1
|
Hercules SM, Liu X, Bassey-Archibong BBI, Skeete DHA, Smith Connell S, Daramola A, Banjo AA, Ebughe G, Agan T, Ekanem IO, Udosen J, Obiorah C, Ojule AC, Misauno MA, Dauda AM, Egbujo EC, Hercules JC, Ansari A, Brain I, MacColl C, Xu Y, Jin Y, Chang S, Carpten JD, Bédard A, Pond GR, Blenman KRM, Manojlovic Z, Daniel JM. Analysis of the genomic landscapes of Barbadian and Nigerian women with triple negative breast cancer. Cancer Causes Control 2022; 33:831-841. [PMID: 35384527 PMCID: PMC9085672 DOI: 10.1007/s10552-022-01574-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 03/12/2022] [Indexed: 11/10/2022]
Abstract
PURPOSE Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype that disproportionately affects women of African ancestry (WAA) and is often associated with poor survival. Although there is a high prevalence of TNBC across West Africa and in women of the African diaspora, there has been no comprehensive genomics study to investigate the mutational profile of ancestrally related women across the Caribbean and West Africa. METHODS This multisite cross-sectional study used 31 formalin-fixed paraffin-embedded (FFPE) samples from Barbadian and Nigerian TNBC participants. High-resolution whole exome sequencing (WES) was performed on the Barbadian and Nigerian TNBC samples to identify their mutational profiles and comparisons were made to African American, European American and Asian American sequencing data obtained from The Cancer Genome Atlas (TCGA). Whole exome sequencing was conducted on tumors with an average of 382 × coverage and 4335 × coverage for pooled germline non-tumor samples. RESULTS Variants detected at high frequency in our WAA cohorts were found in the following genes NBPF12, PLIN4, TP53 and BRCA1. In the TCGA TNBC cases, these genes had a lower mutation rate, except for TP53 (32% in our cohort; 63% in TCGA-African American; 67% in TCGA-European American; 63% in TCGA-Asian). For all altered genes, there were no differences in frequency of mutations between WAA TNBC groups including the TCGA-African American cohort. For copy number variants, high frequency alterations were observed in PIK3CA, TP53, FGFR2 and HIF1AN genes. CONCLUSION This study provides novel insights into the underlying genomic alterations in WAA TNBC samples and shines light on the importance of inclusion of under-represented populations in cancer genomics and biomarker studies.
Collapse
Affiliation(s)
- Shawn M. Hercules
- grid.25073.330000 0004 1936 8227Department of Biology, McMaster University, Hamilton, ON Canada
- African Caribbean Cancer Consortium, Philadelphia, PA USA
| | - Xiyu Liu
- grid.42505.360000 0001 2156 6853Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | | | - Desiree H. A. Skeete
- African Caribbean Cancer Consortium, Philadelphia, PA USA
- grid.412886.10000 0004 0592 769XFaculty of Medical Sciences, University of the West Indies at Cave Hill, Bridgetown, Barbados
- grid.415521.60000 0004 0570 5165Department of Pathology, Queen Elizabeth Hospital, Bridgetown, Barbados
| | - Suzanne Smith Connell
- grid.412886.10000 0004 0592 769XFaculty of Medical Sciences, University of the West Indies at Cave Hill, Bridgetown, Barbados
- grid.415521.60000 0004 0570 5165Department of Radiation Oncology, Queen Elizabeth Hospital, Bridgetown, Barbados
- Present Address: Cancer Specialists Inc, Bridgetown, Barbados
| | - Adetola Daramola
- grid.411283.d0000 0000 8668 7085Department of Anatomic and Molecular Pathology, Lagos University Teaching Hospital, Lagos, Nigeria
| | - Adekunbiola A. Banjo
- grid.411283.d0000 0000 8668 7085Department of Anatomic and Molecular Pathology, Lagos University Teaching Hospital, Lagos, Nigeria
| | - Godwin Ebughe
- grid.413097.80000 0001 0291 6387Department of Pathology, University of Calabar Teaching Hospital, Calabar, Nigeria
| | - Thomas Agan
- grid.413097.80000 0001 0291 6387Department of Obstetrics & Gynaecology, College of Medical Sciences, University of Calabar Teaching Hospital, Calabar, Nigeria
| | - Ima-Obong Ekanem
- grid.413097.80000 0001 0291 6387Department of Pathology, College of Medical Sciences, University of Calabar Teaching Hospital, Calabar, Nigeria
| | - Joe Udosen
- grid.413097.80000 0001 0291 6387Division of General and Breast Surgery, University of Calabar Teaching Hospital, Calabar, Nigeria
