RAM immunophenotype in a non-Down syndrome infant with acute megakaryoblastic leukemia. Leuk Lymphoma 2023; 64:2042-2046. [PMID: 37548333 DOI: 10.1080/10428194.2023.2243532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/22/2023] [Indexed: 08/08/2023]
Affiliation(s)
- Roberto R Capela de Matos
- Department of Cytogenetics and Molecular Biology, Bone Marrow Transplantation Unit, and Post Graduation Program in Oncology, Instituto Nacional de Câncer José de Alencar Gomes da Silva (INCA), Rio de Janeiro, Brazil
| | - Gerson Moura Ferreira
- Department of Cytogenetics and Molecular Biology, Bone Marrow Transplantation Unit, and Post Graduation Program in Oncology, Instituto Nacional de Câncer José de Alencar Gomes da Silva (INCA), Rio de Janeiro, Brazil
| | - Simone Bonecker
- Department of Cytogenetics and Molecular Biology, Bone Marrow Transplantation Unit, and Post Graduation Program in Oncology, Instituto Nacional de Câncer José de Alencar Gomes da Silva (INCA), Rio de Janeiro, Brazil
| | | | - Elaine Sobral da Costa
- Clinical Medicine Post-Graduation Program, Faculty of Medicine, and Pediatrics Institute IPPMG, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiana V Mello
- Clinical Medicine Post-Graduation Program, Faculty of Medicine, and Pediatrics Institute IPPMG, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliana Abdelhay
- Department of Cytogenetics and Molecular Biology, Bone Marrow Transplantation Unit, and Post Graduation Program in Oncology, Instituto Nacional de Câncer José de Alencar Gomes da Silva (INCA), Rio de Janeiro, Brazil
| | - Raul C Ribeiro
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Ilana Zalcberg
- Department of Cytogenetics and Molecular Biology, Bone Marrow Transplantation Unit, and Post Graduation Program in Oncology, Instituto Nacional de Câncer José de Alencar Gomes da Silva (INCA), Rio de Janeiro, Brazil
| | - Maria Luiza Macedo Silva
- Department of Cytogenetics and Molecular Biology, Bone Marrow Transplantation Unit, and Post Graduation Program in Oncology, Instituto Nacional de Câncer José de Alencar Gomes da Silva (INCA), Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Rosli AA, Azlan A, Rajasegaran Y, Mot YY, Heidenreich O, Yusoff NM, Moses EJ. Cytogenetics analysis as the central point of genetic testing in acute myeloid leukemia (AML): a laboratory perspective for clinical applications. Clin Exp Med 2023; 23:1137-1159. [PMID: 36229751 DOI: 10.1007/s10238-022-00913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/02/2022] [Indexed: 11/27/2022]
Abstract
Chromosomal abnormalities in acute myeloid leukemia (AML) have significantly contributed to scientific understanding of its molecular pathogenesis, which has aided in the development of therapeutic strategies and enhanced management of AML patients. The diagnosis, prognosis and treatment of AML have also rapidly transformed in recent years, improving initial response to treatment, remission rates, risk stratification and overall survival. Hundreds of rare chromosomal abnormalities in AML have been discovered thus far using chromosomal analysis and next-generation sequencing. As a result, the World Health Organization (WHO) has categorized AML into subgroups based on genetic, genomic and molecular characteristics, to complement the existing French-American classification which is solely based on morphology. In this review, we aim to highlight the most clinically relevant chromosomal aberrations in AML together with the technologies employed to detect these aberrations in laboratory settings.
Collapse
Affiliation(s)
- Aliaa Arina Rosli
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Adam Azlan
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Yaashini Rajasegaran
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Yee Yik Mot
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Olaf Heidenreich
- Prinses Máxima Centrum Voor Kinderoncologie, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Narazah Mohd Yusoff
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Emmanuel Jairaj Moses
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia.
| |
Collapse
|
6
|
Susco SG, Ghosh S, Mazzucato P, Angelini G, Beccard A, Barrera V, Berryer MH, Messana A, Lam D, Hazelbaker DZ, Barrett LE. Molecular convergence between Down syndrome and fragile X syndrome identified using human pluripotent stem cell models. Cell Rep 2022; 40:111312. [PMID: 36070702 PMCID: PMC9465809 DOI: 10.1016/j.celrep.2022.111312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/19/2022] [Accepted: 08/12/2022] [Indexed: 11/27/2022] Open
Abstract
Down syndrome (DS), driven by an extra copy of chromosome 21 (HSA21), and fragile X syndrome (FXS), driven by loss of the RNA-binding protein FMRP, are two common genetic causes of intellectual disability and autism. Based upon the number of DS-implicated transcripts bound by FMRP, we hypothesize that DS and FXS may share underlying mechanisms. Comparing DS and FXS human pluripotent stem cell (hPSC) and glutamatergic neuron models, we identify increased protein expression of select targets and overlapping transcriptional perturbations. Moreover, acute upregulation of endogenous FMRP in DS patient cells using CRISPRa is sufficient to significantly reduce expression levels of candidate proteins and reverse 40% of global transcriptional perturbations. These results pinpoint specific molecular perturbations shared between DS and FXS that can be leveraged as a strategy for target prioritization; they also provide evidence for the functional relevance of previous associations between FMRP targets and disease-implicated genes.
Collapse
Affiliation(s)
- Sara G Susco
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sulagna Ghosh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Patrizia Mazzucato
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gabriella Angelini
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amanda Beccard
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Victor Barrera
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Martin H Berryer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Angelica Messana
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daisy Lam
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dane Z Hazelbaker
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lindy E Barrett
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
7
|
O'Hagan Henderson S, Glaser A, Frietsch JJ, Hochhaus A, Hilgendorf I. The incidental discovery of a constitutional trisomy 21 mosaicism in an adult female with myelodysplastic/myeloproliferative neoplasm. Ann Hematol 2022; 101:919-920. [PMID: 34471943 PMCID: PMC8913527 DOI: 10.1007/s00277-021-04655-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/24/2021] [Indexed: 11/24/2022]
Affiliation(s)
- Samantha O'Hagan Henderson
- Klinik für Innere Medizin II - Onkologie und Hämatologie, Universitätsklinikum Oldenburg, Oldenburg, Germany
| | - Anita Glaser
- Institut für Humangenetik, Universitätsklinikum Jena, Jena, Germany
| | - Jochen J Frietsch
- Klinik für Innere Medizin II, Abteilung für Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Andreas Hochhaus
- Klinik für Innere Medizin II, Abteilung für Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Inken Hilgendorf
- Klinik für Innere Medizin II, Abteilung für Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
8
|
Lejman M, Chałupnik A, Chilimoniuk Z, Dobosz M. Genetic Biomarkers and Their Clinical Implications in B-Cell Acute Lymphoblastic Leukemia in Children. Int J Mol Sci 2022; 23:2755. [PMID: 35269896 PMCID: PMC8911213 DOI: 10.3390/ijms23052755] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a heterogeneous group of hematologic malignancies characterized by abnormal proliferation of immature lymphoid cells. It is the most commonly diagnosed childhood cancer with an almost 80% cure rate. Despite favorable survival rates in the pediatric population, a significant number of patients develop resistance to therapy, resulting in poor prognosis. ALL is a heterogeneous disease at the genetic level, but the intensive development of sequencing in the last decade has made it possible to broaden the study of genomic changes. New technologies allow us to detect molecular changes such as point mutations or to characterize epigenetic or proteomic profiles. This process made it possible to identify new subtypes of this disease characterized by constellations of genetic alterations, including chromosome changes, sequence mutations, and DNA copy number alterations. These genetic abnormalities are used as diagnostic, prognostic and predictive biomarkers that play an important role in earlier disease detection, more accurate risk stratification, and treatment. Identification of new ALL biomarkers, and thus a greater understanding of their molecular basis, will lead to better monitoring of the course of the disease. In this article, we provide an overview of the latest information on genomic alterations found in childhood ALL and discuss their impact on patients' clinical outcomes.
Collapse
Affiliation(s)
- Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Aleksandra Chałupnik
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (Z.C.); (M.D.)
| | - Zuzanna Chilimoniuk
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (Z.C.); (M.D.)
| | - Maciej Dobosz
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (Z.C.); (M.D.)
| |
Collapse
|
9
|
Modeling Down Syndrome Myeloid Leukemia by Sequential Introduction of GATA1 and STAG2 Mutations in Induced Pluripotent Stem Cells with Trisomy 21. Cells 2022; 11:cells11040628. [PMID: 35203280 PMCID: PMC8870267 DOI: 10.3390/cells11040628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 01/21/2023] Open
Abstract
Children with Down syndrome (DS) have a high risk for acute myeloid leukemia (DS-ML). Genomic characterization of DS-ML blasts showed the presence of unique mutations in GATA1, an essential hematopoietic transcription factor, leading to the production of a truncated from of GATA1 (GATA1s). GATA1s, together with trisomy 21, is sufficient to develop a pre-leukemic condition called transient abnormal myelopoiesis (TAM). Approximately 30% of these cases progress into DS-ML by acquisition of additional somatic mutations in a stepwise manner. We previously developed a model for TAM by introducing disease-specific GATA1 mutation in trisomy 21-induced pluripotent stem cells (iPSCs), leading to the production of N-terminally truncated short form of GATA1 (GATA1s). In this model, we used CRISPR/Cas9 to introduce a co-operating mutation in STAG2, a member of the cohesin complex recurrently mutated in DS-ML but not in TAM. Hematopoietic differentiation of GATA1 STAG2 double-mutant iPSC lines confirmed GATA1s expression and the loss of functional STAG2 protein, leading to enhanced production of immature megakaryocytic population compared to GATA1 mutant alone. Megakaryocyte-specific lineage expansion of the double-mutant HSPCs exhibited close resemblance to the DS-ML immunophenotype. Transcriptome analysis showed that GATA1 mutation resulted in downregulation of megakaryocytic and erythrocytic differentiation pathways and interferon α/β signaling, along with an upregulation of pathways promoting myeloid differentiation such as toll-like receptor cascade. The co-occurrence of STAG2 knockout partially reverted the expression of genes involved in myeloid differentiation, likely leading to enhanced self-renewal and promoting leukemogenesis. In conclusion, we developed a DS-ML model via hematopoietic differentiation of gene-targeted iPSCs bearing trisomy 21.
Collapse
|
10
|
Marron M, Brackmann LK, Schwarz H, Hummel-Bartenschlager W, Zahnreich S, Galetzka D, Schmitt I, Grad C, Drees P, Hopf J, Mirsch J, Scholz-Kreisel P, Kaatsch P, Poplawski A, Hess M, Binder H, Hankeln T, Blettner M, Schmidberger H. Identification of Genetic Predispositions Related to Ionizing Radiation in Primary Human Skin Fibroblasts From Survivors of Childhood and Second Primary Cancer as Well as Cancer-Free Controls: Protocol for the Nested Case-Control Study KiKme. JMIR Res Protoc 2021; 10:e32395. [PMID: 34762066 PMCID: PMC8663494 DOI: 10.2196/32395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Therapy for a first primary neoplasm (FPN) in childhood with high doses of ionizing radiation is an established risk factor for second primary neoplasms (SPN). An association between exposure to low doses and childhood cancer is also suggested; however, results are inconsistent. As only subgroups of children with FPNs develop SPNs, an interaction between radiation, genetic, and other risk factors is presumed to influence cancer development. OBJECTIVE Therefore, the population-based, nested case-control study KiKme aims to identify differences in genetic predisposition and radiation response between childhood cancer survivors with and without SPNs as well as cancer-free controls. METHODS We conducted a population-based, nested case-control study KiKme. Besides questionnaire information, skin biopsies and saliva samples are available. By measuring individual reactions to different exposures to radiation (eg, 0.05 and 2 Gray) in normal somatic cells of the same person, our design enables us to create several exposure scenarios for the same person simultaneously and measure several different molecular markers (eg, DNA, messenger RNA, long noncoding RNA, copy number variation). RESULTS Since 2013, 101 of 247 invited SPN patients, 340 of 1729 invited FPN patients, and 150 of 246 invited cancer-free controls were recruited and matched by age and sex. Childhood cancer patients were additionally matched by tumor morphology, year of diagnosis, and age at diagnosis. Participants reported on lifestyle, socioeconomical, and anthropometric factors, as well as on medical radiation history, health, and family history of diseases (n=556). Primary human fibroblasts from skin biopsies of the participants were cultivated (n=499) and cryopreserved (n=3886). DNA was extracted from fibroblasts (n=488) and saliva (n=510). CONCLUSIONS This molecular-epidemiological study is the first to combine observational epidemiological research with standardized experimental components in primary human skin fibroblasts to identify genetic predispositions related to ionizing radiation in childhood and SPNs. In the future, fibroblasts of the participants will be used for standardized irradiation experiments, which will inform analysis of the case-control study and vice versa. Differences between participants will be identified using several molecular markers. With its innovative combination of experimental and observational components, this new study will provide valuable data to forward research on radiation-related risk factors in childhood cancer and SPNs. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/32395.
Collapse
Affiliation(s)
- Manuela Marron
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Lara Kim Brackmann
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Heike Schwarz
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | | | - Sebastian Zahnreich
- Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Danuta Galetzka
- Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Iris Schmitt
- Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Christian Grad
- Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Philipp Drees
- Department of Orthopedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Johannes Hopf
- Department of Orthopedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Johanna Mirsch
- Radiation Biology and DNA Repair, Technical University of Darmstadt, Darmstadt, Germany
| | - Peter Scholz-Kreisel
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Peter Kaatsch
- German Childhood Cancer Registry, Institute for Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Alicia Poplawski
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Moritz Hess
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Harald Binder
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University, Mainz, Germany
| | - Maria Blettner
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Heinz Schmidberger
- Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
11
|
Schmidt MP, Colita A, Ivanov AV, Coriu D, Miron IC. Outcomes of patients with Down syndrome and acute leukemia: A retrospective observational study. Medicine (Baltimore) 2021; 100:e27459. [PMID: 34622870 PMCID: PMC8500660 DOI: 10.1097/md.0000000000027459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/10/2021] [Accepted: 09/21/2021] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT Children with Down syndrome (DS) have a higher risk of developing acute leukemia than do those without DS. There are few studies in the literature about outcome, survival, and difficulties of treating patients with DS and acute leukemia in a developing country. This study aimed to analyze the outcome, response to treatment, survival, treatment complications, and causes of death in patients with DS and acute leukemia compared with those in patients with acute leukemia without DS diagnosed in the same period of time.We conducted a retrospective observational analysis including a cohort of 21 patients with DS and acute leukemia diagnosed between 2009 and 2018 in 3 hemato-oncology centers (2 pediatric centers and 1 adult hematology center). A group of patients with DS-acute lymphoblastic leukemia (DS-ALL) was analyzed and compared with a group of 165 patients with acute lymphoblastic leukemia without DS, and a group of patients with DS-acute myeloid leukemia (DS-AML) was analyzed and compared with a group of 50 patients with acute myeloid leukemia without DS, which was diagnosed during the same period of time (2009-2018) and treated under similar conditions in terms of both treatment protocols and economic resources.The overall survival rates in children with DS-ALL and DS-AML were 35.7% and 57.1%, respectively (P = .438). The overall survival rate was significantly worse in children with DS-ALL than in those with acute lymphoblastic leukemia without DS (35.71% vs 75.80%, P = .001). We noted that treatment-related mortality in the patients with DS-ALL was high (50%) (infections and toxicities related to chemotherapy); this result was significantly different from that for patients with leukemia without DS (P < .0001). The relapse rate was higher in patients with DS-ALL but not significantly higher than that in patients without DS (P = .13).In contrast, the overall survival rate was better for patients with DS-AML than for those with acute myeloid leukemia without DS (57.1% vs 45.1%, P = .47).Because of the particularities of the host, we suggest that DS-ALL and DS-AML should be considered as independent diseases and treated according to specific protocols with therapy optimization per the minimal residual disease.