| | - Christopher Obiorah
- grid.412738.bDepartment of Anatomical Pathology, University of Port Harcourt Teaching Hospital, Port Harcourt, Nigeria
| | - Aaron C. Ojule
- grid.412738.bDepartment of Chemical Pathology, University of Port Harcourt Teaching Hospital, Port Harcourt, Nigeria
| | - Michael A. Misauno
- grid.411946.f0000 0004 1783 4052Department of Surgery, Jos University Teaching Hospital, Jos, Nigeria
| | - Ayuba M. Dauda
- grid.411946.f0000 0004 1783 4052Department of Pathology, Jos University Teaching Hospital, Jos, Nigeria
| | | | - Jevon C. Hercules
- grid.12916.3d0000 0001 2322 4996Department of Mathematics, University of the West Indies at Mona, Kingston, Jamaica
- grid.12955.3a0000 0001 2264 7233Present Address: Wang Yanan Institute for Studies in Economics, Xiamen University, Xiamen, China
| | - Amna Ansari
- grid.25073.330000 0004 1936 8227Department of Biology, McMaster University, Hamilton, ON Canada
| | - Ian Brain
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada
| | - Christine MacColl
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada
| | - Yili Xu
- grid.42505.360000 0001 2156 6853Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Yuxin Jin
- grid.42505.360000 0001 2156 6853Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Sharon Chang
- grid.42505.360000 0001 2156 6853Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - John D. Carpten
- grid.42505.360000 0001 2156 6853Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - André Bédard
- grid.25073.330000 0004 1936 8227Department of Biology, McMaster University, Hamilton, ON Canada
| | - Greg R. Pond
- grid.25073.330000 0004 1936 8227Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON Canada
- grid.25073.330000 0004 1936 8227Department of Oncology, McMaster University, Hamilton, ON Canada
| | - Kim R. M. Blenman
- grid.433818.5Department of Internal Medicine, Section of Medical Oncology, Yale Cancer Center, School of Medicine, New Haven, CT USA
- grid.47100.320000000419368710Department of Computer Science, School of Engineering and Applied Science, Yale University, New Haven, CT USA
| | - Zarko Manojlovic
- grid.42505.360000 0001 2156 6853Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Juliet M. Daniel
- grid.25073.330000 0004 1936 8227Department of Biology, McMaster University, Hamilton, ON Canada
- African Caribbean Cancer Consortium, Philadelphia, PA USA
| |
Collapse
|
2
|
Wang QL, Zhou CL, Yin YF, Xiao L, Wang Y, Li K. An enzymatic on/off switch-mediated assay for KRAS hotspot point mutation detection of circulating tumor DNA. J Clin Lab Anal 2020; 34:e23305. [PMID: 32207862 PMCID: PMC7439329 DOI: 10.1002/jcla.23305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/10/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022] Open
Abstract
Background To detect the mutations of KRAS gene in colorectal cancer patients and other cancer patients, it is of value to develop non‐invasive, sensitive, specific, easy, and low‐cost assays. Methods Templates harboring hotspot mutations of the KRAS gene were constructed, and primers were designed for evaluation of the specificity, and sensitivity of detection system consisted of exonuclease polymerase‐mediated on/off switch; then, gel electrophoresis and real‐time PCR were performed for verification. The assay was verified by testing the DNA pool of normal controls and circulating DNA (ctDNA) samples from 14 tumor patients, as compared to Sanger sequencing. Results A specific and sensitive assay consisted of exonuclease polymerase‐mediated on/off switch, and multiplex real‐time PCR method has been established. This assay could detect <100 copies of KRAS mutation in more than 10 million copies of wild‐type KRAS gene fragments. This assay was applied to test KRAS gene mutations in three cases of fourteen ctDNA samples, and the results were consistent with Sanger sequencing. However, this PCR‐based assay was more sensitive and easier to be interpreted. Conclusion This assay can detect the presence of KRAS hotspot mutations in clinical circulating tumor DNA samples. The assay has a potential to be used in early diagnosis of colorectal cancer as well as other types of cancer.