Collapse
Affiliation(s)
| | - Anca Colita
- Fundeni Clinical Institut - Pediatrics Department, Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Anca-Viorica Ivanov
- “Sf Maria” Children's Hospital-Hemato-Oncology Department, Iasi, Romania
- “Grigore T Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Daniel Coriu
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Fundeni Clinical Institut-Hematology Department, Bucharest, Romania
| | - Ingrith-Crenguta Miron
- “Sf Maria” Children's Hospital-Hemato-Oncology Department, Iasi, Romania
- “Grigore T Popa” University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
12
|
Copy Number Changes and Allele Distribution Patterns of Chromosome 21 in B Cell Precursor Acute Lymphoblastic Leukemia. Cancers (Basel) 2021; 13:cancers13184597. [PMID: 34572826 PMCID: PMC8465600 DOI: 10.3390/cancers13184597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 01/12/2023] Open
Abstract
Chromosome 21 is the most affected chromosome in childhood acute lymphoblastic leukemia. Many of its numerical and structural abnormalities define diagnostically and clinically important subgroups. To obtain an overview about their types and their approximate genetic subgroup-specific incidence and distribution, we performed cytogenetic, FISH and array analyses in a total of 578 ALL patients (including 26 with a constitutional trisomy 21). The latter is the preferred method to assess genome-wide large and fine-scale copy number abnormalities (CNA) together with their corresponding allele distribution patterns. We identified a total of 258 cases (49%) with chromosome 21-associated CNA, a number that is perhaps lower-than-expected because ETV6-RUNX1-positive cases (11%) were significantly underrepresented in this array-analyzed cohort. Our most interesting observations relate to hyperdiploid leukemias with tetra- and pentasomies of chromosome 21 that develop in constitutionally trisomic patients. Utilizing comparative short tandem repeat analyses, we were able to prove that switches in the array-derived allele patterns are in fact meiotic recombination sites, which only become evident in patients with inborn trisomies that result from a meiosis 1 error. The detailed analysis of such cases may eventually provide important clues about the respective maldistribution mechanisms and the operative relevance of chromosome 21-specific regions in hyperdiploid leukemias.
Collapse
|
13
|
Ageing and Olfactory Dysfunction in Trisomy 21: A Systematic Review. Brain Sci 2021; 11:brainsci11070952. [PMID: 34356186 PMCID: PMC8305843 DOI: 10.3390/brainsci11070952] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/27/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022] Open
Abstract
Purpose: The olfactory system is particularly vulnerable in an ageing brain, both anatomically and functionally, and these brain changes are more pronounced among individuals with trisomy 21. Furthermore, the age of the system starts to deteriorate, and the mechanism involved is unclear in an individual with trisomy 21. Therefore, the present review aims to summarise the available information related to this topic and to suggest questions still unanswered which can be a subject of further research. Methods: A systematic literature search of trisomy 21 and olfactory dysfunction was conducted using PubMed/MEDLINE and Scopus electronic database following PRISMA guidelines. References and citations were checked in the Google Scholar database. Reports were extracted for information on demographics and psychophysical evaluation. Then, the reports were systematically reviewed based on the effects of ageing on the three olfactory domains: threshold, discrimination, and identification. Results: Participants with trisomy 21 show an early onset of olfactory impairment, and the age effect of the olfactory deficit is fully expressed at age > 30 years old. The three olfactory domains, threshold, discrimination, and identification, are suggested to be impaired in trisomy 21 participants with age > 30 years old. Conclusions: Olfactory dysfunction in an individual with trisomy 21 commences at a relatively young age and affects the three olfactory domains. A challenge for the future is to quantitatively establish the olfactory function of an individual with trisomy 21 at all ages with more detailed measurements to further understand the pathophysiology of this brain deterioration.
Collapse
|
14
|
Gažová I, Lefevre L, Bush SJ, Rojo R, Hume DA, Lengeling A, Summers KM. CRISPR-Cas9 Editing of Human Histone Deubiquitinase Gene USP16 in Human Monocytic Leukemia Cell Line THP-1. Front Cell Dev Biol 2021; 9:679544. [PMID: 34136489 PMCID: PMC8203323 DOI: 10.3389/fcell.2021.679544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
USP16 is a histone deubiquitinase which facilitates G2/M transition during the cell cycle, regulates DNA damage repair and contributes to inducible gene expression. We mutated the USP16 gene in a high differentiation clone of the acute monocytic leukemia cell line THP-1 using the CRISPR-Cas9 system and generated four homozygous knockout clones. All were able to proliferate and to differentiate in response to phorbol ester (PMA) treatment. One line was highly proliferative prior to PMA treatment and shut down proliferation upon differentiation, like wild type. Three clones showed sustained expression of the progenitor cell marker MYB, indicating that differentiation had not completely blocked proliferation in these clones. Network analysis of transcriptomic differences among wild type, heterozygotes and homozygotes showed clusters of genes that were up- or down-regulated after differentiation in all cell lines. Prior to PMA treatment, the homozygous clones had lower levels than wild type of genes relating to metabolism and mitochondria, including SRPRB, encoding an interaction partner of USP16. There was also apparent loss of interferon signaling. In contrast, a number of genes were up-regulated in the homozygous cells compared to wild type at baseline, including other deubiquitinases (USP12, BAP1, and MYSM1). However, three homozygotes failed to fully induce USP3 during differentiation. Other network clusters showed effects prior to or after differentiation in the homozygous clones. Thus the removal of USP16 affected the transcriptome of the cells, although all these lines were able to survive, which suggests that the functions attributed to USP16 may be redundant. Our analysis indicates that the leukemic line can adapt to the extreme selection pressure applied by the loss of USP16, and the harsh conditions of the gene editing and selection protocol, through different compensatory pathways. Similar selection pressures occur during the evolution of a cancer in vivo, and our results can be seen as a case study in leukemic cell adaptation. USP16 has been considered a target for cancer chemotherapy, but our results suggest that treatment would select for escape mutants that are resistant to USP16 inhibitors.