Collapse
Affiliation(s)
- Qing-Lin Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Cui-Lan Zhou
- Department of Human Anatomy, University of South China, Hengyang, China
| | - Yu-Fang Yin
- Department of Pharmacology and Neuroscience, SIU Medical School, Springfield, IL, USA
| | - Li Xiao
- Laboratory of Molecular Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuan Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Kai Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,GeneTalks Biotechnology Inc., Changsha, China
| |
Collapse
|
3
|
Molecular-Clinical Correlation in Pediatric Medulloblastoma: A Cohort Series Study of 52 Cases in Taiwan. Cancers (Basel) 2020; 12:cancers12030653. [PMID: 32168907 PMCID: PMC7139704 DOI: 10.3390/cancers12030653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/27/2022] Open
Abstract
In 2016, a project was initiated in Taiwan to adopt molecular diagnosis of childhood medulloblastoma (MB). In this study, we aimed to identify a molecular-clinical correlation and somatic mutation for exploring risk-adapted treatment, drug targets, and potential genetic predisposition. In total, 52 frozen tumor tissues of childhood MBs were collected. RNA sequencing (RNA-Seq) and DNA methylation array data were generated. Molecular subgrouping and clinical correlation analysis were performed. An adjusted Heidelberg risk stratification scheme was defined for updated clinical risk stratification. We selected 51 genes for somatic variant calling using RNA-Seq data. Relevant clinical findings were defined. Potential drug targets and genetic predispositions were explored. Four core molecular subgroups (WNT, SHH, Group 3, and Group 4) were identified. Genetic backgrounds of metastasis at diagnosis and extent of tumor resection were observed. The adjusted Heidelberg scheme showed its applicability. Potential drug targets were detected in the pathways of DNA damage response. Among the 10 patients with SHH MBs analyzed using whole exome sequencing studies, five patients exhibited potential genetic predispositions and four patients had relevant germline mutations. The findings of this study provide valuable information for updated risk adapted treatment and personalized care of childhood MBs in our cohort series and in Taiwan.
Collapse
|
4
|
Rice A, Del Rio Hernandez A. The Mutational Landscape of Pancreatic and Liver Cancers, as Represented by Circulating Tumor DNA. Front Oncol 2019; 9:952. [PMID: 31608239 PMCID: PMC6769086 DOI: 10.3389/fonc.2019.00952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
The mutational landscapes of pancreatic and liver cancers share many common genetic alterations which drive cancer progression. However, these mutations do not occur in all cases of these diseases, and this tumoral heterogeneity impedes diagnosis, prognosis, and therapeutic development. One minimally invasive method for the evaluation of tumor mutations is the analysis of circulating tumor DNA (ctDNA), released through apoptosis, necrosis, and active secretion by tumor cells into various body fluids. By observing mutations in those genes which promote transformation by controlling the cell cycle and oncogenic signaling pathways, a representation of the mutational profile of the tumor is revealed. The analysis of ctDNA is a promising technique for investigating these two gastrointestinal cancers, as many studies have reported on the accuracy of ctDNA assessment for diagnosis and prognosis using a variety of techniques.
Collapse
Affiliation(s)
- Alistair Rice
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Faculty of Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Armando Del Rio Hernandez
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Faculty of Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
| |
Collapse
|
5
|
Coudray A, Battenhouse AM, Bucher P, Iyer VR. Detection and benchmarking of somatic mutations in cancer genomes using RNA-seq data. PeerJ 2018; 6:e5362. [PMID: 30083469 PMCID: PMC6074801 DOI: 10.7717/peerj.5362] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/09/2018] [Indexed: 02/06/2023] Open
Abstract
To detect functional somatic mutations in tumor samples, whole-exome sequencing (WES) is often used for its reliability and relative low cost. RNA-seq, while generally used to measure gene expression, can potentially also be used for identification of somatic mutations. However there has been little systematic evaluation of the utility of RNA-seq for identifying somatic mutations. Here, we develop and evaluate a pipeline for processing RNA-seq data from glioblastoma multiforme (GBM) tumors in order to identify somatic mutations. The pipeline entails the use of the STAR aligner 2-pass procedure jointly with MuTect2 from genome analysis toolkit (GATK) to detect somatic variants. Variants identified from RNA-seq data were evaluated by comparison against the COSMIC and dbSNP databases, and also compared to somatic variants identified by exome sequencing. We also estimated the putative functional impact of coding variants in the most frequently mutated genes in GBM. Interestingly, variants identified by RNA-seq alone showed better representation of GBM-related mutations cataloged by COSMIC. RNA-seq-only data substantially outperformed the ability of WES to reveal potentially new somatic mutations in known GBM-related pathways, and allowed us to build a high-quality set of somatic mutations common to exome and RNA-seq calls. Using RNA-seq data in parallel with WES data to detect somatic mutations in cancer genomes can thus broaden the scope of discoveries and lend additional support to somatic variants identified by exome sequencing alone.
Collapse
Affiliation(s)
- Alexandre Coudray
- School of Life Sciences, École Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Anna M Battenhouse
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Philipp Bucher
- School of Life Sciences, École Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Vishwanath R Iyer
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Livestrong Cancer Institutes, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
6
|
He Q, Liu Y, Peters U, Hsu L. Multivariate association analysis with somatic mutation data. Biometrics 2018; 74:176-184. [PMID: 28722765 PMCID: PMC5967890 DOI: 10.1111/biom.12745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 04/01/2017] [Accepted: 05/01/2017] [Indexed: 12/21/2022]
Abstract
Somatic mutations are the driving forces for tumor development, and recent advances in cancer genome sequencing have made it feasible to evaluate the association between somatic mutations and cancer-related traits in large sample sizes. However, despite increasingly large sample sizes, it remains challenging to conduct statistical analysis for somatic mutations, because the vast majority of somatic mutations occur at very low frequencies. Furthermore, cancer is a complex disease and it is often accompanied by multiple traits that reflect various aspects of cancer; how to combine the information of these traits to identify important somatic mutations poses additional challenges. In this article, we introduce a statistical approach, named as SOMAT, for detecting somatic mutations associated with multiple cancer-related traits. Our approach provides a flexible framework for analyzing continuous, binary, or a mixture of both types of traits, and is statistically powerful and computationally efficient. In addition, we propose a data-adaptive procedure, which is grid-search free, for effectively combining test statistics to enhance statistical power. We conduct an extensive study and show that the proposed approach maintains correct type I error and is more powerful than existing approaches under the scenarios considered. We also apply our approach to an exome-sequencing study of liver tumor for illustration.