Collapse
Affiliation(s)
- Iveta Gažová
- The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
| | - Lucas Lefevre
- The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
| | - Stephen J Bush
- The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
| | - Rocio Rojo
- The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
| | - David A Hume
- Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Andreas Lengeling
- The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
| | - Kim M Summers
- The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom.,Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
15
|
Klco JM, Mullighan CG. Advances in germline predisposition to acute leukaemias and myeloid neoplasms. Nat Rev Cancer 2021; 21:122-137. [PMID: 33328584 PMCID: PMC8404376 DOI: 10.1038/s41568-020-00315-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
Although much work has focused on the elucidation of somatic alterations that drive the development of acute leukaemias and other haematopoietic diseases, it has become increasingly recognized that germline mutations are common in many of these neoplasms. In this Review, we highlight the different genetic pathways impacted by germline mutations that can ultimately lead to the development of familial and sporadic haematological malignancies, including acute lymphoblastic leukaemia, acute myeloid leukaemia (AML) and myelodysplastic syndrome (MDS). Many of the genes disrupted by somatic mutations in these diseases (for example, TP53, RUNX1, IKZF1 and ETV6) are the same as those that harbour germline mutations in children and adolescents who develop these malignancies. Moreover, the presumption that familial leukaemias only present in childhood is no longer true, in large part due to the numerous studies demonstrating germline DDX41 mutations in adults with MDS and AML. Lastly, we highlight how different cooperating events can influence the ultimate phenotype in these different familial leukaemia syndromes.
Collapse
Affiliation(s)
- Jeffery M Klco
- Department of Pathology and the Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Charles G Mullighan
- Department of Pathology and the Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
16
|
Down syndrome iPSC model: endothelial perspective on tumor development. Oncotarget 2020; 11:3387-3404. [PMID: 32934781 PMCID: PMC7486695 DOI: 10.18632/oncotarget.27712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/01/2020] [Indexed: 12/12/2022] Open
Abstract
Trisomy 21 (T21), known as Down syndrome (DS), is a widely studied chromosomal abnormality. Previous studies have shown that DS individuals have a unique cancer profile. While exhibiting low solid tumor prevalence, DS patients are at risk for hematologic cancers, such as acute megakaryocytic leukemia and acute lymphoblastic leukemia. We speculated that endothelial cells are active players in this clinical background. To this end, we hypothesized that impaired DS endothelial development and functionality, impacted by genome-wide T21 alterations, potentially results in a suboptimal endothelial microenvironment with the capability to prevent solid tumor growth. To test this hypothesis, we assessed molecular and phenotypic differences of endothelial cells differentiated from Down syndrome and euploid iPS cells. Microarray, RNA-Seq, and bioinformatic analyses revealed that most significantly expressed genes belong to angiogenic, cytoskeletal rearrangement, extracellular matrix remodeling, and inflammatory pathways. Interestingly, the majority of these genes are not located on Chromosome 21. To substantiate these findings, we carried out functional assays. The obtained phenotypic results correlated with the molecular data and showed that Down syndrome endothelial cells exhibit decreased proliferation, reduced migration, and a weak TNF-α inflammatory response. Based on this data, we provide a set of genes potentially associated with Down syndrome’s elevated leukemic incidence and its unfavorable solid tumor microenvironment—highlighting the potential use of these genes as therapeutic targets in translational cancer research.
Collapse
|
17
|
Davenport P, Liu ZJ, Sola-Visner M. Changes in megakaryopoiesis over ontogeny and their implications in health and disease. Platelets 2020; 31:692-699. [PMID: 32200697 PMCID: PMC8006558 DOI: 10.1080/09537104.2020.1742879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/05/2019] [Accepted: 02/26/2020] [Indexed: 12/16/2022]
Abstract
A growing body of research has made it increasingly clear that there are substantial biological differences between fetal/neonatal and adult megakaryopoiesis. Over the last decade, studies revealed a developmentally unique uncoupling of proliferation, polyploidization, and cytoplasmic maturation in neonatal MKs that results in the production of large numbers of small, low ploidy, but mature MKs during this period of development, and identified substantial molecular differences between fetal/neonatal and adult MKs. This review will summarize our current knowledge on the developmental differences between fetal/neonatal and adult MKs, and recent advances in our understanding of the underlying molecular mechanisms, including newly described developmentally regulated pathways and miRNAs. We will also discuss the implications of these findings on the ways MKs interact with the environment, the response of neonates to thrombocytopenia, the pathogenesis of Down syndrome-transient myeloproliferative disorder (TMD), and the developmental stage specific-manifestations of congenital amegakaryocytic thrombocytopenia.
Collapse
Affiliation(s)
- Patricia Davenport
- Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School , Boston, MA, USA
| | - Zhi-Jian Liu
- Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School , Boston, MA, USA
| | - Martha Sola-Visner
- Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School , Boston, MA, USA
| |
Collapse
|
18
|
Laurent AP, Kotecha RS, Malinge S. Gain of chromosome 21 in hematological malignancies: lessons from studying leukemia in children with Down syndrome. Leukemia 2020; 34:1984-1999. [PMID: 32433508 PMCID: PMC7387246 DOI: 10.1038/s41375-020-0854-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 12/31/2022]
Abstract
Structural and numerical alterations of chromosome 21 are extremely common in hematological malignancies. While the functional impact of chimeric transcripts from fused chromosome 21 genes such as TEL-AML1, AML1-ETO, or FUS-ERG have been extensively studied, the role of gain of chromosome 21 remains largely unknown. Gain of chromosome 21 is a frequently occurring aberration in several types of acute leukemia and can be found in up to 35% of cases. Children with Down syndrome (DS), who harbor constitutive trisomy 21, highlight the link between gain of chromosome 21 and leukemogenesis, with an increased risk of developing acute leukemia compared with other children. Clinical outcomes for DS-associated leukemia have improved over the years through the development of uniform treatment protocols facilitated by international cooperative groups. The genetic landscape has also recently been characterized, providing an insight into the molecular pathogenesis underlying DS-associated leukemia. These studies emphasize the key role of trisomy 21 in priming a developmental stage and cellular context susceptible to transformation, and have unveiled its cooperative function with additional genetic events that occur during leukemia progression. Here, using DS-leukemia as a paradigm, we aim to integrate our current understanding of the role of trisomy 21, of critical dosage-sensitive chromosome 21 genes, and of associated mechanisms underlying the development of hematological malignancies. This review will pave the way for future investigations on the broad impact of gain of chromosome 21 in hematological cancer, with a view to discovering new vulnerabilities and develop novel targeted therapies to improve long term outcomes for DS and non-DS patients.
Collapse
Affiliation(s)
- Anouchka P Laurent
- INSERM U1170, Gustave Roussy Institute, Université Paris Saclay, Villejuif, France
- Université Paris Diderot, Paris, France
| | - Rishi S Kotecha
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
- Department of Clinical Haematology, Oncology and Bone Marrow Transplantation, Perth Children's Hospital, Perth, Western Australia, Australia
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Sébastien Malinge
- INSERM U1170, Gustave Roussy Institute, Université Paris Saclay, Villejuif, France.