Collapse
Affiliation(s)
- Qianchuan He
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, U.S.A
| | - Yang Liu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, U.S.A
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, U.S.A
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, U.S.A
| |
Collapse
|
7
|
Mauger F, How-Kit A, Tost J. COLD-PCR Technologies in the Area of Personalized Medicine: Methodology and Applications. Mol Diagn Ther 2018; 21:269-283. [PMID: 28101802 DOI: 10.1007/s40291-016-0254-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Somatic mutations bear great promise for use as biomarkers for personalized medicine, but are often present only in low abundance in biological material and are therefore difficult to detect. Many assays for mutation analysis in cancer-related genes (hotspots) have been developed to improve diagnosis, prognosis, prediction of drug resistance, and monitoring of the response to treatment. Two major approaches have been developed: mutation-specific amplification methods and methods that enrich and detect mutations without prior knowledge on the exact location and identity of the mutation. CO-amplification at Lower Denaturation temperature Polymerase Chain Reaction (COLD-PCR) methods such as full-, fast-, ice- (improved and complete enrichment), enhanced-ice, and temperature-tolerant COLD-PCR make use of a critical temperature in the polymerase chain reaction to selectively denature wild-type-mutant heteroduplexes, allowing the enrichment of rare mutations. Mutations can subsequently be identified using a variety of laboratory technologies such as high-resolution melting, digital polymerase chain reaction, pyrosequencing, Sanger sequencing, or next-generation sequencing. COLD-PCR methods are sensitive, specific, and accurate if appropriately optimized and have a short time to results. A large variety of clinical samples (tumor DNA, circulating cell-free DNA, circulating cell-free fetal DNA, and circulating tumor cells) have been studied using COLD-PCR in many different applications including the detection of genetic changes in cancer and infectious diseases, non-invasive prenatal diagnosis, detection of microorganisms, or DNA methylation analysis. In this review, we describe in detail the different COLD-PCR approaches, highlighting their specificities, advantages, and inconveniences and demonstrating their use in different fields of biological and biomedical research.
Collapse
Affiliation(s)
- Florence Mauger
- Laboratory for Epigenetics and Environment, Centre National de Génotypage, CEA-Institut de Génomique, Batiment G2, 2 rue Gaston Crémieux, 91000, Evry, France
| | - Alexandre How-Kit
- Laboratory for Genomics, Fondation Jean Dausset-CEPH, 75010, Paris, France
| | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Génotypage, CEA-Institut de Génomique, Batiment G2, 2 rue Gaston Crémieux, 91000, Evry, France.
| |
Collapse
|
8
|
Stroncek DF, Butterfield LH, Cannarile MA, Dhodapkar MV, Greten TF, Grivel JC, Kaufman DR, Kong HH, Korangy F, Lee PP, Marincola F, Rutella S, Siebert JC, Trinchieri G, Seliger B. Systematic evaluation of immune regulation and modulation. J Immunother Cancer 2017; 5:21. [PMID: 28331613 PMCID: PMC5359947 DOI: 10.1186/s40425-017-0223-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/10/2017] [Indexed: 02/06/2023] Open
Abstract
Cancer immunotherapies are showing promising clinical results in a variety of malignancies. Monitoring the immune as well as the tumor response following these therapies has led to significant advancements in the field. Moreover, the identification and assessment of both predictive and prognostic biomarkers has become a key component to advancing these therapies. Thus, it is critical to develop systematic approaches to monitor the immune response and to interpret the data obtained from these assays. In order to address these issues and make recommendations to the field, the Society for Immunotherapy of Cancer reconvened the Immune Biomarkers Task Force. As a part of this Task Force, Working Group 3 (WG3) consisting of multidisciplinary experts from industry, academia, and government focused on the systematic assessment of immune regulation and modulation. In this review, the tumor microenvironment, microbiome, bone marrow, and adoptively transferred T cells will be used as examples to discuss the type and timing of sample collection. In addition, potential types of measurements, assays, and analyses will be discussed for each sample. Specifically, these recommendations will focus on the unique collection and assay requirements for the analysis of various samples as well as the high-throughput assays to evaluate potential biomarkers.
Collapse
Affiliation(s)
- David F Stroncek
- Department of Transfusion Medicine, National Institutes of Health, 10 Center Drive, Building 10, Room 3C720, Bethesda, MD 20892 USA
| | - Lisa H Butterfield
- Department of Medicine, Surgery and Immunology, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Pittsburgh, PA 15213 USA
| | - Michael A Cannarile
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Nonnenwald 2, 82377 Penzberg, Germany
| | - Madhav V Dhodapkar
- Department of Hematology & Immunobiology, Yale University, 333 Cedar Street, Box 208021, New Haven, CT 06510 USA
| | - Tim F Greten
- GI-Malignancy Section, Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10 Room 12 N226, 9000 Rockville, Bethesda, MD 20892 USA
| | - Jean Charles Grivel
- Division of Translational Medicine, Sidra Medical and Research Center, PO Box 26999, Al Luqta Street, Doha, Qatar
| | - David R Kaufman
- Merck Research Laboratories, PO Box 1000, UG 3CD28, North Wales, PA 19454 USA
| | - Heidi H Kong
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, MSC 1908, Bethesda, MD 20892-1908 USA
| | - Firouzeh Korangy
- GI-Malignancy Section, Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10 Room 12 N226, 9000 Rockville, Bethesda, MD 20892 USA
| | - Peter P Lee
- Department of Immuno-Oncology, City of Hope, 1500 East Duarte Road, Duarte, CA 91010 USA
| | - Francesco Marincola
- Division of Translational Medicine, Sidra Medical and Research Center, PO Box 26999, Al Luqta Street, Doha, Qatar
| | - Sergio Rutella
- The John van Geest Cancer Research Centre, Nottingham Trent University, Clifton Campus, Nottingham, NG11 8NS UK
| | - Janet C Siebert
- CytoAnalytics, 3500 South Albion Street, Cherry Hills Village, CO 80113 USA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37/Room 4146, Bethesda, MD 20892 USA
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, Halle, Germany
| |
Collapse
|
9
|
de Abreu FB, Peterson JD, Amos CI, Wells WA, Tsongalis GJ. Effective quality management practices in routine clinical next-generation sequencing. Clin Chem Lab Med 2017; 54:761-71. [PMID: 26872315 DOI: 10.1515/cclm-2015-1190] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/14/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Molecular technologies have allowed laboratories to detect and establish the profiles of human cancers by identifying a variety of somatic variants. In order to improve personalized patient care, we have established a next-generation sequencing (NGS) test to screen for somatic variants in primary or advanced cancers. In this study, we describe the laboratory quality management program for NGS testing, and also provide an overview of the somatic variants identified in over 1000 patient samples as well as their implications in clinical practice. METHODS Over the past one-and-a-half years, our laboratory received a total of 1028 formalin-fixed, paraffin-embedded (FFPE) tumor tissues, which consisted of non-small-cell lung carcinomas (NSCLCs), colon adenocarcinomas, glioma/glioblastomas, melanomas, breast carcinomas, and other tumor types. During this time period, we implemented a series of quality control (QC) checks that included (1) pre-DNA extraction, (2) DNA quantification, (3) DNA quality, (4) library quantification, (5) post-emulsification PCR, and (6) post-sequencing metrics. At least 10 ng of genomic DNA (gDNA) were used to prepare barcoded libraries using the AmpliSeq CHPv2. Samples were multiplexed and sequenced on Ion Torrent 318 chips using the Ion PGM System. Variants were identified using the Variant Caller Plugin, and annotation and functional predictions were performed using the Golden Helix SVS. RESULTS A total of 1005 samples passed QC1-3, and following additional library preparation QC checkpoints, 877 samples were sequenced. Samples were classified into two categories: wild-type (127) and positive for somatic variants (750). Somatic variants were classified into clinically actionable (60%) and non-actionable (40%). CONCLUSIONS The use of NGS in routine clinical laboratory practice allowed for the detection of tumor profiles that are essential for the selection of targeted therapies and identification of applicable clinical trials, contributing to the improvement of personalized patient care in oncology.