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
19
|
Shangpliang D, Dey B, Das J, Baishya P, Raphael V, Khonglah Y. Down syndrome presenting with different hematological manifestations: A case series of four cases. J Family Med Prim Care 2020; 9:2569-2572. [PMID: 32754549 PMCID: PMC7380744 DOI: 10.4103/jfmpc.jfmpc_326_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/27/2020] [Accepted: 04/15/2020] [Indexed: 11/20/2022] Open
Abstract
Children with Down syndrome (DS) are found to have an increased risk of developing various hematological disorders. Particularly, they have an increased predisposition to acute leukemia, predominantly the myeloid type known as myeloid leukemia of Down syndrome (ML-DS). The major morphological subtype is acute megakaryoblastic leukemia. Approximately 10% of the neonates with DS show a unique disorder known as transient leukemia or transient abnormal myelopoiesis (TAM). Their clinical and morphological features are indistinguishable from acute myeloid leukemia (AML); however, they regress spontaneously within the first few months of life. Here we present a series of four cases with different hematological conditions in children with DS. Of the four cases, two presented with AML-M7, one with TAM, and one case was diagnosed as AML-M2 subtype. This case series highlights the spectrum of hematological disorders in children with DS. Although the majority of the case studies show that TAM and AML-M7 are strongly associated with DS, this case series brings to focus that other AML subtypes may occur as well.
Collapse
Affiliation(s)
- Darilin Shangpliang
- Department of Pathology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, Meghalaya, India
| | - Biswajit Dey
- Department of Pathology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, Meghalaya, India
| | - Jonali Das
- Department of Pathology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, Meghalaya, India
| | - Pakesh Baishya
- Department of Pathology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, Meghalaya, India
| | - Vandana Raphael
- Department of Pathology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, Meghalaya, India
| | - Yookarin Khonglah
- Department of Pathology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, Meghalaya, India
| |
Collapse
|
20
|
Yin HM, Yan LF, Liu Q, Peng Z, Zhang CY, Xia Y, Su D, Gu AH, Zhou Y. Activating transcription factor 3 coordinates differentiation of cardiac and hematopoietic progenitors by regulating glucose metabolism. SCIENCE ADVANCES 2020; 6:eaay9466. [PMID: 32494702 PMCID: PMC7202888 DOI: 10.1126/sciadv.aay9466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 01/27/2020] [Indexed: 05/10/2023]
Abstract
The cardiac and hematopoietic progenitors (CPs and HPs, respectively) in the mesoderm ultimately form a well-organized circulation system, but mechanisms that reconcile their development remain elusive. We found that activating transcription factor 3 (atf3) was highly expressed in the CPs, HPs, and mesoderm, in zebrafish. The atf3 -/- mutants exhibited atrial dilated cardiomyopathy and a high ratio of immature myeloid cells. These manifestations were primarily caused by the blockade of differentiation of both CPs and HPs within the anterior lateral plate mesoderm. Mechanistically, Atf3 targets cebpγ to repress slc2a1a-mediated glucose utilization. The high rate of glucose metabolism in atf3 -/- mutants inhibited the differentiation of progenitors by changing the redox state. Therefore, atf3 could provide CPs and HPs with metabolic adaptive capacity to changes in glucose levels. Our study provides new insights into the role of atf3 in the coordination of differentiation of CPs and HPs by regulating glucose metabolism.
Collapse
Affiliation(s)
- Hui-Min Yin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Li-Feng Yan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zheng Peng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chi-Yuan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu Xia
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dan Su
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ai-Hua Gu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Corresponding author. (A.-H.G.); (Y.Z.)
| | - Yong Zhou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Corresponding author. (A.-H.G.); (Y.Z.)
| |
Collapse
|
21
|
Antonarakis SE, Skotko BG, Rafii MS, Strydom A, Pape SE, Bianchi DW, Sherman SL, Reeves RH. Down syndrome. Nat Rev Dis Primers 2020; 6:9. [PMID: 32029743 PMCID: PMC8428796 DOI: 10.1038/s41572-019-0143-7] [Citation(s) in RCA: 443] [Impact Index Per Article: 88.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2019] [Indexed: 12/11/2022]
Abstract
Trisomy 21, the presence of a supernumerary chromosome 21, results in a collection of clinical features commonly known as Down syndrome (DS). DS is among the most genetically complex of the conditions that are compatible with human survival post-term, and the most frequent survivable autosomal aneuploidy. Mouse models of DS, involving trisomy of all or part of human chromosome 21 or orthologous mouse genomic regions, are providing valuable insights into the contribution of triplicated genes or groups of genes to the many clinical manifestations in DS. This endeavour is challenging, as there are >200 protein-coding genes on chromosome 21 and they can have direct and indirect effects on homeostasis in cells, tissues, organs and systems. Although this complexity poses formidable challenges to understanding the underlying molecular basis for each of the many clinical features of DS, it also provides opportunities for improving understanding of genetic mechanisms underlying the development and function of many cell types, tissues, organs and systems. Since the first description of trisomy 21, we have learned much about intellectual disability and genetic risk factors for congenital heart disease. The lower occurrence of solid tumours in individuals with DS supports the identification of chromosome 21 genes that protect against cancer when overexpressed. The universal occurrence of the histopathology of Alzheimer disease and the high prevalence of dementia in DS are providing insights into the pathology and treatment of Alzheimer disease. Clinical trials to ameliorate intellectual disability in DS signal a new era in which therapeutic interventions based on knowledge of the molecular pathophysiology of DS can now be explored; these efforts provide reasonable hope for the future.
Collapse
Affiliation(s)
- Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.
| | - Brian G Skotko
- Down Syndrome Program, Division of Medical Genetics, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Michael S Rafii
- Keck School of Medicine of University of Southern California, California, CA, USA
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Sarah E Pape
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Diana W Bianchi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie L Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Roger H Reeves
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Pinti E, Lengyel A, Fekete G, Haltrich I. What should we consider in the case of combined Down- and 47,XY,+i(X)(q10) Klinefelter syndromes? The unique case of a male newborn and review of the literature. BMC Pediatr 2020; 20:17. [PMID: 31931754 PMCID: PMC6958764 DOI: 10.1186/s12887-019-1905-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/24/2019] [Indexed: 11/10/2022] Open
Abstract
Background Double aneuploidies - especially in combination with structural aberrations - are extremely rare among liveborns. The most frequent association is that of Down (DS) and Klinefelter syndromes (KS). We present the case of a male newborn with a unique 47,XY,+ 21[80%]/48,XY,+i(X)(q10),+ 21[20%] karyotype, hypothesize about his future phenotype, discuss the aspects of management and review the literature. Case presentation The additional association of isochromosome Xq (i(X)(q10)) could be the result of a threefold non-disjunction event. 47,XY,+i(X)(q10) KS is not common and its symptoms differ from the classical KS phenotype. In combined DS and i(X)(q10) KS, the anticipatory phenotype is not simply the sum of the individual syndromic characteristics. This genotype is associated with higher risk for several diseases and certain conditions with more pronounced appearance: emotional and behavioral disorders; poorer mental and physical quality of life; lower muscle mass/tone/strength; connective tissue weakness; muscle hypotonia and feeding difficulties; osteopenia/−porosis with earlier beginning and faster progression; different types of congenital heart diseases; more common occurrence of hypertension; increased susceptibility to infections and female predominant autoimmune diseases; higher risk for hematological malignancies and testicular tumors. Conclusions In multiple aneuploidies, the alterations have the potential to weaken or enhance each other, or they may not have modifying effects at all. Prenatal ultrasound signs are not obligatory symptoms of numerous chromosomal anomalies (specifically those involving supernumerary sex chromosomes), therefore combined prenatal screening has pertinence in uncomplicated pregnancies as well.
Collapse
Affiliation(s)
- Eva Pinti
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary.
| | - Anna Lengyel
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Gyorgy Fekete
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Iren Haltrich
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
23
|
Aivazidis S, Jain A, Rauniyar AK, Anderson CC, Marentette JO, Orlicky DJ, Fritz KS, Harris PS, Siegel D, Maclean KN, Roede JR. SNARE proteins rescue impaired autophagic flux in Down syndrome. PLoS One 2019; 14:e0223254. [PMID: 31714914 PMCID: PMC6850524 DOI: 10.1371/journal.pone.0223254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/17/2019] [Indexed: 01/20/2023] Open
Abstract
Down syndrome (DS) is a chromosomal disorder caused by trisomy of chromosome 21 (Ts21). Unbalanced karyotypes can lead to dysfunction of the proteostasis network (PN) and disrupted proteostasis is mechanistically associated with multiple DS comorbidities. Autophagy is a critical component of the PN that has not previously been investigated in DS. Based on our previous observations of PN disruption in DS, we investigated possible dysfunction of the autophagic machinery in human DS fibroblasts and other DS cell models. Following induction of autophagy by serum starvation, DS fibroblasts displayed impaired autophagic flux indicated by autophagolysosome accumulation and elevated p62, NBR1, and LC3-II abundance, compared to age- and sex-matched, euploid (CTL) fibroblasts. While lysosomal physiology was unaffected in both groups after serum starvation, we observed decreased basal abundance of the Soluble N-ethylmaleimide-sensitive-factor Attachment protein Receptor (SNARE) family members syntaxin 17 (STX17) and Vesicle Associated Membrane Protein 8 (VAMP8) indicating that decreased autophagic flux in DS is due at least in part to a possible impairment of autophagosome-lysosome fusion. This conclusion was further supported by the observation that over-expression of either STX17 or VAMP8 in DS fibroblasts restored autophagic degradation and reversed p62 accumulation. Collectively, our results indicate that impaired autophagic clearance is a characteristic of DS cells that can be reversed by enhancement of SNARE protein expression and provides further evidence that PN disruption represents a candidate mechanism for multiple aspects of pathogenesis in DS and a possible future target for therapeutic intervention.
Collapse
Affiliation(s)
- Stefanos Aivazidis
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States of America
| | - Abhilasha Jain
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States of America
| | - Abhishek K. Rauniyar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States of America
| | - Colin C. Anderson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States of America
| | - John O. Marentette
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States of America
| | - David J. Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Kristofer S. Fritz
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States of America
| | - Peter S. Harris
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States of America
| | - David Siegel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States of America
| | - Kenneth N. Maclean
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States of America
- The Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, United States of America
| | - James R. Roede
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States of America
- The Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, United States of America
- * E-mail:
| |
Collapse
|
24
|
Chukua K, Netsawang C, Padungthai K, Khetkham T, Chokevittaya P, Poonjearansilp O, Prachuktum S, Kositamongkol S, Techasatit W, Silapamongkolkul P, Satayasai W, Pusongchai T, Surapolchai P, Rojnueangnit K. Two Novel GATA1 Mutations in Transient Abnormal Myelopoiesis of Thai Neonates with Down Syndrome. J Pediatr Genet 2019; 8:187-192. [PMID: 31687255 DOI: 10.1055/s-0039-1696971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 08/01/2019] [Indexed: 10/26/2022]
Abstract
Children with Down syndrome (DS) are 150 times more likely to develop acute myeloid leukemia (ML-DS), compared with those without. One risk factor is transient abnormal myelopoiesis (TAM). Somatic truncating GATA1 mutations are found in most TAM patients and are markers for future ML-DS. We identified two novel frameshift mutations in our seven newborns with DS and TAM: a heterozygous mutation of 17 nucleotide duplication (c.154_170 dup) and a heterozygous 9-nucleotide deletion combined with a 2-nucleotide insertion (c.150_158delins CT). Both mutations introduced a truncated GATA1 protein. Thus, neonates with DS and TAM require frequent ML-DS monitoring.
Collapse
Affiliation(s)
- Kanokporn Chukua
- Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | | | | | - Thanitchet Khetkham
- Divison of Forensic Medicine, Thammasat University Hospital, Pathum Thani, Thailand
| | - Piyaporn Chokevittaya
- Department of Pediatrics, Division of Genetics, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Onapinya Poonjearansilp
- Department of Pediatrics, Division of Genetics, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Sariya Prachuktum
- Department of Pediatrics, Division of Genetics, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Sudatip Kositamongkol
- Department of Pediatrics, Division of Genetics, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Wiliporn Techasatit
- Department of Pediatrics, Division of Genetics, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Phakatip Silapamongkolkul
- Department of Pediatrics, Division of Genetics, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Wallee Satayasai
- Department of Pediatrics, Division of Genetics, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Tasama Pusongchai
- Department of Pediatrics, Division of Genetics, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Pacharapan Surapolchai
- Department of Pediatrics, Division of Genetics, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Kitiwan Rojnueangnit
- Department of Pediatrics, Division of Genetics, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
25
|
Gallaway L, Jnah AJ. Transient Myeloproliferative Disorder: An Update for Neonatal Nurses. Neonatal Netw 2019; 38:144-150. [PMID: 31470381 DOI: 10.1891/0730-0832.38.3.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Down syndrome (DS) is a well-known genetic disorder that affects 700-1,000 infants per year. One particular comorbidity of DS is transient myeloproliferative disorder (TMD), a disease characterized by leukocytosis with elevated blast counts. Approximately 10 percent of DS infants develop TMD, which usually manifests during the first week of life and can lead to an extended hospitalization in a NICU. In addition to hallmark hematologic findings, other manifestations include jaundice, conjugated hyperbilirubinemia, hepatomegaly, and pericardial or pleural effusions. TMD generally resolves spontaneously in the first three months of life with the provision of timely medical management; however, survivors are at increased risk of developing acute myeloid leukemia (AML). Neonatal nurses need to have knowledge of this disorder to facilitate screening of DS infants and optimize family education and coordination of care.
Collapse
|
26
|
Petridou ET, Georgakis MK, Erdmann F, Ma X, Heck JE, Auvinen A, Mueller BA, Spector LG, Roman E, Metayer C, Magnani C, Pombo-de-Oliveira MS, Ezzat S, Scheurer ME, Mora AM, Dockerty JD, Hansen J, Kang AY, Wang R, Doody DR, Kane E, Rashed WM, Dessypris N, Schüz J, Infante-Rivard C, Skalkidou A. Advanced parental age as risk factor for childhood acute lymphoblastic leukemia: results from studies of the Childhood Leukemia International Consortium. Eur J Epidemiol 2018; 33:965-976. [PMID: 29761423 PMCID: PMC6384148 DOI: 10.1007/s10654-018-0402-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/25/2018] [Indexed: 12/12/2022]
Abstract
Advanced parental age has been associated with adverse health effects in the offspring including childhood (0-14 years) acute lymphoblastic leukemia (ALL), as reported in our meta-analysis of published studies. We aimed to further explore the association using primary data from 16 studies participating in the Childhood Leukemia International Consortium. Data were contributed by 11 case-control (CC) studies (7919 cases and 12,942 controls recruited via interviews) and five nested case-control (NCC) studies (8801 cases and 29,690 controls identified through record linkage of population-based health registries) with variable enrollment periods (1968-2015). Five-year paternal and maternal age increments were introduced in two meta-analyses by study design using adjusted odds ratios (OR) derived from each study. Increased paternal age was associated with greater ALL risk in the offspring (ORCC 1.05, 95% CI 1.00-1.11; ORNCC 1.04, 95% CI 1.01-1.07). A similar positive association with advanced maternal age was observed only in the NCC results (ORCC 0.99, 95% CI 0.91-1.07, heterogeneity I2 = 58%, p = 0.002; ORNCC 1.05, 95% CI 1.01-1.08). The positive association between parental age and risk of ALL was most marked among children aged 1-5 years and remained unchanged following mutual adjustment for the collinear effect of the paternal and maternal age variables; analyses of the relatively small numbers of discordant paternal-maternal age pairs were not fully enlightening. Our results strengthen the evidence that advanced parental age is associated with increased childhood ALL risk; collinearity of maternal with paternal age complicates causal interpretation. Employing datasets with cytogenetic information may further elucidate involvement of each parental component and clarify underlying mechanisms.