Collapse
|
10
|
Kamps R, Brandão RD, Bosch BJVD, Paulussen ADC, Xanthoulea S, Blok MJ, Romano A. Next-Generation Sequencing in Oncology: Genetic Diagnosis, Risk Prediction and Cancer Classification. Int J Mol Sci 2017; 18:ijms18020308. [PMID: 28146134 PMCID: PMC5343844 DOI: 10.3390/ijms18020308] [Citation(s) in RCA: 310] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/19/2017] [Indexed: 12/17/2022] Open
Abstract
Next-generation sequencing (NGS) technology has expanded in the last decades with significant improvements in the reliability, sequencing chemistry, pipeline analyses, data interpretation and costs. Such advances make the use of NGS feasible in clinical practice today. This review describes the recent technological developments in NGS applied to the field of oncology. A number of clinical applications are reviewed, i.e., mutation detection in inherited cancer syndromes based on DNA-sequencing, detection of spliceogenic variants based on RNA-sequencing, DNA-sequencing to identify risk modifiers and application for pre-implantation genetic diagnosis, cancer somatic mutation analysis, pharmacogenetics and liquid biopsy. Conclusive remarks, clinical limitations, implications and ethical considerations that relate to the different applications are provided.
Collapse
Affiliation(s)
- Rick Kamps
- Department of Clinical Genetics: GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6229HX Maastricht, The Netherlands.
| | - Rita D Brandão
- Department of Clinical Genetics: GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6229HX Maastricht, The Netherlands.
| | - Bianca J van den Bosch
- Department of Clinical Genetics: GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6229HX Maastricht, The Netherlands.
| | - Aimee D C Paulussen
- Department of Clinical Genetics: GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6229HX Maastricht, The Netherlands.
| | - Sofia Xanthoulea
- Department of Gynaecology and Obstetrics: GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6229HX Maastricht, The Netherlands.
| | - Marinus J Blok
- Department of Clinical Genetics: GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6229HX Maastricht, The Netherlands.
| | - Andrea Romano
- Department of Gynaecology and Obstetrics: GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6229HX Maastricht, The Netherlands.
| |
Collapse
|
11
|
Servín-Blanco R, Zamora-Alvarado R, Gevorkian G, Manoutcharian K. Antigenic variability: Obstacles on the road to vaccines against traditionally difficult targets. Hum Vaccin Immunother 2016; 12:2640-2648. [PMID: 27295540 DOI: 10.1080/21645515.2016.1191718] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Despite the impressive impact of vaccines on public health, the success of vaccines targeting many important pathogens and cancers has to date been limited. The burden of infectious diseases today is mainly caused by antigenically variable pathogens (AVPs), which escape immune responses induced by prior infection or vaccination through changes in molecular structures recognized by antibodies or T cells. Extensive genetic and antigenic variability is the major obstacle for the development of new or improved vaccines against "difficult" targets. Alternative, qualitatively new approaches leading to the generation of disease- and patient-specific vaccine immunogens that incorporate complex permanently changing epitope landscapes of intended targets accompanied by appropriate immunomodulators are urgently needed. In this review, we highlight some of the most critical common issues related to the development of vaccines against many pathogens and cancers that escape protective immune responses owing to antigenic variation, and discuss recent efforts to overcome the obstacles by applying alternative approaches for the rational design of new types of immunogens.
Collapse
Affiliation(s)
- R Servín-Blanco
- a Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Cuidad Universitaria , México DF , México
| | - R Zamora-Alvarado
- a Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Cuidad Universitaria , México DF , México
| | - G Gevorkian
- a Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Cuidad Universitaria , México DF , México
| | - K Manoutcharian
- a Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Cuidad Universitaria , México DF , México
| |
Collapse
|