Collapse
Affiliation(s)
- Eleni Th Petridou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527, Athens, Greece.
- Clinical Epidemiology Unit, Department of Medicine, Karolinska Institute, Stockholm, Sweden.
| | - Marios K Georgakis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527, Athens, Greece
| | - Friederike Erdmann
- Section of Environment and Radiation, International Agency for Research on Cancer, Lyon, France
- Unit of Survivorship, Childhood Cancer Survivorship Research Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Xiaomei Ma
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Cancer Prevention and Control, Yale Comprehensive Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Julia E Heck
- Department of Epidemiology, School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anssi Auvinen
- Faculty of Social Sciences, University of Tampere, Tampere, Finland
| | - Beth A Mueller
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Logan G Spector
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Eve Roman
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, Heslington, York, UK
| | - Catherine Metayer
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Corrado Magnani
- Dipartimento di Medicina Traslazionale, SCDU Epidemiologia del Tumori, Universitá del Piemonte Orientale, Novara, Italy
| | | | - Sameera Ezzat
- Department of Epidemiology and Preventive Medicine, NLI-SSI Collaborative Research Center, National Liver Institute, Menoufia University, Cairo, Egypt
| | - Michael E Scheurer
- Department of Pediatrics Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Ana Maria Mora
- Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, Heredia, Costa Rica
| | - John D Dockerty
- Department of Preventative and Social Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Johnni Hansen
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Alice Y Kang
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Rong Wang
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Cancer Prevention and Control, Yale Comprehensive Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - David R Doody
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Eleanor Kane
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, Heslington, York, UK
| | - Waffa M Rashed
- Research Department, Children's Cancer Hospital Egypt, Cairo, Egypt
- Biomedical Research Department, Armed Forces College of Medicine, Cairo, Egypt
| | - Nick Dessypris
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527, Athens, Greece
| | - Joachim Schüz
- Section of Environment and Radiation, International Agency for Research on Cancer, Lyon, France
| | - Claire Infante-Rivard
- Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Alkistis Skalkidou
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| |
Collapse
|
27
|
Ciccarone F, Valentini E, Malavolta M, Zampieri M, Bacalini MG, Calabrese R, Guastafierro T, Reale A, Franceschi C, Capri M, Breusing N, Grune T, Moreno‐Villanueva M, Bürkle A, Caiafa P. DNA Hydroxymethylation Levels Are Altered in Blood Cells From Down Syndrome Persons Enrolled in the MARK-AGE Project. J Gerontol A Biol Sci Med Sci 2018; 73:737-744. [PMID: 29069286 PMCID: PMC5946825 DOI: 10.1093/gerona/glx198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 10/19/2017] [Indexed: 12/17/2022] Open
Abstract
Down syndrome (DS) is caused by the presence of part or an entire extra copy of chromosome 21, a phenomenon that can cause a wide spectrum of clinically defined phenotypes of the disease. Most of the clinical signs of DS are typical of the aging process including dysregulation of immune system. Beyond the causative genetic defect, DS persons display epigenetic alterations, particularly aberrant DNA methylation patterns that can contribute to the heterogeneity of the disease. In the present work, we investigated the levels of 5-hydroxymethylcytosine and of the Ten-eleven translocation dioxygenase enzymes, which are involved in DNA demethylation processes and are often deregulated in pathological conditions as well as in aging. Analyses were carried out on peripheral blood mononuclear cells of DS volunteers enrolled in the context of the MARK-AGE study, a large-scale cross-sectional population study with subjects representing the general population in eight European countries. We observed a decrease in 5-hydroxymethylcytosine, TET1, and other components of the DNA methylation/demethylation machinery in DS subjects, indicating that aberrant DNA methylation patterns in DS, which may have consequences on the transcriptional status of immune cells, may be due to a global disturbance of methylation control in DS.
Collapse
Affiliation(s)
- Fabio Ciccarone
- Department of Biology, University of Rome “Tor Vergata,” Rome
| | - Elisabetta Valentini
- Department of Cellular Biotechnologies and Hematology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome
- Pasteur Institute-Fondazione Cenci Bolognetti, Rome
| | - Marco Malavolta
- National Institute of Health and Science on Aging (INRCA), Nutrition and Ageing Centre, Scientific and Technological Research Area, Ancona
| | - Michele Zampieri
- Department of Cellular Biotechnologies and Hematology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome
- Pasteur Institute-Fondazione Cenci Bolognetti, Rome
| | | | - Roberta Calabrese
- Department of Cellular Biotechnologies and Hematology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome
- Pasteur Institute-Fondazione Cenci Bolognetti, Rome
| | - Tiziana Guastafierro
- Department of Cellular Biotechnologies and Hematology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome
- Pasteur Institute-Fondazione Cenci Bolognetti, Rome
| | - Anna Reale
- Department of Cellular Biotechnologies and Hematology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome
| | - Claudio Franceschi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna
- Department of Experimental, Diagnostic and Specialty Medicine, Bologna, Italy
- CIG-Interdepartmental Center “L. Galvani,” Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine, Bologna, Italy
- CIG-Interdepartmental Center “L. Galvani,” Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Nicolle Breusing
- Institute of Nutritional Medicine (180c), University of Hohenheim, Stuttgart
| | - Tilman Grune
- German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal
| | - María Moreno‐Villanueva
- Department of Biology, Molecular Toxicology Group, University of Konstanz, Konstanz, Germany
| | - Alexander Bürkle
- Department of Biology, Molecular Toxicology Group, University of Konstanz, Konstanz, Germany
| | - Paola Caiafa
- Department of Cellular Biotechnologies and Hematology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome
- Pasteur Institute-Fondazione Cenci Bolognetti, Rome
| |
Collapse
|
28
|
Malouf C, Ottersbach K. Molecular processes involved in B cell acute lymphoblastic leukaemia. Cell Mol Life Sci 2018; 75:417-446. [PMID: 28819864 PMCID: PMC5765206 DOI: 10.1007/s00018-017-2620-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 12/19/2022]
Abstract
B cell leukaemia is one of the most frequent malignancies in the paediatric population, but also affects a significant proportion of adults in developed countries. The majority of infant and paediatric cases initiate the process of leukaemogenesis during foetal development (in utero) through the formation of a chromosomal translocation or the acquisition/deletion of genetic material (hyperdiploidy or hypodiploidy, respectively). This first genetic insult is the major determinant for the prognosis and therapeutic outcome of patients. B cell leukaemia in adults displays similar molecular features as its paediatric counterpart. However, since this disease is highly represented in the infant and paediatric population, this review will focus on this demographic group and summarise the biological, clinical and epidemiological knowledge on B cell acute lymphoblastic leukaemia of four well characterised subtypes: t(4;11) MLL-AF4, t(12;21) ETV6-RUNX1, t(1;19) E2A-PBX1 and t(9;22) BCR-ABL1.
Collapse
Affiliation(s)
- Camille Malouf
- MRC Centre for Regenerative Medicine, The University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Katrin Ottersbach
- MRC Centre for Regenerative Medicine, The University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
29
|
de Souza DC, de Figueiredo AF, Ney Garcia DR, da Costa ES, Othman MAK, Liehr T, Abdelhay E, Silva MLM, de Souza Fernandez T. A unique set of complex chromosomal abnormalities in an infant with myeloid leukemia associated with Down syndrome. Mol Cytogenet 2017; 10:35. [PMID: 28912835 PMCID: PMC5594429 DOI: 10.1186/s13039-017-0335-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/28/2017] [Indexed: 12/14/2022] Open
Abstract
Background Children with Down syndrome (DS) have an enhanced risk of developing acute leukemia, with the most common subtype being acute megakaryoblastic leukemia (AMKL). Myeloid leukemia in Down syndrome (ML-DS) is considered a disease with distinct clinical and biological features. There are few studies focusing on the clonal cytogenetic changes during evolution of ML-DS. Case presentation Here, we describe a complex karyotype involving a previously unreported set of chromosomal abnormalities acquired during progression of ML-DS in an infant boy: derivative der(1)t(1;15)(q24;q23), translocation t(4;5)(q26;q33) and derivative der(15)t(7;15)(p21;q23). Different molecular cytogenetic probes and probesets including whole chromosome painting (WCP) and locus specific probes, as well as, multicolor-FISH and multicolor chromosome banding (MCB) were performed in order to characterize the chromosomal abnormalities involved in this complex karyotype. The patient was treated according to the acute myeloid leukemia-Berlin-Frankfurt-Munich-2004 (AML-BFM 2004) treatment protocol for patients with Down syndrome; however, he experienced a poor clinical outcome. Conclusion The molecular cytogenetic studies performed, allowed the characterization of novel chromosomal abnormalities in ML-DS and possible candidate genes involved in the leukemogenic process. Our findings suggest that the complex karyotype described here was associated with the poor prognosis.
Collapse
Affiliation(s)
- Daiane Correa de Souza
- Cytogenetic Laboratory, Bone Marrow Transplantation Center, National Cancer Institute (INCA), Praça Cruz Vermelha no. 23, 6° andar. Centro, CEP, Rio de Janeiro, RJ 20230-130 Brazil
| | - Amanda Faria de Figueiredo
- Cytogenetic Laboratory, Bone Marrow Transplantation Center, National Cancer Institute (INCA), Praça Cruz Vermelha no. 23, 6° andar. Centro, CEP, Rio de Janeiro, RJ 20230-130 Brazil
| | - Daniela R Ney Garcia
- Cytogenetic Laboratory, Bone Marrow Transplantation Center, National Cancer Institute (INCA), Praça Cruz Vermelha no. 23, 6° andar. Centro, CEP, Rio de Janeiro, RJ 20230-130 Brazil
| | - Elaine Sobral da Costa
- Pediatric and Puericulture Martagão Gesteira Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-590 Brazil
| | - Moneeb A K Othman
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Eliana Abdelhay
- Cytogenetic Laboratory, Bone Marrow Transplantation Center, National Cancer Institute (INCA), Praça Cruz Vermelha no. 23, 6° andar. Centro, CEP, Rio de Janeiro, RJ 20230-130 Brazil
| | - Maria Luiza Macedo Silva
- Cytogenetic Laboratory, Bone Marrow Transplantation Center, National Cancer Institute (INCA), Praça Cruz Vermelha no. 23, 6° andar. Centro, CEP, Rio de Janeiro, RJ 20230-130 Brazil
| | - Teresa de Souza Fernandez
- Cytogenetic Laboratory, Bone Marrow Transplantation Center, National Cancer Institute (INCA), Praça Cruz Vermelha no. 23, 6° andar. Centro, CEP, Rio de Janeiro, RJ 20230-130 Brazil
| |
Collapse
|
30
|
Aivazidis S, Coughlan CM, Rauniyar AK, Jiang H, Liggett LA, Maclean KN, Roede JR. The burden of trisomy 21 disrupts the proteostasis network in Down syndrome. PLoS One 2017; 12:e0176307. [PMID: 28430800 PMCID: PMC5400264 DOI: 10.1371/journal.pone.0176307] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/07/2017] [Indexed: 12/27/2022] Open
Abstract
Down syndrome (DS) is a genetic disorder caused by trisomy of chromosome 21. Abnormalities in chromosome number have the potential to lead to disruption of the proteostasis network (PN) and accumulation of misfolded proteins. DS individuals suffer from several comorbidities, and we hypothesized that disruption of proteostasis could contribute to the observed pathology and decreased cell viability in DS. Our results confirm the presence of a disrupted PN in DS, as several of its elements, including the unfolded protein response, chaperone system, and proteasomal degradation exhibited significant alterations compared to euploid controls in both cell and mouse models. Additionally, when cell models were treated with compounds that promote disrupted proteostasis, we observed diminished levels of cell viability in DS compared to controls. Collectively our findings provide a cellular-level characterization of PN dysfunction in DS and an improved understanding of the potential pathogenic mechanisms contributing to disrupted cellular physiology in DS. Lastly, this study highlights the future potential of designing therapeutic strategies that mitigate protein quality control dysfunction.
Collapse
Affiliation(s)
- Stefanos Aivazidis
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States of America
| | - Christina M. Coughlan
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, United States of America
- The Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, United States of America
| | - Abhishek K. Rauniyar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States of America
| | - Hua Jiang
- The Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, United States of America
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - L. Alexander Liggett
- The Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, United States of America
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Kenneth N. Maclean
- The Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, United States of America
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - James R. Roede
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States of America
- * E-mail:
| |
Collapse
|
31
|
Abstract
Down syndrome (also known as trisomy 21) is the model human phenotype for all genomic gain dosage imbalances, including microduplications. The functional genomic exploration of the post-sequencing years of chromosome 21, and the generation of numerous cellular and mouse models, have provided an unprecedented opportunity to decipher the molecular consequences of genome dosage imbalance. Studies of Down syndrome could provide knowledge far beyond the well-known characteristics of intellectual disability and dysmorphic features, as several other important features, including congenital heart defects, early ageing, Alzheimer disease and childhood leukaemia, are also part of the Down syndrome phenotypic spectrum. The elucidation of the molecular mechanisms that cause or modify the risk for different Down syndrome phenotypes could lead to the introduction of previously unimaginable therapeutic options.
Collapse
|
32
|
Evolution of myeloid leukemia in children with Down syndrome. Int J Hematol 2016; 103:365-72. [PMID: 26910243 DOI: 10.1007/s12185-016-1959-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/09/2016] [Accepted: 02/09/2016] [Indexed: 10/22/2022]
Abstract
Children with Down syndrome (DS) have a markedly increased risk of leukemia. They are at particular risk of acute megakaryoblastic leukemia, known as myeloid leukemia associated with DS (ML-DS), the development of which is closely linked to a preceding temporary form of neonatal leukemia called transient abnormal myelopoiesis (TAM). Findings from recent clinical and laboratory studies suggest that constitutional trisomy 21 and GATA1 mutation(s) cause TAM, and that additional genetic alteration(s) including those in epigenetic regulators and signaling molecules are involved in the progression from TAM to ML-DS. Thus, this disease progression represents an important model of multi-step leukemogenesis. The present review focuses on the evolutionary process of TAM to ML-DS, and advances in the understanding of perturbed hematopoiesis in DS with respect to GATA1 mutation and recent findings, including cooperating genetic events, are discussed.
Collapse
|